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THE BIGGER PICTURE Ever since the advent of the Materials Genome Initiative, there has been a wide-
spread adoption of high-throughput ‘‘materials screenings,’’ whereby a large materials database, typically
of many thousands of entries, is queried by a property of interest to suggest candidate materials as the ba-
sis for further experimental inquiry. This approach has been applied to discover new materials for varied
applications such as batteries, solar panels, and thermoelectrics. However, there exists a disconnect be-
tween proposed candidates and device-ready materials: computer-based searches for new materials usu-
ally target stoichiometric ‘‘pure’’ compounds, but most real, experimental materials are highly engineered
‘‘alloys’’ ormixtures of compounds. To address this disconnect, in this work a database of tunablematerials
has been created to suggest possible alloys between pairs of already-known materials. This enables dis-
covery of new materials that may have been entirely overlooked by previous methods.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Conventionally, high-throughput computational materials searches start from an input set of bulk com-
pounds extracted from material databases, but, in contrast, many real functional materials are heavily
engineered mixtures of compounds rather than single bulk compounds. We present a framework and
open-source code to automatically construct and analyze possible alloys and solid solutions from a set of
existing experimental or calculated ordered compounds, without requiring additional metadata except crys-
tal structure. As a demonstration, we apply this framework to all compounds in theMaterials Project to create
a new, publicly available database of >600,000 unique ‘‘alloy pair’’ entries that can be used to search for ma-
terials with tunable properties. We exemplify this approach by searching for transparent conductors and
reveal candidates that might have been excluded in a traditional screening. This work lays a foundation
from which materials databases can go beyond stoichiometric compounds and approach a more realistic
description of compositionally tunable materials.
INTRODUCTION

The power of functional semiconductor materials lies in the

tunability of their properties. Since the dawnof the Semiconductor

Age, traditional semiconductors—elemental (e.g., Si), IV-IVs (SiC),

III-Vs (GaN, GaAs, InGaN), II-IVs (CdTe), etc.—have been

manipulated in the laboratory through doping, alloying, process-

ing, and other techniques to yield desired properties. Tunable
This is an open access article und
semiconductor alloy materials enable a variety of energy and op-

toelectronic applications that govern our modern world, from

light-emitting diode (LED) materials, e.g., In1�xGaxN (InGaN),1 to

infrared detectors, e.g., Pb1�xSnxTe and HgxCd1�xTe,
2 to piezo-

electrics, e.g., PbZrxTi1�xO3,
3 and are critical for the transforma-

tion to renewable energy in solar cell materials; e.g.,

CuInxGa1�x(SySe1-y)2 (CIGS)
4 and CdSexTe1�x (CdTe). The prop-

erties of each of these materials reach far beyond those of their
Patterns 4, 100723, May 12, 2023 ª 2023 The Authors. 1
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endpoint compositions; e.g., the band gap of InGaN is tunable

across a wide range, from�0.7 eV (InN) to 3.4 eV (GaN). Naturally

occurring semiconductor minerals are also stable in alloy forms,

e.g., olivine (MgxFe1�x)2SiO4, plagioclase NaxCa1�x(AlySi1�y)4O8,

and cobaltite CoxFe1�xAsS, indicating a strong tendency toward

off-stoichiometric stability.5

Meanwhile, in the past decade, computational materials dis-

covery has been advancing novel materials design in a wide

range of applications, from thermoelectrics,6 to Li-ion battery

cathodes,7 to transparent conductors.8 In most of these cases,

materials discovery has been targeted toward stoichiometric

‘‘bulk’’ compounds (also called parent compounds or endpoint

compounds in the context of alloys). A candidate compound

emerges successfully from a screening if it satisfies a set of

property values within a specific cutoff. This methodology has

served as a useful starting point, but a grand challenge in the

field is determining how to expand this success beyond com-

pounds into off-stoichiometric space to search for ranges of

tunability within materials in a high-throughput context. Indeed,

a material may be excluded by its endpoint properties without

taking into account how its properties can be tuned by doping

or alloying. For example, the n-type transparent conductor Sn-

doped In2O3 is an excellent example of a material where the

computed properties of the endpoint compound (In2 O3) are

not representative of the high experimental performance

achieved by introducing tunability.9 It is recognized that

considering all possible off-stoichiometry (defects, dopants,

impurity phases and alloying)—intentional as well as uninten-

tional—in the design of novel materials incurs a vast increase

in complexity of search space compared with on-stoichio-

metric compound space. Therefore, part of the challenge is a

data problem: how do we manage the additional complexity

induced by including off-stoichiometry?

There have been many extensive and notable previous efforts

to designing alloys using high-throughput computation. These

include but are not limited to the design of high-entropy al-

loys,10,11 high-entropy oxides,12 Heusler compounds,13 and

magnetic Heuslers,14 as well as alloy design for specific applica-

tions including magnetocalorics15 and thermoelectrics.16 Such

design studies often bootstrap alloy searches from existing

computational databases, such as the Materials Project

(MP),17 Automated Flow for Materials Discovery (AFLOW),18

and TheOpenQuantumMaterials Database (OQMD).19 Previous

efforts have also used novel approaches,20,21 including machine

learning22 and density functional theory (DFT)-supported calcu-

lation of phase diagrams (CALPHAD) methodologies.23 The

importance of considering alloys in high-throughput computa-

tion is therefore well known.24 However, what many of these

prior examples have in common is that they are often focused

on the generation of new alloy materials within a limited regime

of phase space; this is often from the enumeration of possibilities

from a single crystal structure prototype or is limited to binary al-

loys or a restricted chemical space. In contrast, our current work

differs in that it offers a general approach for classifying and

searching pre-existing high-throughput computational data-

bases. These databases might already contain hidden within

them sufficient information to assess the possibility of various al-

loys existing but require appropriate analysis to unlock. The new

analysis capabilities proposed in this work to classify and search
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existing databases enables more effective materials discovery

screenings.

To clarify the scope of this work, we will recap what we

mean by alloy in this context. The Hume-Rothery rules,25

traditionally applied to metals, provide a guideline for consid-

ering whether two materials (A and B) may form a substitu-

tional solid solution with each other (AxB1�x), whereby one

atom is replaced by another but the host lattice remains

largely unchanged, except for small local distortions. These

rules require (1) that the crystal structures of solute and sol-

vent must be similar (that is, commensurate with each

other26); (2) that the atomic radius of solute and solvent atoms

must differ by no more than 15%; (3) that solvent and solute

have the same valency for complete solubility; and (4) that

the solute and solvent should have similar electronegativity.

These rules are good guidelines, although the cutoffs

(‘‘15%,’’ ‘‘similar’’) are open to debate. The methodology pre-

sented in this work therefore is focused primarily on rule (1) to

generate the database using existing algorithms for assessing

crystal structure similarity, with sufficient metadata then re-

tained to assess rule (3) by querying the database. Rules (2)

and (4) are easily applied by the person retrieving alloys

from the database subject to their own materials design re-

quirements; for example, by accessing the database of ionic

radii within pymatgen to further filter down the list of possible

alloys to consider. We emphasize that the alloy database ob-

tained in this work is only a database of possible alloys with

respect to these rules, and does not guarantee that these

alloys do indeed exist. Rather, it is intended as a pre-selection

step to guide further inquiry.

Using this database, we create methodology to aid in the anal-

ysis of alloying opportunities, enabling computational screening

for tunable properties in inorganic alloys when starting from a

database of crystallographic structures and associated proper-

ties. First, we map tunable material space and search for substi-

tutional alloy compositions and properties within a given set of

possible endpoints. Second, we apply this framework to the

entire MP database17 for commensurate26 (structure matching

within a certain tolerance; see section ‘‘methodology’’) struc-

tures to enable analysis resulting in over 600,000 potential alloys

(alloy pairs), encompassing 270,545 chemical systems and 215

space groups. Third, we provide a series of new techniques to

conceptualize and explore this large alloy space, including

defining an alloy system composed of alloy pairs, thermody-

namic stability estimates of alloys by alloy content using a

‘‘half-space hull’’ approach, and an example of using these

data as a pre-selection step in a high-throughput screening.

Last, we outline the limitations of this framework and suggest

next steps for tunable material screenings.

We focus on semiconductors in this paper, but the general

methodology could be applied to any alloy systems where there

is a reasonable expectation of structural stability and approxi-

mately linearly dependent properties with composition. The alloy

framework developed in this work is available in the open-source

pymatgen-analysis-alloys repository and the analyses

and associated enabling functionalities have been incorporated

into theMPWeb site under a Creative Commons license, with an

application programming interface (API) to enable other re-

searchers to explore the data and download the results. These



Figure 1. Alloys database overview

(A) A Venn diagram showing materials that are in theMaterials Project (MP), associated with an alloy in the alloy database presented in this work (whether an alloy

endpoint or an alloy member), and in the Inorganic Crystal Structure Database (ICSD). Note that each entry in MP represents a distinct polymorph, whereas

duplicates are present in the ICSD, and so the ICSD is likely overcounted. The Venn diagram gives an overview of how these three databases relate to each other.

(B) A summary of statistics within the alloy database presented in this work.
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are online at https://github.com/materialsproject/pymatgen-

analysis-alloys and https://materialsproject.org/api respectively.

RESULTS

Creating an alloy database of alloy pairs
In brief, our methods combine sets of structurally commensurate

endpoint compounds into an alloy pair database record, which

represent two compositions with the possibility of forming a solid

solution with one another (see section ‘‘methodology’’ and sup-

plemental information for details). For example, endpoint com-

pounds wurtzite GaN and wurtzite InN form an alloy pair

AlxGa1�xN.

Applying the methodology described here to the MP database

produces an ‘‘alloy database’’ of 609,841 alloy endpoint pairs

and 11,876 alloy systems. Of these candidate alloys, 16,481

pairs (2.7%) and 968 systems (8.1%) are found to contain mem-

bers of intermediate, non-stoichiometric compositions, suggest-

ing that these may have been previously explored either experi-

mentally or computationally. Figure 1 depicts a summary of the

dataset, as a subset of both MP17 and the Inorganic Crystal

Structure Database (ICSD),27 and is broken down by categories

including whether the alloy is metal-metal, metal-semicon-

ductor, or semiconductor-semiconductor, and whether the alloy

endpoints have been previously synthesized experimentally.

While the candidate alloy pairs are generated from the MP data-

base, alloy members are assigned by searching both theMP and

ICSD databases. It is observed that of members from the ICSD,

67% are of disordered compounds, compared to the ICSD as a

whole in which 44%are disordered. Note that exact numbers will

vary according to the version of the respective database ac-

cessed, and reported statistics here reflect the most recent

version of the ICSD accessible by MP at the time of publication.

In Figure 1, we also highlight that we have determined 45,793

alloy pairs whose endpoint compounds are not detected to have

the same space group. This can either be because the detected
space group, being subject to numerical tolerances, is incorrect,

or it can be a sign of a phase transition. An instance of the latter

case might be one endpoint of an alloy pair having a small polar

distortion, while the other endpoint might be a non-polar mate-

rial; here, the space groups of the endpoints do not match, but

the crystal structures might still be sufficiently ‘‘commensurate’’

and able to alloy. This demonstrates the importance of carefully

selecting the method for which two materials are considered to

be structurally commensurate, and so might form a substitu-

tional alloy. In the context of a materials screening, including

alloys drastically expands the accessible and searchable param-

eter space (see Figure S3 in the supplemental information).

When properties of an alloy pair are considered, we take proper-

ties of the endpoints when known and assume Vegard’s law with

no bowing for lattice constant, band gap (EG) and inverse effec-

tive mass (1=m�).28 We note that excluding bowing is a crude

approximation for band gap, but bowing is not as significant

for inverse effective mass (see supplemental information).29

Exploration of alloy systems
By combining alloy pairs that are all commensurate with one

another, alloy systems can be generated (see section ‘‘method-

ology’’) in which each alloy system spans a region of accessible

phase space. Applying this methodology to MP creates a total of

11,876 possible alloy systems. One application of the alloy sys-

tem framework is the construction of semiconductor bowing

plots, which are useful for visualizing lattice matching and

band gap tuning in semiconductor alloys and are typically con-

structedmanually via a literature review. A typical example might

be a plot showing wurtzite III–V alloys system (GaN, InN, etc.),

but this can be generalized for any alloy system. In Figure 2A,

we take an example of two systems that have been studied

experimentally but not as extensively as the III–V system: zinc-

blende II-Ch and chalcopyrite I-III-Ch2 chalcogenide materials.30

Compounds are grouped by commensurate structure, each

marker corresponding to an experimentally observed endpoint
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Figure 2. Lattice parameter vs. band gap demo

A comparison of a lattice parameter vs. band gap plot for wide-band-gap zincblende and chalcopyrite chalcogenide materials. (A) A manually constructed plot

from the experimental literature,30 including experimental bowing, and (B) generated computationally from an alloy system in our database. Note that in (B) each

alloy system is filtered to include only chalcogenide (S, Se, Te) compounds with commensurate oxidation states, that band gaps EPBE;corr
G are computed PBE gaps

with an approximate empirical correction factor,31 and that the lattice parameter is computed from the conventional unit cell. Boldface in (B) indicates phases not

present in (A).
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compound, and each line segment corresponds to an experi-

mentally observed alloy (e.g., ZnxMg1�xS). Most of the com-

pounds plotted are in their most stable polymorph; however,

we note some exceptions (e.g., MnN, MnSe, and CdSe have a

more stable polymorph than zincblende, but zincblende is

plotted here for clarity and completeness).

Using the alloys systems framework, we generate corre-

sponding alloy systems for zincblende and chalcopyrite chalco-

genide semiconductors. These systems are plotted in the two

panels of Figure 2B as a function of lattice parameter and band

gap, where each commensurate system is merged into a shape

to represent their range. Alloy systems are generated as a func-

tion of a single compound—in this case, zincblende ZnS and

chalcopyrite CuAlS2—and then outputs are filtered to include

only chalcogenide compounds with commensurate oxidation

states. Since semi-local DFT underestimates the band gap, we

plot Purdue-Berke-Ernzerhof (PBE) gaps with an applied

approximate empirical correction factor from the literature, de-

noted as EPBE;corr
G .31 Discrepancies between the experimental

plots and plots derived from the database derive mainly from er-

rors as a result of using the PBE functional. Errors in predicted

gap are also exacerbated across the database in magnetic sys-

tems where the magnetic order has not been predicted; for

example, in Figure 2, it is shown that zincblende MnS (Materials

Project: mp-1783) is predicted with PBE to have a band gap of

0 eV but experimentally has been shown to have a gap of

approximately 3.8 eV32; in this case, it is because the database

entry was calculated in a ferromagnetic configuration rather

than the correct antiferromagnetic configuration. For better ac-

curacy, we recommend performing additional hybrid functional

calculations to complement the initial screening and provide a

better estimate the gap in the alloy database or, in the future, us-

ing more accurate calculations to construct the database. We
4 Patterns 4, 100723, May 12, 2023
emphasize that the purpose of this work is not to demonstrate

accurate band gap prediction, since more accurate methods

are already well known, but to demonstrate the machinery of

constructing alloy pairs and connecting these into alloy systems

for the purposes of a materials discovery screening.

We observe in Figure 2 that the shapes and features of compu-

tationally generated alloys systems in (b) qualitatively match the

experimental diagrams in (a), subject to uncertainties in band

gaps as explained above. Additionally, more information is

captured in (b); in particular, the members (MP and ICSD) of

many of the alloy pairs are denoted to indicate which alloys

have seen previous study. Including additional hypothetical alloy

pairs here increases the range of search space, by nearly 50%

for II-Ch and by over 50% for I-III-Ch2, and new alloy pairs

are marked with dotted lines such as CaxCd1�xSe and

AgAl(SexTe1�x)2. The computed alloy system plots can also

inspire new materials design searches over a variety of multinary

alloys. For example, in a search for an amber light-emitting diode

(LED) material (�580–590 nm; i.e., 2.10–2.14 eV) with a lattice

parameter matched to zincblende GaAs (5.6531 Å33), one may

examine the region around ZnxMn1�xS or CuAlxGa1�xSe2
alloy pairs.

In principle, for a given alloy system, an alloy’s lattice param-

eter (or volume cube root, if comparing non-cubic systems) and

band gap can be tuned within the bounds of the shape bounded

by the alloy end-members in the plot by varying alloy composi-

tion. Here we show a plot for a simple comparison of a vs. EG

for conventional semiconductors, but alloy system plots can

be created for any set of properties and can in principle be

expanded into higher dimensions. Some degree of bowing is

likely in these systems, as shown in Figure 2A. Additionally, dis-

continuities in Vegard’s law can arise when gaps transition from

direct to indirect nature across alloy space. However, this

https://doi.org/10.17188/1192718


Figure 3. Half-space hull stability analysis

(A) A representative formula alloy pair of SbxBi1� xOF, with three unique phases lying on the half-space hull. Dotted lines depict where a competing polymorph

becomes stable. Decomposition plot on the right shows thermodynamic decomposition products from a ternary phase diagram, as a function of x.

(legend continued on next page)
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analysis is helpful as an initial guide and provides a systematic

method for generation of such figures, which are already

commonplace in the literature.

Estimating alloy stability
So far, we have introduced a set of alloys that are purely hypo-

thetical, yet have not discussed thermodynamic stability and

synthesizability. Computationally determining synthesizability

of a given alloy is non-trivial and requires constructing a temper-

ature-dependent phase diagram, computing the effects of

various entropy terms, and potentially considering the effects

of nucleation and kinetics. A simple (yet imperfect, due to the

typical T = 0K approximation of DFT) metric to assess stability

in solid state compound materials is the energy above the

convex hull (Ehull), where an Ehull of 0 eV/atom defines a thermo-

dynamic ground state, and Ehull is reported for compounds in

the MP database as derived from phase diagrams constructed

from DFT calculations. For alloys, even determining this simple

Ehull metric is non-trivial; it requires computing a variety of order-

ings, as well as fully exploring possible competing polymorph

phases and all of their possible orderings (see section

‘‘discussion’’).

To approximate whether a given alloymay be stable or synthe-

sizable, and as a first step before performing additional in-depth

calculations, we have calculated a hull across alloy content using

the half-space intersection of the lines representing the linear

interpolation of formation enthalpies between the two alloy end-

points—hereafter called a ‘‘half-space hull’’—to identify ranges

of alloy content x at which different polymorphs might be stable.

This is defined by a ‘‘formula alloy pair’’ and ‘‘alloy segments’’

(see section ‘‘methodology’’). To use this database effectively,

the user should make sure to consider entropic terms. Some of

these, such as configurational entropy, are trivial to calculate un-

der certain assumptions, while others, such as vibrational or

electronic entropy, might require further calculations or more so-

phisticated models.

Figure 3 depicts a set of formula alloy pair diagrams derived

from the alloy database, made up of alloy pairs that all have

the same composition (AxB1�x). For example, a SbxBi1�xOF for-

mula alloy pair is magnified in Figure 3A and shown in the third

panel of (b), with BiOF endpoint compounds on the left side

(x = 0) and SbOF endpoint compounds on the right side (x = 1),

and with the y axis representing Ehull. Only compounds that are

present in the MP database are included here. For each case

where a BiOF compound is structurally commensurate with a

SbOF compound, an AlloyPair is formed and a colored

dotted line is drawn in Figure 3A. For example, P4=nmm BiOF (

Materials Project: mp-753594, on the hull) is connected with

P4=nmm SbOF (Materials Project: mp-989191, with Ehull =

0.192 eV) by a blue dotted line, while Pcba BiOF (Materials Proj-

ect: mp-760162, with Ehull = 0.017 eV) is connected with P4=

nmm SbOF (Materials Project: mp-561533, on the hull) by a

green dotted line. In this formula alloy pair, P21=c (purple) and

Pnma (red) pairs are also drawn.
(B) A set of half-space hull intersections, a simple interpolation based on endpoint f

Paired means that commensurate structures exist, while unpaired means that no

cross-over points will be exact, but they might provide an estimate. For each allo

each half-space hull construction, a decomposition diagram is plotted as a func
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The half-space hull is drawn as a continuous gray line in Fig-

ure 3A. The changes of slope along this line represent alloy seg-

ments (see section ‘‘methodology’’), which represent phase

changes as x is increased. Thus, in this example the half-space

hull defines segments of SbxBi1�xOF where P4=nmm is the

lowest energy phase (0 % x( 0.05), where P21=c is the lowest

energy phase (0.05(x( 0.15), andwherePbca is the lowest en-

ergy phase (0.15(x% 1). Since a phase does not have to lie on

the hull to be synthesizable, we draw a region above the half-

space hull (the stability region in a shaded gray gradient) at which

the energy above the half-space hull is less than 0.1 eV/atom. It is

typical in materials screenings to define an arbitrary cutoff such

as this, below which materials are more likely to be synthesiz-

able. While this choice of cutoff is reasonable for many semicon-

ductors, and especially oxides,34 we note that it would likely be

far smaller for metallic alloys35 and may be larger for nitrides and

other non-oxide semiconductors.36 The choice of cutoff is a free

parameter for the user of this database, and we encourage users

to carefully consider which cutoff is most appropriate for their

application.

According to the selected cutoff of 0.1 eV/atom used in Fig-

ure 3, it may be possible to synthesize alloys that lie within the

gray region, rather than only the alloys that lie directly upon the

half-space hull. For example, it may be possible to synthesize

Pbca SbxBi1�xOF at small values of x, where it is not the lowest

energy polymorph, because the linearly interpolated energy is

still below this cutoff and close to that of competing polymorphs.

However, it is far less likely that P4=nmm SbxBi1�xOF solid solu-

tions could be synthesized at high values of x, since the interpo-

lated energy for this alloy pair lies well outside of the 0.1 eV/atom

stability region. We note that there are other endpoint com-

pounds that do not have commensurate pairs (black circular

markers), and, for this method to be technically complete, the

formation energies of the commensurate structure pairs for

these polymorphs would have to be computed.

Figure 3B depicts other possible scenarios of formula alloy

pairs within the alloys database. Here, a paired ground state im-

plies that, for the ground state of a given endpoint, a commensu-

rate structure at the composition of the other endpoint exists,

forming an alloy pair. An unpaired ground state implies that the

ground state structure of one endpoint does not have a

commensurate structure at the composition of the other

endpoint, and this is an indication to us that more calculations

should be performed in order to complete the formula alloy

pair. Cases where both endpoints have paired ground states

(three examples on the left) aremost likely to provide useful infor-

mation using the half-space hull method. For example, in

MgxBe1�xSiN2, both ground states are Pna21, and thus it is likely

that a solid solution can be synthesized across all values of xwith

this structure retained. In ZnxSn1�xTe, both endpoints have

commensurate ground states and no other known polymorphs

with Ehull < 0.1 eV/atom. Thus, a phase change from Fm3m to

F43m is expected at approximately x = 0.5 using the half-space

hull formalism. However, there are systems where one or both of
ormation energies to find cross-overs, for six representative formula alloy pairs.

commensurate structure is known in the database. It is not expected that these

y system, this then gives a range of allowed compositions and phases. Below

tion of x.

https://doi.org/10.17188/1289068
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Figure 4. Formula alloy pairs with members
Examples of seven representative formula alloy pairs with members included. The Ehull of each member is sourced from the MP database, and can be compared

with the linearly interpolated formation energy for each alloy pair. Alloy pairs (dashed lines) and members of alloys pairs (square markers) are colored by space

group, and plots are as described in Figure 3.
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the ground states do not have a commensurate pair (three exam-

ples on the right), such as NbxCe1�xSe2 and Ca(BixAg1�x)2O4,

and thus more calculations are needed in order to construct a

reliable half-space hull. We note that this would add more

possibly unstable or unsynthesizable endpoints.

Below each formula alloy pair in (a) is a fractional decomposi-

tion diagram. This consists of the various thermodynamic

decomposition products and their fractional ratio, as a function

of x, and is computed using existing functionality in pymatgen.

The decomposition products give an indicator of possible

competing phases that may impede the formation of a solid so-

lution; for example, if a well-known material exists as a possible

decomposition product, it is less likely the alloy might be synthe-

sizable. The decompositions products are derived from the full

phase diagram of the appropriate chemical system. In

MgxBe1�xSiN2 and ZnxSn1�xTe, the decomposition products

consist solely of the endpoint compounds, and their relative frac-

tional ratio changes monotonically with x. However the fractional

decomposition of SbxBi1�xOF, enlarged and plotted on the right-

hand panel of (b), is more complicated and consists of four

decomposition products: endpoints BiOF and SbOF, as well as

Sb2O3 and Bi7O5F11. Thus, although the half-space hull interpo-

lated energies lie below 0.1 eV/atom, these SbxBi1�xOF alloys

may be challenging to synthesize due to competing thermody-

namic reaction products.

As a check to whether the half-space hull is appropriate as a

screening tool—or, in other words, whether the linearly interpo-

lated half-space hull estimate is consistent with the DFT
computed convex hull of known alloy members—we can include

members on these plots for systems in which members are pre-

sent in databases and their Ehull values are known. For example,

in Figure 4Awe showcasemembers in the formula alloy pair con-

struction for GaxAl1�xN. It is shown that the calculated formation

enthalpy of the wurtzite (space group P63mc) alloy members lie

below the zincblende (space group F43m), which is consistent

with the half-space hull; here, these data points refer to the for-

mation enthalpies as calculated with DFT using small ordered

approximations from entries already existing in the MP data-

base. In Figures 4B–4G, we plot six other examples of formula

alloy pair half-space hull constructions for which there are mem-

bers included in the alloy pairs. For ZrxHf1�xO2 (e), the calculated

formation energies for space groups P42=mnm, P42=nmc, and

Fm3m at x = 0.5 lie nearly exactly on the linearly interpolated en-

ergies. Other systems (e.g., SrxCa1�xTiO3 and SnxPb1�xS) have

alloys ranked in the same order as the half-space hull prediction,

albeit not precisely on the predicted lines. We note that some al-

loys are extensively sampled in the MP database such as

LiMnxCo1�xO2, likely due to its interest as a battery material lead-

ing to a large amount of calculations performed on this com-

pound with varying degrees of lithiation. All of these plots are

generated using the tools provided by pymatgen-analysis-

alloys and can be similarly constructed for any system of inter-

est. We also perform a simple statistical analysis on the full set of

formula alloy pairs with members, and find this framework yields

correct polymorph orderings for a majority of the set (to within 25

meV/atom error for 64%of set, and to within 100meV/atom error
Patterns 4, 100723, May 12, 2023 7



Figure 5. Example screening for p-type TCs

An example of a computational screening of an alloy search space, with the approximate computed p-type TC regime designated with a gray box.

(A) All bulk compounds that intersect the approximate p-type TC regime.

(B) All alloy pairs that intersect the approximate computed p-type TC regime.

(C) Hidden alloy pairs that intersect the p-type TC regime where both endpoints lie outside of the regime. Pairs are denoted by the range of their fractional alloy

compositions that lie within the regime, with details denoted in Table 1.
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for 91% of the set; see Figure S1 in the supplemental

information).

Therefore, when analyzing the set of alloy pairs or alloy sys-

tems within our database, it is important to assess which half-

space hull scenario a given formula alloy pair lies within and

whether there exists a region of phase space where stabilization

is likely. Additionally, assessing possible decomposition prod-

ucts informs whether to expect multiple decomposition prod-

ucts, which could impede formation of the alloy. Overall, the

half-space hull framework of drawing lines to estimate segments

of phase stability is not rigorous, since formation enthalpy does

not follow Vegard’s law and configurational entropy is not taken

into account. Rather, this method is intended to provide an esti-

mate of what alloys might be present and where in alloy space

they might be, as a tool to justify or prioritize additional calcula-

tions in a high-throughput context, and it is therefore an entry-

point for determining which alloys may be experimentally

realizable.

Example of screening alloy pairs for p-type transparent
conductors
Including alloys can expand the number of material candidates

generated by high-throughput screenings and reveal candidates

that otherwise would not have emerged. Here, to demonstrate

this quantitatively, we screen our candidate alloy pair dataset

for possible p-type transparent conductor (TC) candidates. Dis-

covery of a high-performance p-type TC could enable break-

throughs in solar cells and transparent electronics, among other

applications, but to date there are no p-type TCs that perform as

well as n-type TCs.37 A high-performing p-type TC is likely to

require a low hole effectivemass (m�
h) to enable high holemobility

and a wide band gap (EG) to enable optical transparency, among

other properties.9 So far, several data-driven explorations have

been performed to search for p-type TC candidates,8,38,39 but,
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to our knowledge, no screenings have been performed looking

specifically for alloys or specifically for tunable materials rather

than compounds.

For this analysis, we use a set of stable or metastable (Ehull <

0.1 eV) representative compounds (i.e., alloy endpoints) where

m�
h has been calculated (the same set shown in Figure S3).40

First, Figure 5A shows a set of bulk compounds from the MP

database, with empirically corrected band gap31 EPBE;corr
G on

the x axis and m�
h on the y axis. The gray p-type TC regime de-

picts a range of parameter space where 2.9 eV <EPBE
G < 3 eV

(and thus possible experimental gaps greater than 3 eV, since

PBE systematically underestimates EG) and m�
h < 1:5, where

p-type TC candidates may reside.9 This figure plots approxi-

mately 1,000 compounds, approximately 150 of which lie within

the p-type TC region and contain compounds that have emerged

from previous screenings (e.g., ZrOS, TaCu3S4, and Al2ZnTe4).

The choice of cutoff value tends to be motivated by expected

values of physical parameters (e.g., absorption edge and hole

mobility), but incur uncertainties in calculated value and incon-

sistencies between descriptor value and real physical value.

Hence, the goal is to suggest a list of target candidates that

may be suitable to prioritize for future computational study and

experimental inquiry. Therefore, Figure 5A represents a conven-

tional materials discovery screening.

In contrast, Figure 5B depicts a subset of alloy endpoint com-

pounds (black circular markers) and corresponding linearly inter-

polated alloy pair properties assuming Vegard’s law (thin lines

between points). This analysis yields 233 alloy pairs whose lines

intersect the p-type TC regime, and a subset of 192 alloy pairs in

which one or more endpoint lies outside the regime are plotted

here for readability. Thus, this plot demonstrates a set of

possible, additional alloy pairs to consider as p-type TCs that

previously may have been overlooked. The alloy pairs present

within the gray region indicate there may be combinations of



Table 1. Hidden alloy pairs with properties of interest to p-type TCs

Pair IDs (A–B) Alloy formula

Space

group x range

EPBE
G

range (eV)

m�
h

range

EA
hull

(eV/at.)

EB
hull

(eV/at.)

On half-

space hull?a
# decomp.

productsb

mp-22919–mp-23268 (NaxAg1�x)I Fm3m 0.27–0.74 1.52–2.85 0.85–1.49 0.093 0.000 yes 0

mp-571386–mp-22905 (LixCu1�x)Cl Fm3m 0.20–0.52 1.51–3.46 1.13–1.36 0.178 0.020 no 1

mp-684712–mp-32891 (YxGd1�x)2S3 I42d 0.54–0.57 1.50–1.53 1.49–1.50 0.022 0.036 no 0

mp-5782–mp-556916 (GaxAl1�x)AgS2 I42d 0.62–0.81 1.50–1.59 1.24–1.50 0.000 0.003 yes 0

mp-4979–mp-8016 AlCu(SexS1�x)2 I42d 0.02–0.24 1.50–1.68 1.35–1.50 0.000 0.000 yes 0

mp-756317–mp-3536 Al2(MgxHg1�x)O4 P4=mbm 0.05–0.16 1.53–1.94 1.21–1.49 0.087 0.000 yes 1

mp-756317–mp-2908 Al2(ZnxHg1�x)O4 P4=mbm 0.07–0.62 1.52–2.91 1.13–1.50 0.087 0.000 yes 1

mp-9081–mp-11742 CsNd(TexS1�x)2 R3m 0.55–0.75 1.50–1.67 1.36–1.49 0.002 0.000 yes 0

mp-555093–mp-558690 (ZnxCu1�x)B4O7 Cmcm 0.26–0.63 1.53–3.48 0.85–1.31 0.047 0.058 yes 1

mp-13973–mp-7233 (LaxGd1�x)2SeO2 P3m1 0.14–0.15 1.50–1.51 1.50–1.50 0.000 0.000 yes 0

mp-23520–mp-23417 In(SnxPb1�x)2I5 I4=mcm 0.31–0.83 1.50–1.73 1.11–1.49 0.056 0.023 yes 2

mp-23417–mp-23504 In(SrxSn1�x)2I5 I4=mcm 0.05–0.44 1.50–2.09 1.04–1.50 0.023 0.046 yes 2

mp-754818–mp-756933 (TlxNa1�x)TaO3 P4=mbm 0.36–0.53 1.50–1.91 1.39–1.50 0.087 0.002 yes 0

mp-7482–mp-8402 Rb(MgxHg1�x)F3 Pm3m 0.14–0.16 1.52–1.64 1.41–1.47 0.000 0.002 yes 0

mp-760396–mp-761390 Ta(FexAl1�x)O4 I41md 0.31–0.42 1.51–1.79 1.35–1.50 0.056 0.019 no 0

mp-755054–mp-755998 (ZrxTi1�x)3N2O3 Cmcm 0.06–0.71 1.51–2.13 1.08–1.50 0.008 0.002 no 4

mp-760655–mp-757905 Li3(TixBi1�x)(PO4)2 C2=m 0.44–0.60 1.51–2.08 1.16–1.48 0.066 0.072 yes 6

mp-18903–mp-18848 Sr2(MgxCd1�x)WO6 Fm3m 0.16–0.54 3.39–3.50 0.95–1.50 0.082 0.009 no 0

mp-18848–mp-19400 Sr2(NixMg1�x)WO6 Fm3m 0.5–0.53 1.52–1.65 1.45–1.50 0.009 0.010 no 0
aWhether a composition within x range lies on the half-space hull.
bNumber of decomposition products from half-space hull; excludes endpoint compounds from count.
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EPBE;corr
G andm�

h beyond those represented by the endpoint com-

pounds in Figure 5A.

In Figure 5C, we take this a step further by highlighting a subset

of 10 ‘‘hidden’’ alloy pairs that intersect this p-type TC regime but

where both of the endpoints lie outside of the regime. This analysis

illustrates compounds that themselves are not p-type TC candi-

dates but whose alloys may warrant further exploration. Table 1

reports all the hidden pairs from this analysis, including the 10 hid-

den pairs from Figure 5C. Included in this table the range of x

where properties lie within the p-type TC regime (x range), the

range of EPBE;corr
G and m�

h achieved within this window, and Ehull

of the endpoints (where EA
hull corresponds to the first compound

of a pair and EB
hull to the second). It is also denoted whether a re-

gion of the x range lies on the half-space hull, and the number of

decomposition products (excluding the endpoint compounds

from the count). Most of the alloy pairs that emerge from this

screening are quaternaries (alloys of two ternary compounds;

e.g., AlCuSxSe1�x), with several ternaries (alloys of binary com-

pounds; e.g., CuxLi1�xCl) and quinternaries (alloys of quaternary

compounds; e.g., Sr2MgxCd1�xWO6). To our knowledge, none

of these alloy pairs have been studied previously as p-type TCs,

with the exception of La2SeO2 and Gd2SeO2, which have been

predicted previously using a high-throughput approach.38 We

note that this is just one example of an applicationwhere including

alloying could yield new material candidates.

DISCUSSION

We have demonstrated a framework to propose new alloys and

access the potential tunability of materials for high-throughput
screenings. In our presented database, we designate alloy pairs

between commensurate endpoint structures; although we pre-

sent 600,000 unique pairs, this database comprises a subset of

possible physical alloys. Several extensions of the presented

alloy database are possible, beyond constructing structure-

matched pairs. For example, in many experimentally observed

alloy systems, endpoints may not structure match within the tol-

erances we use here but are still commensurate with one

another; i.e., they can be connected through a displacive phase

transformation (e.g., orthorhombic SnS and rocksalt CaS).26

Such pairs are not included in this database; however,

advances in methodologies for determining whether displacive

phase transformations are possible between a given pair of ma-

terials could allow the database to be expanded in future.41,42 In

some cases, incommensurate structures, where symmetries are

distinct from one another but can be connected through a recon-

structive transformation, can also form heterostructural alloys,

which are of increased interest formaterials design (e.g., rocksalt

MnO and wurtzite ZnO can alloy to formMnxZn1�xO).26 Similarly,

a material might be tuned by varying vacancy concentration top-

otactically (e.g., NiOx). Furthermore, there are alloy pairs and

alloy systems that in principle could alloy, but have no commen-

surate endpoint structures currently on MP (e.g., formula alloy

pairs labeled ‘‘unpaired ground states’’ and ‘‘not in DB’’ in Fig-

ure 3), so, in these systems, more calculations would be required

before the alloy could be defined. Nevertheless, in principle, the

methodology presented here could be expanded upon to include

and categorize all plausible commensurate and incommensurate

alloy pairs, and each of the casesmentioned here could be incor-

porated into future iterations of this alloys database.
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We note that the underlying input database from which our

alloy database is derived can contain biases. These biases,

e.g., concerning structural as well as chemical coverage,

can propagate into the alloy database, which should be

acknowledged when interpreting results. For example, the

MP database necessarily contains many materials that might

alloy with each other due to its use of specific structure

prediction43,44 methodologies. As the underlying database

expands, this infrastructure has been established to automati-

cally ‘‘build’’ new versions of the alloy database as new

data becomes available. Importantly, as better methods for

calculating more accurate lattice parameters or band gaps

become accessible for high-throughput computation, the alloy

database will also incorporate these improved data. The

continued building of new versions of this database is an

essential aspect of this work, since static datasets have limited

utility given the pace of improvement of computational mate-

rials databases.

Once a set of potential alloys are suggested from this data-

base, more reliable methods to assess alloy solubility can be

used to either rule out or confirm a potential alloy; for example,

automated cluster expansions45,46 or the generalized quasi-

chemical approximation (GQCA) method.47 Our work is in-

tended to serve as a starting point from which to determine

systems to consider for such in-depth analyses. The half-space

hull diagrams provide a guide to select alloys within a given

chemical space, which may be stable and synthesizable. For

example, the following calculations of increasing computational

cost could be explored based on outputs from the alloys

database.

d For compounds at endpoint A (or B) in which a commen-

surate compound at endpoint B (or A) is not present on

MP, there is insufficient information in the database to

calculate an alloy pair (for example, the black circular

markers in Figure 3 without any connecting line) such

as ZnxCu1�xS). Here, the missing compound(s) can be

calculated and added to the database. This is still impor-

tant even if such a compound is unstable or not experi-

mentally realizable at the endpoint, since there may be

a region within alloy space where synthesizability be-

comes possible.

d For alloy pairs in which member compounds are not yet

known to exist, members can be calculated (e.g., at x =

0.5) for a few different orderings to assess realizability, or

give an indication of expected bowing and other pa-

rameters.

d Many real alloy materials are disordered, rather than or-

dered. For members within in alloy pair, special quasi-

random structure (SQS) calculations can approximate

structures of fully random alloy polymorphs to provide a

counterpoint to the small-cell ordered structures more

typical in a database such as MP.48

d To account for configurational entropy and thermody-

namics of specific alloy members, the GQCA can be

used to estimate free energy,47 and subsequently higher-

order methods such as cluster expansions can be applied

to further investigate specific systems for which high qual-

ity phase diagrams are required.45
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For immediate use, our alloy database has been incorpo-

rated into the MP as an app in the new Web site release

and API, in the hope that this will serve as a guide for re-

searchers performing screenings of tunable materials. The al-

loys database will be updated alongside the MP database. A

flowchart of the alloys database pipeline and incorporation

onto the MP is shown in Figure 6.

Conclusions
In this paper, we have presented a new framework to analyze al-

loys in the context of materials databases, implemented it into

the open-source pymatgen-analysis-alloys package,

and created an open-source alloys database that has been

incorporated into the MP Web site. We have presented a few

case studies here of how this database can be utilized in the

context of materials research and design.

Importantly, all the analysis presented here has been per-

formed without any new calculations, which showcases some

of the data analysis opportunities from mining existing data-

bases. A decade into the Materials Genome Initiative, the mate-

rials discovery community has produced large quantities of data

in multiple databases, but data production is just the start; it is

essential that data are curated, structured, and connected in a

way to yield the maximum value to the community.

In particular, one of the key challenges is how to link and

apply these data to successfully use computational predictions

to inform experimental results, especially as experimental

databases grow.49,50 In particular, experimental progress in

semiconductors typically starts from a well-studied, well-charac-

terized material and modifies its properties iteratively with the

addition of dopants or alloying elements during growth. The

framework of this paper addresses this aspect of materials

design by creating a database of candidate, tunable materials

by a data-focused approachwhich can use existingmaterials da-

tabases to suggest alloys between pairs of already-known mate-

rials. Thus, a new materials screening procedure is now possible

that can emphasize experimentally accessiblematerials and sug-

gest screening outputs that would have been previously wholly

overlooked.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for information and resources should be directed to the lead contact,

Dr. Rachel Woods-Robinson (rwoodsrobinson@berkeley.edu).

Materials availability

This study did not generate any chemical reagents.

Data and code availability

The alloy framework developed in this work is available in the open-source

pymatgen-analysis-alloys repository, and the analyses and associated

enabling functionalities have been incorporated into the MP Web site under a

Creative Commons license, with an API to enable other researchers to explore

the data and download the results (see Video S1, Exploring alloys on the Ma-

terials Project.). These resources are available online at https://github.com/

materialsproject/pymatgen-analysis-alloys and https://materialsproject.org/

api respectively. In addition, a static snapshot of the latest version of the data-

base at the time of publication has also been made available at Figshare: 10.

6084/m9.figshare.22491793. Note that the database presented in this work is

a living resource and will be updated and revised over time to include addi-

tional data and fixes where applicable, so data retrieval via the API for any

follow-up research purposes is strongly recommended.
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Figure 6. Alloys data processing pipeline

A flowchart showing the data processing pipeline out-

lined in the section ‘‘methodology,’’ starting from a

generic crystal structure database such as the MP, and

ending with a publicly accessible API and Web site to

explore the data. Wurtzite GaN is shown here as an

example, as an alloy pair with InN and as an alloys system

plotted on the MP Web site.
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Methodology

We have created an open-source code, pymatgen-analysis-alloys, that

allows the construction of an alloy database when provided with an input data-

base containing crystal structures. As a demonstration, we apply this code to

the MP database. The left side of Figure 6 depicts the data processing pipeline

of the alloys database, as described here. This code is also used for the auto-

matic generation of the plots shown in this manuscript, with only light addi-

tional editing performed for presentation.

The method outlined here does not require any prior knowledge of which

materials might form alloys. While partial occupancies in, e.g., a Crystallo-

graphic Information File (.cif) indicates the possibility of alloying, this criterion

only captures known systems and hence does not fully explore the possible

alloy space. The challenge when constructing the database is in the data pro-

cessing pipeline, and addressing combinatorial problems when large data-

bases of hundreds of thousands of entries are used.

The method is as follows: for each crystal structure in the input database,

designated as a potential endpoint, we find all other compounds that share

its anonymous formula (e.g., ABC2), and perform a pairwise comparison be-

tween all materials to detect commensurate structures using the

StructureMatcher in pymatgen.51 A pre-filter is performed that checks

for detected space group, calculated with spglib,52 using both tight and

loose tolerances. This pre-filter is imposed with the logic that it is a necessary

but not sufficient condition that two commensurate crystal structures will have

the same space group. After a pair of crystal structures are identified as an

endpoint, information is extracted such as the alloying species, including

oxidation state, and whether the alloy is isoelectronic, and stored as an

instance of an AlloyPair class. This definition of alloy does not consider al-

loys formed through interstitial alloying additions or other types of alloys. We

apply the definition of commensurate from Holder et al.: ‘‘alloys between ma-

terials with commensurate lattices . have symmetries that are related by a

displacive phase transformation’’ such that ‘‘structural distortions and atomic

displacements lead to a continuous change of the lattice parameters and site

positions without requiring atomic diffusion or rearrangement of the coordina-

tion environment.’’26 Our alloy database will capture these commensurate

examples if the displacements are small (such that the StructureMatcher

algorithm considers them to be the same structure within a given tolerance)

but not if displacements are large.

All AlloyPair entries contain structural properties, such as space group

and primitive cell volume, but can be supplemented with additional properties.

For this demonstration, supplemental properties are taken from the MP and

include Ehull , EG from the PBE functional from the MP, and electron and hole

effective masses from Ricci et al.40 (note that these are only computed for a

subset of the MP database), but, in principle, this can be expanded to include

any material property. Methods are provided to interpolate these properties

using Vegard’s law (assuming no bowing) for a given alloy content to allow

for easier plotting and searching (see supplemental information).

Once a set of AlloyPair entries are constructed, they are grouped by

chemical system and iterated over to search for potential members,

defined by the AlloyMember class, using a similar approach. Determining

whether a provided crystal structure can be assigned as a member to a

given alloy pair requires both a exact match of stochiometry and, in addi-

tion, either an exact match of space group or a structure match. This

stricter criteria reduces the total number of members that might be as-

signed and could be relaxed for some applications; for example, if a small

off-stochiometry was allowable. Assigning membership allows a database

query to reveal which alloys already have existing data available, and thus

may be more experimentally accessible alloys when performing a

screening.

A set of alloy pairs can be grouped together as an alloy system, defined by

the class AlloySystem, using a network graphmethodwhereby each edge in

the graph is an alloy pair and connected subgraphs form the respective alloy

systems. The code allows for alloy systems to be merged when a member

of one system might be the endpoint of another system; for example, an alloy

system with ternary endpoints where one endpoint is itself a member of a

binary alloy pair.

Another useful grouping is the set of alloy pairs that all have the same set of

endpoint formulae: these can be grouped together as a formula alloy pair,

defined by the class FormulaAlloyPair. If formation enthalpies are known
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for the endpoints, this class is able to define regions where a given polymorph

is stable according to a simple linear interpolation, and define alloy segments

(class AlloySegment) that encode the critical alloy contents at which a phase

transition may occur between two polymorphs. Furthermore, if any alloy mem-

bers are known, including their formation enthalpies, these data will inform

how accurate the simple linear interpolation may be. Examples of these can

be seen in Figure 4.

For the example database generated in this work, we exclude compounds

including H, He, noble gases, and heavy elements with atomic numbers

greater than 83 (Bi), although all these entries are present in the underlying

database, but we do not perform any further filtering based on chemistry

and leave this as a capability for the user querying the database to decide

exactly what chemical systems, maximum electronegativity differences, etc.

are allowable for their specific design case.

The API to access and search the database is defined in the open-source

emmet code. The user interface on the MP Web site is constructed using the

open-source Crystal Toolkit Web framework. All open-source code described

in this work is open to review and suggested edits by other researchers, and

any contributions are welcomed by the authors.
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31. Morales-Garcı́a, Á., Valero, R., and Illas, F. (2017). An empirical, yet prac-

tical way to predict the band gap in solids by using density functional band

structure calculations. J. Phys. Chem. C 121, 18862–18866.

32. Goede, O., Heimbrodt,W., Lamla, M., andWeinhold, V. (1988). Energy gap

of mns. phys. stat. sol. 146, K65–K69.

33. W.M. Haynes, ed. (2011). CRC Handbook of Chemistry and Physics, 92nd

ed. (CRC Press).

34. Aykol, M., Dwaraknath, S.S., Sun, W., and Persson, K.A. (2018).

Thermodynamic limit for synthesis of metastable inorganic materials.

Sci. Adv. 4, eaaq0148.

35. Curtarolo, S., Morgan, D., and Ceder, G. (2005). Accuracy of ab initio

methods in predicting the crystal structures of metals: a review of 80 bi-

nary alloys. Calphad 29, 163–211.

36. Sun, W., Dacek, S.T., Ong, S.P., Hautier, G., Jain, A., Richards, W.D.,

Gamst, A.C., Persson, K.A., and Ceder, G. (2016). The thermodynamic

scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225.

37. Banerjee, A., and Chattopadhyay, K. (2005). Recent developments in the

emerging field of crystalline p-type transparent conducting oxide thin

films. Prog. Cryst. Growth Char. Mater. 50, 52–105.

38. Sarmadian, N., Saniz, R., Partoens, B., and Lamoen, D. (2016). Easily

doped p-type, low hole effective mass, transparent oxides. Sci. Rep. 6,

20446–20449.

39. Varley, J.B., Samanta, A., and Lordi, V. (2017). Descriptor-based approach

for the prediction of cation vacancy formation energies and transition

levels. J. Phys. Chem. Lett. 8, 5059–5063.

40. Ricci, F., Chen, W., Aydemir, U., Snyder, G.J., Rignanese, G.-M., Jain, A.,

and Hautier, G. (2017). An ab initio electronic transport database for inor-

ganic materials. Sci. Data 4, 170085.

41. Stevanovi�c, V., Trottier, R., Musgrave, C., Therrien, F., Holder, A., and

Graf, P. (2018). Predicting kinetics of polymorphic transformations from

structure mapping and coordination analysis. Phys. Rev. Mater. 2,

033802.

42. Therrien, F., Graf, P., and Stevanovi�c, V. (2020). Matching crystal struc-

tures atom-to-atom. J. Chem. Phys. 152, 074106.

43. Hautier, G., Fischer, C.C., Jain, A., Mueller, T., and Ceder, G. (2010).

Finding nature’smissing ternary oxide compounds usingmachine learning

and density functional theory. Chem. Mater. 22, 3762–3767.

44. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., and Ceder, G. (2011). Data

mined ionic substitutions for the discovery of new compounds. Inorg.

Chem. 50, 656–663.

45. Laks, D.B., Ferreira, L., Froyen, S., and Zunger, A. (1992). Efficient cluster

expansion for substitutional systems. Phys. Rev. B Condens. Matter 46,

12587–12605.

46. Barroso-Luque, L., Yang, J.H., Xie, F., Chen, T., Kam, R.L., Jadidi, Z.,

Zhong, P., and Ceder, G. (2022). smol: a python package for cluster ex-

pansions and beyond. J. Open Source Softw. 7, 4504.

47. Chen, A.-B., and Sher, A. (1995). Semiconductor Alloys: Physics and

Materials Engineering (Springer Science & Business Media).

48. Zunger, A., Wei, S., Ferreira, L., and Bernard, J.E. (1990). Special quasir-

andom structures. Phys. Rev. Lett. 65, 353–356.
Patterns 4, 100723, May 12, 2023 13

http://refhub.elsevier.com/S2666-3899(23)00063-6/sref6
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref6
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref6
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref6
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref6
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref7
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref7
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref7
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref7
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref8
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref8
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref8
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref10
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref10
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref10
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref11
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref11
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref11
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref12
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref12
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref12
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref13
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref13
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref14
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref14
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref14
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref15
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref15
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref16
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref16
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref16
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref26
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref26
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref26
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref26
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref17
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref17
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref17
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref17
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref17
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref18
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref18
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref18
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref19
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref19
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref19
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref20
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref20
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref20
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref21
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref21
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref21
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref23
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref23
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref23
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref24
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref24
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref25
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref25
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref25
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref25
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref27
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref27
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref28
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref28
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref29
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref29
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref30
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref30
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref30
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref31
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref31
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref31
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref32
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref32
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref52
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref52
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref34
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref34
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref34
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref35
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref35
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref35
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref36
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref36
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref36
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref37
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref37
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref37
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref38
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref38
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref38
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref39
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref39
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref39
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref40
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref40
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref40
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref40
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref40
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref41
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref41
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref41
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref42
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref42
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref42
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref43
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref43
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref43
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref44
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref44
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref44
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref45
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref45
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref45
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref46
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref46
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref47
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref47


ll
OPEN ACCESS Article

Please cite this article in press as: Woods-Robinson et al., A method to computationally screen for tunable properties of crystalline alloys, Patterns
(2023), https://doi.org/10.1016/j.patter.2023.100723
49. Zakutayev, A., Wunder, N., Schwarting, M., Perkins, J.D., White, R.,

Munch, K., Tumas, W., and Phillips, C. (2018). An open experimental data-

base for exploring inorganic materials. Sci. Data 5, 180053–180112.

50. Talley, K.R., White, R., Wunder, N., Eash, M., Schwarting, M., Evenson, D.,

Perkins, J.D., Tumas,W., Munch, K., Phillips, C., and Zakutayev, A. (2021).

Research data infrastructure for high-throughput experimental materials

science. Patterns 2, 100373.
14 Patterns 4, 100723, May 12, 2023
51. Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S.,

Gunter, D., Chevrier, V.L., Persson, K.A., andCeder, G. (2013). Pythonma-

terials genomics (pymatgen): a robust, open-source python library for ma-

terials analysis. Comput. Mater. Sci. 68, 314–319.

52. Togo, A., and Tanaka, I. (2018). Spglib: a software library for crystal

symmetry search. Preprint at arXiv. https://doi.org/10.48550/arXiv.

1808.01590.

http://refhub.elsevier.com/S2666-3899(23)00063-6/sref48
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref48
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref48
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref49
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref49
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref49
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref49
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref50
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref50
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref50
http://refhub.elsevier.com/S2666-3899(23)00063-6/sref50
https://doi.org/10.48550/arXiv.1808.01590
https://doi.org/10.48550/arXiv.1808.01590

	PATTER100723_proof.pdf
	A method to computationally screen for tunable properties of crystalline alloys
	Introduction
	Results
	Creating an alloy database of alloy pairs
	Exploration of alloy systems
	Estimating alloy stability
	Example of screening alloy pairs for p-type transparent conductors

	Discussion
	Conclusions

	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Methodology

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References



