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ABSTRACT: Low-temperature electrolytes (LTEs) have be&fr—— " (L), (BN),
considered as one of the most challenging aspects for thg w - A . }“

adoption of lithium-ion batteries (LIBs) since the SOA electrofyt¥ oo A ggls;ab’e
cannot suciently support the redox reactions at LT resulting in it XN ayer
dramatic performance degradation. Although many attemptg hid

been taken by employing various noncarbonate solvent egﬁe t

Vs.

lytes, there was a lack of fundamental understanding of the Ii_gqm' . t?

factors for low-temperature operations (e2@.to 40°C). In g, Ea S " S‘Z;”;glir
this paper, the crucial role of the sadctrolyte-interface (SEI¥ {ﬁ} 4
in LIB performance at low temperature using a butyronitrile (BN)j_em-: ~40°C e

based electrolyte was demonstrated. These results suggested®that® 100yc|e1rfumbe2r° » %
an additive formed SEI with low resistance and low charge transfer

dictates the LT performance in terms of capacity and cycle life, presenting a useful guideline in designing new electrolytes to ac
the LT issue.

KEYWORDS:solid electrolyte-interface, graphite electrodes, butyronitrile-based electrolytes, low-temperature performance,
lithium-ion batteries

INTRODUCTION electrode comurations, itis hard to pinpoint the actual limiting

Since their commercialization, lithium-ion batteries (LIBS) ha\jgctor and nd a solution to address the issue.

. - onventional LIB electrolytes are based on a mixture of
transformed our society, providing unprecedented freedom ((:)afr:bonate solvents dissolved with a lithium salt. The cyclic

mobility.l_'2 LIBs have been a key device not only in portable; rhonate, ethylene carbonate (EC), is known to be an

elect_romcs _sugh as smartphones, smartwatches, a_nd Iaptopq ispensable component due to its unique capability of forming

alsoin appllca'uonsforgnwronmentallyharsh conditions suchasq;apje solicelectrolyte-interphase (SEY* This SEI

drones, space exploration, and d(_e:l‘endhde many aspects of hassivates the graphite surface, preventing the continuous

LIB performance need to be improved, low-temperaturgsaction of electrolyte components with lithiated graphite and

capability is the most challenging one since the convention&{apling the reversible intercalation/deintercalation chemistry

electrolytes cannot operate properly at subzero temperatuegg |Bs. However, EC has a high melting point %€ 3dolid

due to sharp drops in capacity and rate capability. state at room temperature); therefore, electrolytes with a high
At low temperatures LIBs have intrinsically slow kinetics @ortion of EC, for example, >50 vol %, have adve ha

the electrode/electrolyte interface, in the bulk electrolyte, and iBnic conductivity at temperatures bel@@°C ** Tertiary >

the active electrode materialshas insucientthermal energy  and quaternafy™® carbonate solvent systems with a low

for ion transfer at the interfaces or iomsion within the bulk  portion of EC have been proposed and studied for low-

electrolyte and active materials, and it cannot supply the curréemperature application.

density normally required during charge and discharge processésarbonate derivatives and noncarbonate solvents as well have

at room temperatufé. The sluggish kinetics at every level been widely investigated to solve the sluggish ion transport in

causes high cell impedance and contributes to a large c@gctrolyte bulk such asorinated carbonates;’ ethers;’

overpotential, resulting in lowered capacity and energy. In

addition, during the charging process, the large overpotentiaRatceived: December 10, 2021

the graphite anode causes lithium plating, which not onlccepted: February 15, 2022

impairs the cell performance but also exacerbates safety issues

associated with a potential short-cif€ufrthermore, since

there are many factorseating the performance at low

temperature such as the active materials, electrolytes, and
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Figure 1Voltage prdes of (a) graphite/Li half-cells and (b) NMC622/Li half-cells with Gen 2 electrolyt€ aireb 20°C, and (c) theoretical
lithium-ion battery overpotential evolution with limiting factors of electrolyte ionic conductivity and interfacial resistance atriew temperatu

nitriles?® “?esters? ?’or uorinated estef§?°However, the  activation overpotential,(), (2) concentration overpotential
improved LT performance has been exclusively attributed to the,,), and (3) ohmic resistance. Since ohmic resistance is
high conductivity of the electrolyte bulk, and there has beenlagely dominated by the ionic conductivity of the electrolyte
lack of systematic study to pinpoint the limiting factors andnd not the electrodes, we only considered the activation
electrolyte design principle for low-temperature applications.overpotential and concentration overpotential, which directly
In this report, a low-melting-point butyronitrile (BN)-baseda ect the kinetics of electrochemical reactions in lithium-ion
electrolyte with enhanced conduciiVity at low temperature  battery systemBigure ¢ shows the evolution of theoretical
has been systematically investigated. It reveals that insteadwsrpotential with current density. Activation overpotential can
improved conductivity, the limiting factor for LT mainly lies inbe expressed by the classical But#mer equatiohi
the graphite anode. Speally, the SEI formation and its RT RT
chemical composition are the dominating factors. Lithium = éviln% + ————InJ
nitride (LiN)-containing SEI formed via the reduction of (1S )nF (1S )nF €9)
butyronitrile solvert 32 is benecial in decreasing the
interfacial impedance of the anode. Lithiuoride (LiF),
known as a stable component ir’SERcts as a resistor for ion

whereRis the ideal gas constanit the transfer coeientnis
the number of electrons for the reactiors the Faraday
constant}, is the exchange current density Jamthe applied

Gurrent density. The exchange current dedgityéans the
formulations with nitrile solvent. This medi SEI layer il T ;
enables the cells to operate 40 °C, while conventional degree of reversibility of an electrode reaction; it has an inverse

. . . . R
carbonate electrolyte could not operate at all. This studlation to the interfacial charge-transfer reSISt%n:Cen'Fé[’

provides in-depth insights on designing principles for higlivhereR, is an interfacial charge-transfer resistance of an
performance lithium-ion batteries for low-temperature applicatectrode.)
tions. Concentration overpotential can be derived from the law of
di usion and is given by the following equétion
RESULTS AND DISCUSSION =
RT n ‘:’im S J

The graphite anode is more sensitive to LT performance than ;g,.=
the LiNp Mno Coy £, (NMC622) cathode, as evidenced by LA )
the much lower (7%) capacity of the graphite/Li half-c&Dat
°C compared to 2%C; in contrast, the NMC622/Li half-cell
showed a smaller capacity decrease (64%), as Shigwreiéa

where J,,, is a limiting current density when surface ion
concentration goes to zero. The limiting current dedgity (

. ; . o™ has a proportional relation to the udion coecient. (
andFigure b. During the normal operation of a lithium-ion  nFD g ) o ] )
battery, electrode reaction kinetics is retarded by various factoks,= — —» WhereD,; is the diusion coecient,q; is
and among them, there are three main overpotentials: (ihe concentration of Liionin an electrolyte, amthe distance
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Figure 2(a) Temperature dependence of ionic conductivity of Gen 2, 1ABNFFEC (75/25 v/v), and 1 M LIiPEBN/EC (75/25 v/v) + 5 wt %
FEC electrolytes and (b) calculated activation ergydso(n plots in panel (a).

between electrodes.) The top plotFigure £ shows the Since interfacial resistance is largely determined by the SElI,
evolution of these two overpotentials and their sumlyip@n  we then analyzed the formation of the SEI with various
mA cm? andJ;,, is 10 mA cn? at room temperature. In this characterization method§&igure 3The reduction potential of
condition, the total overpotential stays low and slightly increadg$-BN, Li-EC, and L+FEC was calculated to be 0.39, 0.58,
governed by the activation overpotential at a low-to-moderagad 0.80 WsLIi/Li*, respectivelyHgure 8). This trend in
current density, and as the current density gdgsttoe total reduction potential is in good agreement with the reduction
overpotential sharply increases governed by the concentratii@k at 3.1, 3.0, and 2.65 V in Q& plots of NMC622/
overpotential. We assumed twoerdint situations at low graphite cells during thest charging cycle, as showrigure
temperatures. One is whendrops to 2 mA cnf. In this case, 3b. Itis worth noting that the BN solvent by itself could not form
the total overpotential grows large even at low current densfy Stable SEI layer, and a BN/EC (75/25 vlv) cosolvent
and the cell would not exhibit any capacity as the potentigfectrolyte also showed a low initial Coulomhiteacy (CE)
directly hits the cutovoltage. The other is whidrops to due to the close reduction potential of EC andrNi(e Sp

10 3mA cm2. The total overpotential becomes high at very lowiowever, a robust SEI layer could be tuned by adding 5 wt %
current density and slightly increases until the current densfieC s an additive to BN/EC. Though FEC has a higher
goes toJ,, From these overpotential increase trends, w duction potential than that of EC, the SEI is predominantly

. ) X X
prioritized the electrolyte properties: (1) high ionic conductivitormed by the reduction of thest Li"-coordinated solvation
and (2) low interfacial resistance. sheath, which, according to MD calculations, contains far more

To validate the above theory, we selected a nitrile-bas than FEC. Thus, the large contribution of EC to the SEI layer

electrolyte due to their high ionic conductiviti@sButyroni- ormation is explained by MD results, which show that the Li

trile (BN)-containing electrolvtes BN/EEC (1 M LIiRFBN/ coordination number of EC (0.55) is much higher than that of
FEC( (75)/25 VIVv)) arglld BN/Eg+ FEC (1 M E_il%l-?r:dBN/EC FEC (0.03) inthe BN/EC + FEC electrolyte systein(e 8).

(75/25 vIv) + 5 Wt % FEC) were studied and compared with theThe coordination numbers of electrolyte components at various

conventional electrolyte Gen 2, which is 1.2 M iiPEC/ temperatures in the BN/FEC or BN/EC + FEC electrolyte

: P - system are summarized @&bles S1 and S2
EMC (3/7 wiw). Figure a shows the ionic conductivities of The e ect of the electrolytes/additive on the SEI chemical

these electrolytes at various temperatures. While Gen 2 had " : - )
lowest ionic conductivity of %510 ® S cm™ at 20°C, BN/ J:Iaﬂwposmon was examined by X-ray photoelectron spectrosco

. .. py (XPS) after three formation cycleég(re 8). The peaks in

FEC and BN/EC + FEC showed much higher ionicc’1g spectra at 289.6, 288.4, 286.8, 285.8, and 284.8 eV are
conduc’qvmes of 18 10 ar_1d 11.6< 10 S cm™at 20°C, assigned to OCOO, @ O, C O,C O C, and CC,
respectively, due to the high dielectric constant and the loWgpectively, and are attributed to EC and FEC decomposition
viscosity of BN present in the electrolytes. In addition, thBroducts. No sigriant di erence was observed between Gen 2,
activation energ§{) was calculated from the Arrhenius plots gn/FEC, and BN/EC + FEC electrolytes, which share a high
and is shown iRigure b. Compared to a high activation energy portion of carbonate-derived functional groups. In the case of F
of 6.3 kJ mot for Gen 2, BN/FEC and BN/EC + FEC  1gand N 1s spectra, the F 1s peaks at 687.8, 684.7 eV and the N
electrolytes showed a lower activation energy of 4.5 kJ mol g peak at 399 eV are assigned RO, LiF, and L\,
indicating that both could maintain high ionic conductivity akespectively. Compared to Gen 2, the SE| layer formed by BN/
lower temperatures. The high ionic conductivity and low-EC and BN/EC + FEC electrolytes is composed of new species
activation energy of BN-based electrolytes result in a low,N, which is a known SEI component with high ionic
concentration overpotential at low temperatures. We alg@nductivity>>” In addition, the BN/EC + FEC electrolyte
conducted the voltage holding test of NMC622/graphite cellsycled graphite anode showed a lower concentration of LiF in
with di erent electrolytes for electrochemical stability windowshe SEI layer than that formed by the BN/FEC cosolvent
Although BN/FEC and BN/EC + FEC showed a slightly higherlectrolyte.

leakage current than Gen 2, they have negligible leakage currefigure 4shows the electrochemical impedance spectroscopy
values up to 4.8 \F{gure SIL (EIS) for NMC622/graphite measured at 50% state of charge
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Figure 3(a) Reduction potentials of BN, LI-EC, and L'+FEC, (b) d)/d V pro les of therst charging cycle with Gen 2, 1 M L,iBIR/FEC (75/
25v/v),and 1 M LIPEBN/EC (75/25 viv) + 5wt % FEC electrolytes, (c) DFT calculated coordination number of electrol{@&satXd) XPS
spectra of C 1s, F 1s, and N 1s of cycled graphite anodes after three C/10 formation cycles with three electrolytes.

(SOC) after three formation cycles. It is evident that a£C + FEC had a much smaRgr,,.qdthan BN/FEC due to the
temperature decreases, the total cell resistance increases dueoti ed SEI layer with a lower concentration of LiF. We further
the lower thermal energy available for the electrochemicahalyzed the temperature@ on each resistance component
reaction. To separate each resistance contribution to they the Arrhenius plotsigure 4 4f). The slope of IoB vs
performance, we deconvoluted the measured data with &000/T plotindicates the activation enegyfor the reaction,
equivalent circuit with constant phase elements, which are bufieaning the temperature dependence of the reaction. A higher
electrolyte R,eo), SEI layer Rsg), CEl layer R-g), charge E, leads to a slower reaction and greater resistance at low
transfer at the anod®&(,..qd: and charge transfer at the temperature. For the Gen 2 electrolyte cell, the activation
cathode Ry camogd- We matched the frequencies of eachenergies dRsg, Regl Retanode @NAR cathogedr€ 0.8, 11.3, 24.4,
resistance component by using anode and cathode symmeanad 25.3 kJ mdi respectively, indicating that charge-transfer
cells Figure SB EIS data were welited with the equivalent resistance becomes the main limiting factor at low temperatures.
circuitat 15°C, verifying thetting model Figure Sy} and the While BN/FEC has a simiRy; ,oge2Ctivation energy of 24.3 kJ
tting results of parameters are providédlimes S3 and S5  mol *as Gen 2, BN/EC + FEC has a lower activation energy of
BN/FEC and BN/EC + FEC electrolyte cells showed22.1 kJ mol. Considering that the overpotential on graphite
signi cantly smaller total resistance compared to Gen 2 at @hode is a limiting factor at low temperature, thecsigtly
testing temperature§igure 4 4c), indicating their lower lower Ry anoge aCtivation energy of BN/EC + FEC enables
interfacial resistance and lower overpotential during operaticuperior rate capabilities at low temperaturerncioig the
When it comes to each resistance contribitigare Sy} BN/ e ectiveness of the modi SEI layer.
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Figure 4.Nyquist plots of NMC622/graphite cells with (a) Gen 2, (b) BN/FEC, and (c) BN/EC + FEC electrolytes at various temperatures.
Arrhenius plots &gy Reg), Ret anode @NAR catmogdfOr Cells with (d) Gen 2, (e) BN/FEC, and (f) BN/EC + FEC electrolytes.

Figure 5(a c) C-rate capability for NMC622/graphite cells withrdint electrolytes and (f) overpotential evolution with C-rate at 25), and
40°C.

At room temperature, when various currents were applid®N/EC + FEC electrolyte cell showed the highest rate capability
from C/10 to C/3, C/2, 1C, and 2C, Gen 2 and BN/FEC and and delivered 129, 102, 89, 63, and 29 nAt /10 to C/3,
BN/EC + FEC cells showed similar performance. Howeve€/2, 1C, and 2C. Interestingly, when temperature further
when the temperature decreased2@°C, with the same C- decreased to40°C, even the C/5 current was applied, Gen 2
rate, Gen 2 showed sigraintly lower capacity. In contrast, the cell only showed an 8 mAR gell capacity, while the BN/EC +
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Figure 6.NMC622/graphite cell performance at (a)°€5and (b) 40 °C with di erent electrolytes, (c)40 °C cycling performance and
Coulombic e ciency of Gen 2 electrolyte cell with Gen 2 and BN/EC + FEC preformed SEI, and (d) BN/EC + FEC electrolyte cell with Gen 2 and
BN/EC + FEC preformed SEl.

FEC cell still retained a high capacity of 41 mAdug to its To elucidate the correlation of the SEI layer and low-
lower interfacial resistance. To correlate #w ef a modied temperature performance, cycling test with a preformed SEI by
SEI layer with overpotential, we calculated the overpotentiither Gen 2 or BN/EC + FEC was performed. After three
evolutiors dependence on C-raféiqure 8 5f) at 50% of formation cycles at room temperature, the cells were
normalized capacity. While the electrolytes exhibited a simif@assembled with the new electrolyte and cycletDaC.
overpotential increase at room temperature, BN/EC + FEGhe Gen 2 electrolyte cefiigure 6) with an SEl layer formed
showed a lower overpotential increase2@tand 40 °C by Gen 2 showed a slight degradation, maintaining 87% of initial

Figure S reconrming its lower interfacial resistance duringC@pacity during 30 cycles, while the same electrolyte cell with
I(owg-tempgrature opergtion 9sE] layer formed by BN/EC + FEC did not show capacity decay.

. . . - : imilarly, the BN/EC + FEC electrolyte celg(re @) with
Figure @ summarizes the galvanostatic cycling results with imi
3 at room temperature. While Gen 2 showed stable cyclabil 2 gaE*f?/rﬁ{i;(l)rcrgegcki)ty %}?262“?2,2(%15 EIIISE%:CEES ?]I;?wed
retaining 98% of its initial capacity after 100 cycles, BN/FE pactly Y 9

o : . an 45 mAh @ for Gen 2 cell). Atthe end of 100 cycles, the cell
and BN/EC + FEC exhibited a slight capacity fade and Onl?(/ith the SEI layer formed by Gen 2 exhibited a dramatic decay

retained 86% and 91% of their original capacity after 100 CyGigg, only 779 of capacity retention even in 30 cycles, while the
(Figure Spdue to the continuous BN solvent reduction during cej with SEI layer formed by BN/EC + FEC displayed a high
cycling and low thermal stability, which is also observed at a higdpacity retention of 98%, with an average CE close to 100%,
temperature of &L (Figure S). Lower CEs were also evident con rming the signcant role of SEI in the cell performance at
for both BN/FEC and BN/EC + FEC cells compared to that of|ow temperature.

Gen 2 Figure SB However, at 40 °C, BN/EC + FEC

exhibited a remarkably high capacity retention of 97% after 100 CONCLUSIONS

cycles, compared to only 61% for Gefidli(e ). Because @ | summary, the ect of the SEI on the low-temperature

large overpotential at the anode causes Li plating and electrolyigformance of lithium-ion batteries has been systematically

decomposition, which lowers CEs and capacity retention, t8@idied. The overpotential resulting from a resistive SEI and

low interfacial resistance of BN/EC + FEC causes it thigh charge-transfer resistance dictates the cell performance at

outperform Gen 2 at low temperature. This was directjow temperature. By formulating a 1.0 M nitrile-based

observed from the charged graphite electrodesvaiftgclesat  electrolyte LiPHAn BN/EC + FEC, we demonstrate that the
40°C (Figure Sp new SEI composed ofMiand LiF signicantly lowers the
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anode charge-transfer resistance with a low activation energy, ASSOCIATED CONTENT
resulting in superior rate capability and cyclability evdf at  * Supporting Information

°C. This investigation provides a deep insight into designing,, Supporting Information is available free of charge at

principles of new electrolytes to enable low-temperature Li'i(H?tpS'//pubs acs.org/doi/10.1021/acsami.1c23934
batteries. ' S ' '

Voltage holding test, voltage pes, coordination

EXPERIMENTAL SECTION numbe_rs, Bode plots, Nyqui_st plots, HiSg results,_
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