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ABSTRACT: The recent rise of computational, data-driven
research has significant potential to accelerate materials
discovery. Automated workflows and materials databases are
being rapidly developed, contributing to high-throughput data
of bulk materials that are growing in quantity and complexity,
allowing for correlation between structural−chemical features
and functional properties. In contrast, computational data-
driven approaches are still relatively rare for nanomaterials
discovery due to the rapid scaling of computational cost for
finite systems. However, the distinct behaviors at the nanoscale as compared to the parent bulk materials and the vast
tunability space with respect to dimensionality and morphology motivate the development of data sets for nanometric
materials. In this review, we discuss the recent progress in data-driven research in two aspects: functional materials design and
guided synthesis, including commonly used metrics and approaches for designing materials properties and predicting
synthesis routes. More importantly, we discuss the distinct behaviors of materials as a result of nanosizing and the implications
for data-driven research. Finally, we share our perspectives on future directions for extending the current data-driven research
into the nano realm.
KEYWORDS: data, databases, nanomaterials, materials design, computation, electronic structure, surfaces, synthesis

INTRODUCTION
The predictive power of quantum mechanics combined with
the efficiency of density functional theory has revolutionized
our ability to describe microscopic phenomena in materials.
During past decades, first-principles computations have
become an indispensable part of materials design, with
applications ranging from energy harvesting, conversion, and
storage, to quantum information and drug design.1−5 With the
advancement of modern supercomputers, computational
capacity today enables high-throughput screening and data-
driven in silico exploration of novel materials. At the same
time, there has been a corresponding increase in scientific
publications and a remarkable amount of data which fuels the
application of artificial intelligence to interpret patterns, predict
properties, and steer the directions of materials design.
Materials science has entered the fourth paradigm: data-
intensive scientific discovery.

Today, automated workflows empower the growth of
materials databases, e.g., Materials Project, NOMAD, and the
Open Quantum Materials Database (OQMD), and others
(Table 1).6−10 These databases have expanded their capacity
from basic properties like structure, total energy, formation
energy, and band structures, to evaluating phase behavior,
vibrational, dielectric, elastic, and spectral properties. In turn,
such data are used in data-driven approaches, where machine
learning models are trained to map the composition and
structure to the targeted properties. While much of the data are
obtained within the mean-field approximation of density
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functional theory (DFT), such as generalized gradient
approximation (GGA) and extensions thereof, more accurate
methodologies such as GW and time-dependent DFT
(TDDFT) can complement the large data sets which together
provide useful trends and descriptors. Robust, predictive
models require a large, systematic, and diverse set of high-
quality input data covering the target properties, emphasizing
the urgency and importance of curating databases containing
such information. However, the majority of data-driven
explorations have focused on crystalline bulk materials or
molecular crystals, where periodic DFT codes run efficiently.
Owing to the rapid development in materials synthesis and

imaging techniques, materials at the nanometer scale�
including quantum dots, atomically thin nanoplates, nanowires,
and nanocrystalline thin films (Figure 1)�have generated

tremendous excitement and are impacting a range of
technological applications including optoelectronics, catalysis,
and energy storage. While such nanomaterials, spanning 1−
100 nm, can offer precise control11 over composition, size, and
shape, they also exhibit large surface areas, a range of
morphologies, structural reconstruction, defects, and associ-
ated quantum confinement effects which result in behaviors
distinct from their bulk counterparts.12−17 The increased
complexity, as well as the lack of long-range order, has posed
challenges for traditional first-principles methods. However,
recent data-driven approaches have proven effective in
navigating the vast parameter space, aiding structure
determination and property predictions. In this review, we
discuss the progress on functional nanomaterials design,
including structure, properties, and synthesis, specifically
focusing on data-intense research. We summarize the
commonly used computational methods, high-throughput
studies, descriptors, and machine learning approaches, discuss
the challenges brought by the complexities of nanomaterials,
and comment on the opportunities for future direction.

DATA-DRIVEN DESIGN OF NANOMATERIALS
Nanostructured materials, including nanocrystals, nanorods,
nanoplates, nanoclusters, and nanocrystalline thin films, have
gained prominence in recent years due to rapid advancements
in materials synthesis techniques. This class of materials offers

great physical and chemical tunability with enhanced perform-
ance across systems ranging from inorganic semiconductors to
metals and molecular crystals.34−36 As a result of the large
surface area-to-bulk ratio as well as strong interactions with the
external environment,37,38 nanomaterials, as compared to the
bulk, are more prone to defects and surface reconstruction.39,40

To passivate the material, surface surfactants and ligands as
well as core−shell architectures are employed; however, these
techniques in turn introduce additional complexity as well as
tunability. For traditional first-principles modeling and
associated property screens, where the cost of computation
scales rapidly with the number of atoms necessary to describe
the material, such chemical and structural complexity presents
challenges.
While periodic DFT codes perform efficiently on reasonably

well-ordered bulk materials with up to hundreds of atoms/unit
cell, many nanomaterials require a much larger number of
atoms to account for, e.g., hybrid, defective, and disordered
structures, as well as complex surface chemistry, depending on
the details of the environment (pH, chemical potential, salts,
and solvent).
In the following, we discuss the current status of data-driven

approaches to predicting materials structure and functionality,
specifically focusing on bridging the gap between bulk to
nanomaterials (Figure 2).

Nanomaterials Structure Prediction. In nanomaterials,
the size and morphology provide extra degrees of freedom that
add tunability of properties as well as complexity of the
available phase space. To explore and direct synthesis efforts in
this phase space, computational structure prediction can
provide a map of stable, low-energy synthesizable config-
urations.
Nanoparticles are one class of nanomaterials that have a

wide range of shapes and sizes. Nanoclusters are a subclass of
nanoparticles, delineated as such due to their ultrasmall sizes.
Nanoclusters comprise up to 100−150 atoms (<1 nm), while
nanoparticles generally refer to larger structures between 1 and
100 nm. This distinction originates from the irregularity of
nanoclusters, which have stronger quantum confinement
effects, off-lattice atomic arrangements, variable bond lengths,
and more diversity in their resulting properties. On the other
hand, nanoparticles typically exhibit atomic configurations and
symmetries that resemble the bulk crystal structure, which in
turn correlates with more predictable properties.
Identifying stable nanocluster geometries computationally is

important for comparing to experimental measurements and

Figure 1. Common model nanomaterials. Top left, nanocrystals
with ligands; top right, nanorods; bottom left, nanoclusters;
bottom right, 2D nanoplatelets.

Figure 2. Properties relevant for general bulk materials and
additional properties that are unique to nanomaterials as a result
of nanosizing. We note that the properties in bulk are also native
to the nanomaterials. The middle panel is the data-driven methods
including database query, materials screening, HT workflows, and
machine learning.
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directing synthesis efforts; however, the time and length scales
will generally determine the level of theory that is computa-
tionally tractable. Nanoclusters are small enough to be
calculated with DFT, including dispersion corrections, hybrid
exchange−correlation functionals, spin−orbit coupling, im-
plicit/explicit solvation, and stabilizing ligands for increased
accuracy. Typically, however, DFT is too expensive to consider
for calculating a nanoparticle, an array of nanoclusters, or a
simulation over many time steps. For this reason, less
computationally expensive methods are typically used to
estimate the structure and energies, including semi-empirical
tight binding methods or interatomic potentials.41

The potential energy surface (PES) of a nanostructure
dictates the global minima, i.e., the most stable atomic
configurations given the composition. Sampling the entire
PES via first-principles methods in the complex geometry is
computationally infeasible; hence, a number of structure
generation methods have been developed. The major
techniques to generate plausible structures are genetic
algorithms,42 basin hopping,43 random structure searching,?
and simulated annealing.44 Less standard methods include
particle swarm algorithms44 and other variants of these broad
methods including tree growth algorithms,45 Tabu (“taboo”)
algorithms,46 and ab initio random structure searching
(AIRSS).47 Several reviews have previously highlighted these
techniques and their advantages for certain systems.48−50

Furthermore, some of these algorithms have been adapted to
screen for properties beyond thermodynamic stability, such as
vertical electron affinity.51,52

An efficient method to rapidly generate structures is to
simply reuse and recalculate structures that were previously
found for similar elements. As an example of this approach,
Sokol et al. conducted a data mining study with the idea that
binary heteropolar materials have similar energy orderings to
one another and showed that the low-energy structures of
(ZnO)n clusters exhibit similar energy orderings when applied
to other binary heteropolar materials such as (AlN)n.

53 The
tendency of certain elements to behave similarly at the
nanoscale can be quantified by comparing the relative ordering
of stabilities for structures with each element. The similarity of
different elements at the nanoscale was quantified by
comparing the energy rankings of clusters with similar atomic
arrangements at the nanoscale for all elements in the Quantum
Cluster database.54 A study conducted by Chaves et al. is
another example of a systematic study of transition metal
nanoclusters, where they used structures from literature as a
starting point and then conducted a Revised Basin Hopping
Monte Carlo structure search.55−57

An interatomic potential (IAP) is an empirical para-
metrization of a potential energy surface that can be fitted to
nanoparticles. Recently, machine-learned potentials (MLPs)
specifically applied to nanoparticle systems have become
increasingly sophisticated and can rival traditional atomistic
methods. Machine learning potential regression methods bring
benefits over more traditional physics-based methods in that
the models can be built agnostically to the material, applied to
a diverse set of input systems, and have been shown to improve
the topology of the PES.41,58,59 It is important to note that, like
any parametrized model, MLPs are fundamentally limited by
the quality of their training data. Many, on the order of 50000,
first-principles calculations of nanoclusters, including their
structures, energies, and forces, are required to fit IAP models
with very good accuracy,59,60 with the possibility of reducing

that number to ∼500 calculations by using active learning that
iteratively queries the energy landscape in regions of failure
and updates the training pools.61 IAPs excel at small structures
for which we can sample many configurations, and large
structures in which bulk-like behavior and surface facets
dominate. On the other hand, medium-sized structures, on the
order of a few hundred atoms large, are challenging because
they fall between the two regimes�they are typically too large
for first-principles approaches and too disordered to model as a
bulk crystal with surface facets. Bridging the data gap between
these two length scales will be the key to future developments
in nanoparticle structure prediction.
Cluster expansions, methods typically applied to bulk

crystals with well-defined lattices, have emerged as a possible
approach to rapidly estimate the energies of nanoparticles.
Cluster expansions have effectively modeled the surface and
adsorbates of nanoparticles.62,63 An off-lattice cluster expansion
formalism, the Atomic Cluster Expansion (ACE), has recently
been developed by Drautz.64 PACE, the performant open-
source implementation of ACE, has exhibited comparable
accuracy and performance for small Cu and Si clusters as other
MLPs.60 Other equivariant MLPs that have recently emerged
and show excellent accuracy include the Neural Equivariant
Interatomic Potential (NeQuip),65 Allegro,66 and MACE67 (a
message-passing variant of ACE).
We emphasize the usefulness of diligent data reporting

standards, as combining data from several individual studies
can provide a superior starting point for further development
by furnishing informed guesses of stable structures when
considering a new system. Curating quality data on the
energies and geometries of nanoparticles will act as innovation
multipliers across the broad range of nanomaterial design
efforts. Furthermore, the record of prior tuned/trained IAP
speeds up the development of potentials, thus improving the
efficiency of structure prediction. We note here the example of
OpenKIM and NIST interatomic potential repositories, which
have archives of previously fitted potentials for many
systems.68−70 Databases such as these provide excellent
avenues to build on existing work and close the gap from
bulk to nanostructures.

DESIGN METRICS OF MATERIALS: BULK TO
NANOMATERIALS
In searching for materials with favorable properties for a
specific application, generally, multiple metrics are of
importance. A consideration of computational cost and
robustness/accuracy is optimized typically through a funnel-
type investigation where multiple filtering steps are needed,
applying increasingly strict criteria and/or computationally
intense properties toward the end. In the following, we discuss
several commonly used criteria used in data-driven searches for
materials in applications where nanosizing is prevalent (Figure
4). We note the use of nanocrystals (NCs) as model
nanomaterials throughout the discussion.
Stability. Stability commonly provides the first screening

metric in high-throughput (HT) materials design and can be
employed for both bulk and nanomaterials. Relevant quantities
for stability include formation energy ΔHf and Ehull (energy
above convex hull) where the formation energies ΔHf are
calculated using elemental chemical potentials to determine if
the compound is favored to form from the constituent
elements. In contrast, the energy above hull (Ehull) determines
the distance between the energy of the compound and the
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geometric, bounded shape consisting of all phases within the
relevant chemical space that exhibit energy lower than any
other phase or linear combination of phases at the respective
compositions (Figure 3). Ehull is a more demanding metric than
the formation energy and hence is often used as a descriptor
for stability against decomposition to other phases.71−73 A
similar metric to Ehull is the decomposition enthalpy ΔHd to
measure the stability against other phases.74 Phase transitions
into alternative structures at fixed composition can be
elucidated via the occurrence of phonon imaginary frequen-
cies,75 and solid−solid polymorphic phase transition may occur
when the external conditions enable a low activation energy
barrier.76,77

While these quantities provide a basic understanding of the
energetics, they do not always translate to synthesizability.
DFT calculations are carried out at 0 K, and at elevated T,
vibrational and configurational entropy contribute toward the
free energy. Recently, Aykol et al.78 showed that synthesis of
any material, nanometric or bulk, is subject to the enthalpy
limit of the analogous amorphous state, a useful result as many
nanomaterials exhibit high enthalpies of formation. Indeed, the
prolific existence of diverse carbon nanostructures is enabled
by the abnormally high enthalpy of amorphous carbon,
allowing for a large window of metastability.
Since nanocrystals possess large surface-to-volume ratio,

specific surface facets relevant to the morphology, size, and
polymorph will impact stability as well as functionality,17,79−81

and large surface areas lend themselves to the stabilization by a
chemical environment (Figure 3), e.g., chemical potential,
surface reconstruction, and/or ligation. For instance, Singh et
al. used Pourbaix diagrams as a filtering tier for photocathodes,
removing over 95% of the materials under consideration, thus
highlighting the importance of including aqueous stability
metrics (Figure 3).73,82,83 Finally, while entropic differences
between bulk solids are often neglected, increased defect
populations and various atomic configurations in nanostruc-
tures can contribute to significant entropy effects, leading to
improved thermodynamic stability.84,85 Overall, the stability of
nanomaterials is closely related to the size, shape, and surface
chemistry and must be understood for individual materials. To
the best of our knowledge, HT studies for the stability of
nanostructures are rare.86 As a step in the right direction, the
construction of phase diagrams, including a chemical environ-
ment and the corresponding surface energies of the underlying

bulk materials,17 will be highly beneficial for the initial
screening.
Band Gap. In optoelectronics and photocatalysis applica-

tions, the ideal band gap is one of the most determining
descriptors for functionality. For solar cells, in particular, the
thermodynamic limit states that the theoretical efficiency of a
light absorber reaches its maximum at a band gap of 1.3−1.4
eV.87 A direct band gap is commonly favored over an indirect
band gap for more efficient absorption or emission as it does
not require phonons to compensate for the momentum
transfer. In other optoelectronic applications, band gap
requirements can differ widely; e.g., a band gap across the
whole visible light range (1.65−3 eV) is considered desirable
for LEDs, while, for transparent conductors, band gaps larger
than the energy of visible light threshold (3 eV) are
preferred.88,89

HT computational studies generally use band gaps
calculated by the efficient and low-cost functional GGA-PBE
as the first step, with subsequent corrections to account for the
underestimation of Eg,

90,91 or followed by additional screening
of more expensive hybrid functional calculations to narrow
down the candidates.71,72,92,93 While hybrid functionals or
GW-theory-based approaches offer improved accuracy, the
computational cost is orders of magnitude higher and requires
expert knowledge to converge co-dependent parameters. While
some work has used GW band gaps either as the middle or the
last step in the screening process, there are�to the best of our
knowledge�no robust automated workflows.94,95 Recently,
van Setten et al. identified a correlation between the number of
empty bands and energy cutoffs in the self-energy, and a better
description of the experimental band gap by the G00

GN@PBE
(with plasmon-pole approximation) than the linear model.96

Rasmussen et al. further investigated numerical methods to
correct the error in the linearized quasi-particle self-energy.97

Both these efforts toward an HT GW workflow stress the
importance of an accurate starting point at the Kohn−Sham
energy.
With large amounts of theoretically calculated band gaps,

machine learning help elucidate the structure−property
relation. Emphasizing the importance of physically meaningful
descriptors, various studies98−100 have shown excellent
mapping of bulk band gaps onto compositional representations
for the materials. Single-value scalars such as band gap,
ionization energy, and electron affinity are commonly used
descriptors,101 and even the densities of states have been used

Figure 3. Diagrams for finding stable compounds. The convex hull diagram denotes the relative energy (shown as a color map) of a
composition with respect to the lowest energy boundary of other phases or linear combinations of those phases. The chemical potential
diagram looks at the same phase stability by tuning the chemical potential of the constituent elements, indicating the relative stability of a
phase at a certain chemical environment. Both the convex hull and chemical potential diagram are generated for CsPbBr3 using the Materials
Project phase diagram tool. The Pourbaix diagram is a way to identify stable nanostructures in an aqueous environment as the pH and
voltage vary (example generated using the Pourbaix diagram app on Materials Project for Zr).
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as a complex input feature for mapping the relationship
between materials and their electronic structure.102−104

In nanostructures, increased band gaps are expected as a
result of quantum confinement,105 which follows the relation
of ΔEg ∼ 1/R2 for an infinite well (Figure 4).106−108 Different

schemes are applied depending on whether the regime of
confinement is weak, intermediate, or strong, as the size of the
NC approaches the size of the exciton Bohr radius, resulting in
different relations of ΔEg with respect to the size.16,17,109−111

The dimensionality of the nanostructure also affects how the
band gap behaves with regard to size. For example, in 2D
materials, the band gap is confined in the out-of-plane
direction but remains bulk-like in-plane, offering an extended
design space.112 These works show the value of developing
physics-based descriptors that connect bulk properties to the
specifics of the nanocrystal symmetry and dimensionality.
Transport. The flow of charged carriers are crucial in

determining the efficiency of an operating semiconductor
(Figure 4). The quantum mechanics of carrier mobility are
described by the transport equations with different levels of
approximations from semiempirical to fully first-princi-
ples.113−119 In the simplest Drude model, the mobility is
inversely proportional to the effective mass: , where q is
the charge, τ̅ is the mean free time, and m* is the effective
mass.120 While multiple scattering mechanisms, including
phonon, impurity, defect, and surface scattering, are respon-
sible for slowing down the mean free time, effective masses are
a key element in determining the intrinsic carrier mobilitiy, μ.
The effective masses of electrons and holes in semiconductors
are derived from the dispersion of the electronic structure,
precisely, the inverse of the second derivative of the energy
with respect to wavenumber, e.g., the effective mass of the
carriers, me* and mh*, for electrons and holes, respectively:

, in the parabolic approximation. In a charge-based
device, m* should ideally be small as light carrier mass
facilitates carrier mobility, and thus more efficient carrier
extraction in the case of a light absorber, or fast recombination
in the case of a light emitter. In thermoelectrics, small m* and
band degeneracy are favored to deliver a high power
factor.88,121,122 Many studies have considered effective mass
in the screening steps as an additional filter to band gap, with
m* ≤ 0.1m0, in which m0 refers to the free electron mass.88,92,93

In nanostructures where quantum confinement effects are
present, the effective masses derived from the bulk band
structures can be inaccurate (or undefined) due to the
modified band structure.123 When the crystal size is limited,
the electron (hole) wave functions are confined within the
crystal boundaries and the effective mass becomes energy-
dependent124,125 As a general trend, the effective mass is
expected to increase as crystal size decreases due to reduced
dispersion at band edges; however, as shown in a literature
comparison of ZnS NCs, this is not always the case
experimentally due to crystal orientations, impurities, and
other factors.123 Carrier mobilities have been shown to
decrease with NC size,126 most likely due to enhanced surface
scattering; in these cases, surface passivation is useful to reduce
carrier trapping.127 It is also noted that many thin films grown
with low-cost methods introduce nanocrystalline domains or
grains, both within the film and at surfaces or interfaces, and
the nanostructure of these films can dominate properties such
as electronic transport and optical absorption. For example, in
many nanocrystalline thin films (e.g., Ag,128 CdSe,129 and
ZnO,130 among others) conductivity is decreased from that
expected in a bulk material due to variable range hopping, in
which thermally activated charge carriers “hop” between
localized states in different crystalline domains.131,132 Hence,
multiple factors contribute to carrier scattering in nanomateri-
als; therefore, the effective masses derived from the parent bulk
can only be used as an estimation rather than a prediction for
the final transport.
Defects.While the electronic structure of the parent crystal

serves as the foundation for understanding the electronic
behavior of materials, defects should not be overlooked, as they
are ubiquitously present in any material�both bulk and
nanomaterials (Figure 4). Point defects, including vacancies,
substitutional defects, and impurities can introduce charge
transition levels either within the band or in the gap. The latter
is considered a “deep” defect that acts as a recombination
center that traps electrons or holes, hindering the energy
conversion process, and hence deteriorating the device
performance. To determine the configuration, concentration,
and charge transition levels of these defects present by no
means trivial tasks, requiring large supercell calculations to
simulate the dilute limit.133 In the case of charged defects,
various charge states need to be considered for which
additional corrections are needed to account for the periodic
image effect.134,135 Due to the increased complexity of such
calculations, defect levels are usually present at the last step of
the high-throughput screening projects.93,94,136 Computation-
ally less demanding methods such as the atomic-orbital-based
method (LCAO) was used by Kuhar et al. to investigate the
electronic structure, and specifically, the density of states
(DOS), in the presence of vacancies. Compounds with mid-
gap energy states were ruled out, aiming at filtering out those
with detrimental intrinsic defects.93 Another study by Hinuma

Figure 4. Schematics of relevant design metrics in electronic
structure screening of solid materials. Eg stands for band gap, and
NC stands for nanocrystals. me and mh are the effective mass of
electrons and holes, respectively. VBM and CBM refer to the
valence band minimum and conduction band maximum. Ψe and
Ψh refer to the electron and hole wave functions, respectively; and
aBohr is the Bohr radius of the exciton. dNC stands for the
nanocrystal size.
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et al. examined more specifically the formation energy diagram
in crystalline Ca2ZnN2, CaZn2N2, and CaMg2N at the last step
of the screening process and provided guidance for synthesis
conditions to achieve favorable defect concentrations. Kumagai
et al. developed codes for HT point-defect calculations to
characterize oxygen vacancies in oxides and were able to
identify electronic structure characteristics that affect the defect
formation energy.136 We note that high-throughput descriptors
such as the hydrogen interstitial defect energy (i.e., the
“hydrogen descriptor”)137 and the branch point energy138−140

have been proposed to assess doping type in semiconductors.
There has been excellent recent progress in the automation

of defect calculations. Several packages provide point-defect
calculation workflows, for instance, PyCDT, PyLada and
PyDEF, which enable the automatic calculation of defect
formation energy with image charge corrections.141−143 With
the help of these computational frameworks, broader and
systematic defect calculations are made possible, which in turn
enables future databases of charged defect properties across
chemical systems and structures. Collection of defect
information will lead to improved understanding and trends
of how to rationally design functional materials, e.g., in
optoelectronics and quantum materials applications. The
Quantum Point Defect (QPOD) database is an example that
contains more than 1900 defect systems comprising various
charge states of intrinsic point defects in a set of 2D
semiconductors and insulators.144

For NCs, the large surface-to-bulk ratio and often non-
stoichiometry composition further induce more defects in
addition to the ones existing in bulk, where trap states are often
formed within the band gap.37,38,145 It is nontrivial to directly
compare the defect formation energies calculated for the bulk
to nanostructures, but we note a few key differences. First,
unlike bulk materials, the defect formation energies in NCs are
location-dependent, where the defect concentrations are likely
higher on the surface than in the core.146 This means that the
defect levels may be tuned by merely changing the size of the
NCs.147 Second, dangling bonds on the surface introduce
localized surface states that are often deep traps, which are not
captured by the bulk defect calculation.37,148,149 Third, the
formation of NCs typically happens in colloidal solutions,
meaning the chemical potentials may be considered as ion
pairs instead of solid precipitates.38 These different behaviors
present challenges for directly using bulk defect energetics, and
additional considerations for surface defects must be given as
materials approach the nanoscale.
Exciton Binding Energy. Another design-relevant elec-

tronic structure property is the exciton binding energy, Eb,
which is the minimum energy required to separate an electron
and hole pair. Depending on the application, the ideal Eb
differs. While a small Eb is beneficial for the separation of
electron−hole pairs in a solar cell for efficient carrier
extraction,150 a large Eb may be preferred for a larger quantum
yield in a light-emitting diode.151 Formally computing the
exciton energy involves calculating the bound states of the
electron−hole pair via Bethe−Salpeter equation (BSE), a
computationally demanding method that is challenging to
automate. In the hydrogen-like Wannier−Mott approximation
assuming band edge excitation, the exciton binding energy is

simplified as , where Ry is the Rydberg constant, μ is

t h e r educ ed ma s s o f t h e e l e c t r on and ho l e
, and ϵ is the dielectric constant (often

ϵ∞, the high-frequency dielectric constant, is used). The
exciton radius equals m0ϵaH/μ, where aH is the hydrogen Bohr
radius. The quantity ϵ, including ϵ0 (static dielectric constant)
and ϵ∞, can be obtained from density functional perturbation
theory (DFPT) calculation. Currently, ϵ calculated for >7000
materials are tabulated on Materials Project, allowing for
analyses of bulk trends over structure and composition.152

Furthermore, optical spectral information, e.g., photolumines-
cence emission and UV/vis absorption spectra, are often used
for inferring the exciton binding energy. Computational spectra
that include many-body interaction (GW plus BSE) generally
compare well with experimentally measured spectra for
semiconductors, where the energy difference between the
absorption onset and electronic band gap determines the
exciton binding energy: Eb = Eg − Eopt.

153−158 Study by Yang et
al. also showed that the band-to-band vertical optical
transitions obtained at the independent-particle approximation
with an HSE band gap correction compare well with
experiments, providing a good starting point for accurate
high-throughput optical spectra.159

Transferring trends in exciton binding energy between bulk
and nanosized materials should be exercised with caution. In
structures that are smaller than the Bohr radius of the exciton,
the wave functions of the electrons and holes become spatially
confined, and thus the overlap is strengthened, leading to
increased exciton binding energy (Figure 4).16,160−162

Furthermore, the exciton fine structures caused by exchange
interaction depends closely on the size and shape of the
crystals,160,163,164 and can reverse the energy order of the dark/
bright states.165 Notably, the dielectric constant also changes
due to reduced screening in the finite-size system, resulting in
enhanced exciton binding energy.166

Interfaces. Interfacial alignment in nanomaterials has a
fundamental impact on materials performance and device
functionality; however, the electronic structure of an interface
is intimately connected to the stability of a given nanomaterial
with respect to its external environment. One simple yet useful
metric of thermodynamic and chemical stability in bulk
interfaces is the Materials Project’s Interfacial Reaction
Calculator,6,167 in which “reactants” are the materials in
contact with one another. The reaction energy descriptor Erxn
indicates whether a stable solid−solid interface is favorable to
form under canonical thermodynamic conditions, as well as the
degree of instability of any unintentional product. This
descriptor has been predictive in polycrystalline and nano-
crytalline thin film interfaces such as CdTe−CuxZn1−xS,

168

determining an unstable interface and accurately predicting the
products observed experimentally, and has promise for
assessing the stability of other nanocrystalline interfaces.
In electronic devices, sufficient alignment of band extrema

(CBM and VBM) between neighboring materials is crucial to
ensure efficient charge transfer (Figure 4). In semiconductor
heterojunctions and metal−semiconductor junctions, the
relative energies of the CBM, VBM, and work functions
dictate whether electrons and holes can flow efficiently across
the interface. For instance, for a water splitting reaction to
occur, the CBM should be higher than the proton reduction
potential and VBM lower than the oxidation potential of
water.169,170

DFT slab calculations are often used to compute band
offsets; however, the approach comes with caveats that are
exacerbated in nanomaterials.171−173 Since detailed knowledge
of chemical as well as structural features of interfaces is rarely
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available, results based on explicit first-principles calculations
should be interpreted with caution, employing reliable
reference states. Within DFT, the absolute values of the
eigenstates should not be directly compared as they depend on
the pseudopotentials, basis sets, and functionals. The vacuum
should be the common reference level to compare across
different codes and databases.
Band alignment in real materials is surface-specific and

hence highly dependent on the facet of the exposed surface,
the surface morphology, and interfacial defects; however, there
is not yet a consensus among the DFT community about how
to treat nanocrystalline thin film interfaces.174 Additionally, in
solid−liquid interfaces the direct comparison of reference
levels ignores the fact that the surface dipoles between the
semiconductor and liquid can impact the band edges and
qualitatively alter the comparison with experimental results.175

State-of-the-art computational frameworks have recently been
developed to take into account the aqueous−solid interface to
obtain the correct electrostatic alignment.176,177 However,
these approaches rely on a case-by-case examination of a
specific system, hence difficult to apply in HT workflows for
systematic data production.
Surface Adsorption. The adsorption of a molecule to a

solid surface is relevant for many applications including
catalysis and sensors, thus providing one of the most widely
used descriptors of surface reconstruction, reactivity, and
catalytic activity. The adsorption energy is essential in
determining the mechanism of formation and breaking of the
bonds, and it depends on the geometries as well as on the
electronic properties of the surface and adsorbates (Figure
5).178 Therefore, mapping out the adsorption energy for
different sites and adsorbates using computational methods
provides rich information on the geometrical and chemical
determinants for active adsorption sites. Indeed, we have seen
a steady growth of HT workflow development and data of
adsorption energy for transition metal surfaces for catalyst
design.179−181

Standardized and reproducible workflows can expedite the
screening. An HT workflow for computing adsorption energies

on solid surfaces was developed by Montoya et al.182 using the
codes Atomate and Pymatgen.6,183−185 The workflow allows
for (i) generation of slabs corresponding to all of the unique
terminations in a bulk, (ii) identification of adsorption sites
using a triangulation network of surface sites, and (iii) DFT
geometry optimizations with automated error corrections6,185

for all of the empty slabs and adsorption structures. Adsorption
energies computed using the workflow with the revised PBE
(RPBE) functional186 for a series of transition metals showed
close quantitative agreement with experimental values.
Inorganic semiconductors are widely used as photocatalysts,

and their surface chemistries are more complex than metals
due to less homogeneous electronic density at the surface,
dipole formation, and strong site dependence. An automated
DFT adsorption workflow was developed by Andriuc et al.187

This workflow, while building on the previous Atomate
version,182 features computational improvements in efficiency
and robustness using relaxed structures, frozen core slabs, and
a slab−adsorbate distance optimization step. The computed
metrics include semiconductor-specific properties for photo-
catalysis (e.g., the p-band center, or the elemental makeup of
the conduction band minimum and the valence band
maximum).
Compared to inorganic systems, hybrid materials often

exhibit more complex structures, with nonhomogeneous
electron densities at surfaces that require more careful
handling. An HT DFT framework for screening metal−organic
frameworks (MOFs) was developed by Rosen et al. for
heterogeneous catalysis applications, where two different
methods are used to identify adsorbate sites: a geometry-
based one meant to identify adsorption sites on under-
coordinated atoms and a potential energy grid method
designed to find low-energy adsorption sites.188

Despite these advances, challenges remain pertaining to (i)
rotational degrees of freedom for larger, more complex
adsorbate molecules, (ii) concentration-dependent behavior
associated with the adsorbate coverage, and (iii) the high
computational cost of DFT for larger systems.

Figure 5. Schematics of relevant phenomena and modeling approaches for surface reactivity: identifying relevant surfaces, adsorption sites,
and energies; elucidating reaction mechanisms; scaling relations in adsorption energy; and microkinetic modeling by investigating the
transition states.
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To accelerate learning at a reduced cost, machine learning
methods are being rapidly developed.189−194 For instance,
Tran et al. developed GASpy (Generalized Adsorption
Simulator for Python), a dynamic workflow for DFT
adsorption data.195 Their “smart database” approach imple-
mented surrogate-based optimization and active machine
learning concepts which allow for the exploration of a broader
chemical space at a reduced cost. Each adsorption site was
represented by a vector of the atomic number, Pauling
electronegativity, coordination number, and median adsorption
energy of the adsorbate on the pure element.195,196 Among
other noteworthy data resources, The Open Catalyst
Project197 was designed as a community effort toward
developing machine learning models. The database (OC20)
contains 1.2 million DFT relaxations of adsorption structures
built from different adsorbates and surfaces of metallic
materials, including relaxation trajectories, charge analyses,
and orbital information. Using these data, including randomly
perturbed structures, the Project aims to use machine learning
to replace or augment DFT simulations. Notably, the
performed baseline graph neural network (GNN) models
would require 10 orders of magnitude larger data set to achieve
the desired accuracy in predicting the total energy against
DFT, proving the necessity of both increasing the data quantity
and improving the physics-informed representations.197 The
recently released OC22 data set, including more than 60K
oxides calculated by DFT, improved in accuracy in the
prediction of total energies and forces by joint training of the
OC20 data set, suggesting the importance of including a
variety of data sets of complex systems.198

These challenges call for further development in building
comprehensive data sets: the surface energy and adsorption
energy are the most essential information in determining the
exposed facets, the shape of the nanocrystal, and the possible
active sites, providing valuable descriptors for compositions in
training ML models. Standardized workflows and data sets for
these properties will be instrumental.
Surface Reactivity. Surface reactivity can be described by

microkinetic modeling (Figure 5), which requires the
thermodynamic properties of absorbed species and the rate
constants.199−201 The rate of surface-mediated bond disasso-
ciation rely on computing adsorption and transition-state
energies, a computationally demanding parameter if using
traditional quantum chemical methods. These energies then
propagate in physical models to predict the rates of reactive
events. The large parameter space involved in these processes
can be reduced to low-dimensional “descriptor space” via
scaling relations of the adsorption energy, thereby enabling HT
screening based on a few metrics such as adsorption energies
and electronic structure properties (Figure 5).202−204 Auto-
mated methods based on machine learning have been shown
to be efficient in navigating reaction pathways by combining
DFT adsorption energies and scaling relations.205

Despite recent advances, there are challenges in modeling
nanomaterials surface reactivity. First, surface reactivity is
highly affected by particle size. A study by Li et al. showed
there exists an optimal chemical ratio and size of a FePt
nanoparticle for CO oxidation using DFT.206 In another
computational study, Yudanov et al. elucidated that the CO
adsorption energy is correlated with the Pd nanocluster size.207

It was found that CO interaction weakens as particle becomes
smaller up to a critical size and that CO adsorption energy
approaches the bulk adsorption energy as the size increases.

Second, the specificity of active sites and the chemical
environment influences surface reactions. Understanding of
site activity requires a priori knowledge of the atomic structure
and reaction site calculated by DFT, which can deviate
substantially from real materials interfaces, where surface
passivation, reconstruction, and defects are prevalent. A wide
span of parameters, from pressure, temperatures, and pH, to
reactants/products species and concentration, and to solvents
and electrolytes can influence the surface chemistry and
topology, making it extremely difficult to derive one prediction
which holds for all conditions.169,203 Hence, surface reactivity
trends with surface and interfacial conditions may prove more
useful, as exact information about the surface states may not be
available. For data-driven design of materials with target
reactivity, there is a pressing need for well-structured and
transferable databases with reliable metadata that reports
surface- and site-related properties, as well as chemical
environments and kinetics.208−210

In summary, designing functional nanomaterials present
challenges as well as opportunities for data-driven research.
Current HT studies mostly consider bulk material properties
due to computational constraints, and hence one must bear in
mind their limitations when transferring the knowledge into
the nano domain. Indeed, one set of materials/properties may
respond differently to nanosizing than others. To accurately
describe the nano phenomena can be computationally
demanding even for one system, much less in high-throughput
fashion. In order to overcome this challenge, systematic
reporting and curation of experimentally measured nanostruc-
ture data, including but not limited to shape-, size-, surface-,
and defect-dependent properties, are needed. A few databases
of experimental characterization at the nanoscale are available,
such as electron energy loss spectrum211,212 and refractive
index213 etc., but these resources are often for small sets of
materials. Indeed, the development of robust, efficient, and
accurate computational workflows is hampered by the lack of
systematic, well-curated public experimental data to bench-
mark against for determination of a reasonable level of theory
and numerical parameters. Therefore, progress in systematic
reports of experiment synthesis and characterization will
facilitate data-driven materials research, both from an
experimental and a computational perspective.

TOWARD PREDICTIVE SYNTHESIS
While the modeling and data-driven predictions of materials
properties and their correlations with the underlying structure
have made significant advances in the past decade, predictive
synthesis is still in its nascency. The phase space of possible
structures is high-dimensional, and the reaction pathways
between competing phases are driven by both thermodynamic
and kinetic factors. Minor changes in the intricate interplay of
experimental conditions, including reactants, concentrations,
temperature, pressure, humidity, etc., can translate to distinct
phases and unwanted byproducts.
As noted in Section Stability, the thermodynamic energy

surface of all phases and multiphase equilibrium can be
inferred from a computed convex-hull phase diagram (Figure
6). Phases that are calculated to be close to or on the convex
hull are predicted to be thermodynamically metastable/stable
at low temperatures but may not be easily synthesized, for a
variety of reasons. In this context, a survey of the ICSD entries
showed that the experimentally found compounds can exhibit
energies greater than 100 meV/atom above the convex hull,
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depending on the anion chemistry. Some of these materials are
synthesized under conditions where the environmental
parameters competitively lower their free energy and then
remain kinetically trapped at lower temperatures.215 Thus, the
proximity to the convex hull provides a guide to synthesiz-
ability, but environmental factors as well as kinetics influence
the final results.
Combining the timeline of experimentally discovered

compounds with their stability determined by the convex-
hull diagram, the likelihood of synthesis of a target material can
be approximated using graph networks and machine learning
models.216 Via the application of pathfinding algorithms,
McDermott et al. predicted the most probable reaction
pathways to a target material using the DFT-calculated
ground-state bulk energy including a machine-learned vibra-
tional entropy217 of all stable phases for the particular chemical
systems (Figure 6).214 Selectivity rules based on chemical
potential maps218 have been shown to inform the selection of
precursors to maximize the yield of the target materials.
Information about competing phases, such as the amorphous
limit78 or entropically favored materials,219 can help to exclude
materials from consideration that are unlikely to be successfully
synthesized.
While a reaction pathway determines whether the synthesis

route is possible, a synthesis recipe must also include
environmental conditions. While the formation of crystal is
controlled by nucleation and growth, the process depends on
many factors, such as nucleation barrier, surface free energy,
and the free energy of the reaction pathway.220 Information
about the synthesis environment, such as solution salts and
impurity ions, has been shown to impact the kinetics of
structure selection.221 Often times, the description of the
synthesis conditions is embedded in the literature, making it
difficult to directly mine the data. To unravel the vast
information, efforts using natural language processing are
underway to harness the treasure trove of published synthesis
recipes.222−225 These machine-learning-based approaches have
the potential to deconvolute kinetic and thermodynamic
factors, especially when combined with thermodynamic
predictions of phase competition. However, notably, published
work is highly biased toward successful outcomes226, and

greater efforts to capture the entire experience of experimental
synthesis are needed.
Successful predictions resulting in synthesized materials are

still limited. The reasons are 2-fold. First, it remains unclear in
experiments which factors precisely determine successful
synthesis outcomes. A wide range of experimental synthesis
methods exist, and the determining parameters may differ in
each method. Second, compared to extensive research on
understanding their properties, materials modeling has paid
less attention to how materials are made in the real world,
resulting in a knowledge gap between the theory and
experiments.
Rationalizing synthesis is an area of materials science and

chemistry that is in dire need of harnessing the knowledge that
is today largely embedded as human experience. Automated
robotics laboratories and associated data infrastructure will
become a crucial component toward this goal, delivering
standardized, consistent, and successful as well as unsuccessful
“dark reactions” synthesis data and results.226−234 Availability
of such data enables the correlation between conditions and
outcomes, which can be analyzed via, e.g., classification
methods.224 Ontology, as a branch of computer science, has
also been applied to semantically represent materials
informatics for machine interpretability.235,236 The HT
capabilities of robot-driven laboratories will contribute large
amounts of quality synthesis data to the aforementioned
models, enabling the predictive simulation of possible
scenarios.

DATA-DRIVEN NANOMATERIALS SYNTHESIS
In addition to bulk synthesis, nanomaterials pose another set of
synthesis parameters including but not limited to size, shape,
and ligand chemistry.237,238 Experimental observations show
that the phase stabilities of NCs are dependent on sizes, where
the metastable bulk phases can be stabilized by a more
favorable surface energy as compared to the bulk ground
state.17,239−242 Questions associated with bulk materials
synthesis still exist for nanomaterials, adding complexity with
regard to controlling these parameters. Minor changes in
synthesis conditions (e.g., temperature, mole ratio, and the
length of alkyl chains) of nanomaterials can lead to significant
variations in composition, dimensionality, morphology, short-
range order, etc., all of which impact the electronic and optical
properties.243−246

How to easily access this information becomes the
accelerator for nanomaterials synthesis. Nanoparticle databases
have emerged in an effort to assemble a vast collection of
metadata that includes both experimental and theoretical data.
Among multiple databases (Table 2), we highlight a few as

Figure 6. Schematic for data-driven methods for guided synthesis
in inorganic solids, including natural language processing, convex
hull stability, and reaction pathway prediction. ΔG represents free
energy difference, and Ea represents activation barriers. Right
panel adapted with permission from ref 214. Copyright 2021 The
Authors under Creative Commons Attribution 4.0 International
License, published by Springer Nature.

Table 2. Nanostructure Focused Databases

Nanomaterial databases Data sets

Cambridge Structure
Database248

Small-molecule organic and metal−organic crystal
structures

Quantum Cluster
Database54

50k total DFT calculated structures for
nanoclusters with 3−55 atoms

Catalysis-Hub263 100k DFT adsorption and reaction energies
Open Catalyst
Project197

1.2 M DFT adsorption structures

Materials Cloud22,264,265 2D materials and porous materials
Quantum Point
Defect144

Point defects in 2D materials

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.2c08411
ACS Nano XXXX, XXX, XXX−XXX

J

https://pubs.acs.org/doi/10.1021/acsnano.2c08411?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.2c08411?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.2c08411?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.2c08411?fig=fig6&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.2c08411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


excellent sources of data. The NOMAD (Novel Materials
Discovery) Laboratory is a curated database of shared data
from both experimental and computational studies and
includes a search engine, a Python API, and over 2 M clusters
in the database.7 The Open Catalysis Project is a computa-
tional database for catalyst structures, with 1.3 million
molecular relaxations that are open-source for training
purposes.247 The Cambridge structure database (CSD)
contains experimentally observed and computationally verified
small-molecule organic and metal−organic structures that have
been growing steadily since 1965 and now have over 1 M
structures, with over 50% of those involving at least one metal
atom.248 The Quantum Cluster Database is an online
repository of DFT calculated pure element nanoclusters with
over 50K total clusters containing between 3 and 55 atoms.54

The clusters comprise a collection of clusters found in
literature in addition to clusters generated with a genetic
algorithm. An extensive list can be found in a review by
Panneerselvam and Choi.249

On the other hand, while there are experimental databases
(e.g., caNanoLab,250 NR,251 and eNanoMapper252) specifically
for biological/medical applications, including physicochemical
properties such as size, shape, composition, purity, surface area,
toxicity, and environmental effects (reviews can be found in
refs 253 and 254), a similar resource is not available for the
purpose of materials science.
Nanomaterials databases face the challenges of variability in

information and how to represent each structure with the
appropriate metadata. A theoretically calculated database could
include the following: atomic species, atomic coordinates,
effective charge, implicit solvent, calculation software, func-
tional, basis set, energy, forces, band gap, electronic structure,
etc. An experimentally observed nanoparticle entry in a
database could include atomic species, atomic coordinates,
counterions present, stabilizing ligands, synthesis recipe,
concentrations of reagents, temperature, and percent yield
and likely contains information on the average particle size and
distribution of sizes. The large available space of features and
descriptors adds challenges to the already daunting task of
materials synthesis data curation.
Efforts have been made to create universal descriptors. Yan

et al. have made efforts to normalize the annotations of
nanoparticle databases by creating a procedure to generate
2142 nanodescriptors for each nanomaterial in their open
database, Pubvinas.255 These descriptors include physicochem-
ical properties and bioactivities like cytotoxicity and protein
adsorption. While Pubvinas has created fixed descriptors for
their database, NOMAD has created a posteriori data sorting
technique, meaning that their database can continue adding
descriptors if necessary depending on the added data.7 The
challenges associated with general materials data, volume,
variety, velocity, and veracity, call for efficient approaches in its
exchange and usage, and we encourage the reader to explore
references by Draxl and Scheffler7,256 for more details. We note
that the data challenge becomes even more pronounced in
nanomaterials, where data-driven research is nascent and the
property−synthesis−characterization landscape increases in
complexity. This field should also benefit from careful handling
of expanding data sets by using the “FAIR” data principles
(Findable, Accessible, Interoperable, and Repurposable), a
guideline in major databases to enhance data reusability as it
becomes crucial infrastructure for physics, chemistry, and
materials science.257

The ultimate goal, for experiments, is to provide a highly
interpretable set of guidelines that indicate how different
tunable factors will influence the products. For synthesis, the
most important descriptors are the reaction conditions that led
to the experimentally synthesized product and the relative
thermodynamic energies of candidate structures. Phase
diagrams and intelligent data visualization are great tools for
this purpose. In these phase diagrams, partial pressure,
chemical potentials, pH, temperature, etc., provide tuning
knobs, enabling the identification of promising regions in high-
dimensional parameter space for fabricating a target com-
pound.258−261

There is an opportunity for more development of easily
interpretable guidelines on a larger scale. As an example, bulk
materials databases like the Materials Project have made
significant strides in providing synthesis-relevant data using
Phase Diagram and Pourbaix Diagram analysis applica-
tions.6,83,262 Similar analysis applications to facilitate searches
through reaction space for nanomaterials would be highly
desirable; however, the underlying data are today unavailable.
With the rise of data-driven research in nanomaterial synthesis,
we expect a rise in the quantity, quality, accessibility, and
interpretability of data for nanomaterials synthesis and
properties.

CONCLUSION
The development in data-driven materials research has surged
in the past decade, creating an interdisciplinary domain of
physics, chemistry, software, and data science. Materials
databases are collecting more complex data with far-reaching
potentials for functional materials design and guided synthesis.
Nanomaterials, on the other hand, exhibit behaviors distinct

from underlying bulk structures, which originates from the
confined nature and large surface area. The electronic structure
and chemical activity of nanomaterials are controlled by the
size and morphology of the crystals, the active surface sites,
and the chemical environment. Synthesis is controlled by both
thermodynamics and kinetic processes, both of which are
highly sensitive to the external environment. There is a
nontrivial gap to bridge between bulk and nanomaterials
predictive modeling, which data-driven approaches are well-
suited for, given the multidimensional, complex landscape. For
future development of materials data, the information
particularly helpful will be size-, surface-, and environment-
specific properties, including surface energies, adsorption sites,
various phase diagrams, and reaction networks.
As large-scale computational methods and high-throughput

automated laboratories with data curation investments become
more mainstream, we believe progress in the accessibility,
quantity, accuracy, and complexity of nanomaterials data will
profoundly advance this field. We note the opportunities in
curating and disseminating experimental results with annotated
metadata, as complementary to existing computational
resources. The large number of raw data generated by
automated laboratories contains highly reproducible parame-
ters and includes a variety of information such as synthesis
conditions, which can then be used by machine learning
approaches and feeds back into the design process. Given the
paradigm shift toward data-centric computational materials
research, we are optimistic about the outlook for nanomaterials
research in utilizing big data to its fullest potential.
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VOCABULARY
convex hull, energy diagram that connects all ground state
polymorphs of a specific chemical system, where points on the
connected lines indicate thermodynamically stable phases,
while points above the hull indicate thermodynamic instability;
nanomaterial, material consisting of particles or constituents of
nanoscale dimensions, in which typically at least one
dimension is between 1 and 100 nm; quantum confinement,
phenomena observed when the size of the particle is too small
to be comparable to the wavelength of the electron, described
by the quantum well model, and results in discrete energy
levels in the valence band and conduction band and an
increase of the band gap; reaction network, network of
interlinking phases with the nodes representing a combination
of phases and the edges representing the reaction pathways,
being a complex thermodynamic phase space, where the
reaction pathways can be represented by cost functions that
combine thermodynamic and kinetic features; scaling relation,
correlation between the adsorption energies of different
adsorbates on various catalytic surfaces and often used to
understand the reactivity of catalysts and to identify promising
new catalysts
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