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BonDNet: a graph neural network for the prediction of bond dis-
sociation energies for charged molecules†

Mingjian Wen,a,b Samuel M. Blau,b Evan Walter Clark Spotte-Smith,a,b Shyam Dwaraknath,b

and Kristin A. Persson∗a,c

A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochem-
ical decontamination of water, and interfacial passivation in energy production/storage systems rely
on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamen-
tal thermodynamic property of interest is the bond dissociation energy (BDE) which measures the
strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would
lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper
understanding of these critical chemical processes and, ultimately, how to reverse design them. In
this paper, we propose a chemically inspired graph neural network machine learning model, BonD-
Net, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the
molecular representations of the reactants and products to the reaction BDE. Because of the use of
this difference representation and the introduction of global features, including molecular charge, it
is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for
molecules of any charge. To test the model, we have constructed a dataset of both homolytic and
heterolytic BDEs for neutral and charged (−1 and +1) molecules. BonDNet achieves a mean abso-
lute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV).
Besides the ability to handle complex bond dissociation reactions that no previous model could con-
sider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it
achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous
best performing model. We gain additional insight into the model’s predictions by analyzing the
patterns in the features representing the molecules and the bond dissociation reactions, which are
qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our
general approach to representing and learning chemical reactivity, and it could be easily extended to
the prediction of other reaction properties in the future.

1 Introduction

The strength of chemical bonds is one of the fundamental and
decisive elements in determining the reactivity and selectivity of
molecules undergoing chemical reactions.1–3 The bond dissocia-
tion energy (BDE), the amount of energy needed to break a bond
in a molecule, is one measure of chemical bond strength. BDEs

a Department of Materials Science and Engineering, University of California, Berkeley,
CA 94720, United States.
b Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, United States.
c Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
United States. E-mail: kapersson@lbl.gov
† Electronic Supplementary Information (ESI) available: dataset description, raw
input features, model hyperparameters, and additional error analysis. See DOI:
00.0000/00000000.

play a significant role in many chemical applications. BDE analy-
sis is a typical key first step in understanding chemical processes
such as retrosynthesis,4–6 drug metabolism,3,7 biofuel combus-
tion,8,9 photochemical decontamination of water pollutants,10

formation of side products in batteries and solar cells,11 and
many others. Despite being a thermodynamic property, BDEs
are also commonly applied to predict kinetic properties of re-
actions. For example, the Bell–Evans–Polanyi principle12,13 pro-
vides an efficient way to calculate the activation energies of re-
actions within a distinct family from BDE values; these activation
energies can then be used with the Arrhenius equation14 to cal-
culate the reaction rates.

A bond dissociation reaction can be categorized into one of two
types: homolysis

A:B→ A ·+ B · (1)
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where one of the shared pair of electrons in the reactant stays
with each product, and heterolysis

A:B→ [A:]−+ [B]+ (2)

where both electrons remain with one product, resulting in
charged species.∗ The reactant can also be charged; for exam-
ple,

[A:B]−→ A ·+ [B ·]− (3)

is the counterpart of Eq. (1) for a −1 charged molecule. What-
ever the bond dissociation type and the molecular charges are,
the BDE is calculated as the energy change between the products
and the reactant, ∆E = E(A)+E(B)−E(AB). Historically, reac-
tion enthalpy has been used, as these values have been tabulated
in textbooks;15,16 recently, however, the Gibbs free energy has
become prevalent in the chemical literature.17–20 Quantum me-
chanical computational chemistry methods like density functional
theory (DFT) are well suited to calculate a large (∼ 103–104)
but still limited number of BDEs with high accuracy.21,22 How-
ever, they become too computationally demanding to be widely
adopted for chemical design of real-system reaction cascades,23

where millions of BDEs need to be calculated to screen for ap-
propriate molecules or reactions. Machine learning models could
be a promising alternative to provide orders of magnitude faster
predictions without a significant sacrifice in accuracy. Contem-
porary machine learning methods, especially deep learning, have
already demonstrated success in solving many chemistry prob-
lems, such as retrosynthesis planning,4–6,24 reaction products
prediction,25–28 molecule generation,29–32 and molecular prop-
erty prediction.33,34 The most crucial component of chemical ma-
chine learning models is a suitable molecular representation to
extract information relevant to the problem of interest. Conven-
tional approaches utilize feature engineering to encode variable-
size molecules as fixed-length vectors that emphasize particular
aspects of molecules deemed important for a property while ig-
noring others.35–38 However, these manually crafted molecular
representations are not easily transferable to new problems. More
recently, molecular representations have been automatically gen-
erated using graph neutral network (GNN) methods.39–43 GNNs
treat molecules as graphs and learn molecular representations
from data via message passing between atoms and bonds. Models
based on GNNs can significantly outperform conventional meth-
ods that rely on manual feature engineering.44–46

For the prediction of BDEs, there already are several machine
learning models relying on molecular representations either from
manual feature engineering or GNNs. Early works restricted
themselves to extremely small datasets of one or two bond types
and trained simple learning algorithms such as polynomial fit-
ting47 and support vector machines48 on manually crafted fea-
tures. More recent works have leveraged high-throughout DFT
calculations to generate larger BDE datasets of various bond types

∗ It should be noted that, if the breaking bond is part of a ring, only one product
will be formed. Without loss of generality, we assume the reactant cleaves into two
products in this paper.

and have adopted neural networks as the learning algorithm. Qu
et al.2 trained an associative neural network (ANN) on ∼12000
BDEs for molecules made up of C, H, O, N, and S atoms, achieving
a mean absolute error (MAE) of 0.145 eV. St. John et al.3 trained
ALFABET (a GNN model) on ∼290000 BDEs for molecules made
up of C, H, O, and N atoms, achieving an MAE of 0.025 eV.3

These MAEs are close to or even below the chemical accuracy
of 0.043 eV (i.e. 1 kcal/mol).49 Despite their successes, current
machine learning models for BDE prediction still suffer from two
interdependent limitations. First, these models assume particu-
lar states of the products (e.g. neutral charge) and predict BDEs
from the reactants by specifying the breaking bonds, without con-
sidering feature updates of the products. Second, these models
are only applicable to the homolysis of neutral molecules as in
Eq. (1); heterolysis (Eq. (2)) and bond dissociation of charged
molecules (Eq. (3)) are beyond their capabilities. This is likely
due to the lack of publicly accessible BDE datasets for charged
molecules or heterolytic bond dissociation. Unlike the homolysis
of neutral molecules (Eq. (1)) where the two products exhibit the
same charge, cleaving a neutral molecule heterolytically (Eq. (2))
or a charged molecule homolytically (Eq. (3)) will yield prod-
ucts of different charges. Depending on which product possesses
which charge, there might be several different possible ways for
the bond to break, and thus several different values for the BDE.
Without explicitly including product information, it is impossible
for a model to distinguish between these different possible reac-
tions.

In this paper, we overcome these limitations and propose a gen-
eral GNN model, Bond Dissociation Network (BonDNet), capable
of predicting both homolytic and heterolytic BDEs for molecules
of any charge. In addition to the atom and bond features widely
used in previous GNNs for molecules,39–43 BonDNet adds global
features50,51 to encode molecule-level information. Specifically,
the total charge of a molecule is included as a global feature
to distinguish molecules with the same connectivity but differ-
ent charge. BonDNet then takes the differences of the atom,
bond, and global features between the products and the reac-
tant to represent a bond dissociation reaction.52–54 We show
that these chemically inspired difference features assist the model
in learning better representations of bond dissociation reactions,
and thus, even when only predicting homolytic BDEs of neutral
molecules, BonDNet surpasses previous models by a considerable
margin. We trained BonDNet on a novel dataset consisting of
both homolytic and heterolytic BDEs for neutral and charged (−1,
and +1) molecules. The model achieves an MAE of 0.022 eV
for unseen BDEs in this complex dataset, approaching the accu-
racy of the DFT method used to generate the data. Finally, we
demonstrate how chemical insight can be extracted from BonD-
Net by analyzing the features representing the molecules and the
reactions. An interface to use the developed model for the pre-
diction of BDEs is provided via binder55 and can be accessed at
https://github.com/mjwen/bondnet.

2 Methods
In molecular GNNs, molecules are represented as graphs, with
atoms represented by nodes and chemical bonds represented by
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edges. Following Refs. 50 and 51, we extend this representa-
tion by adding global features to encode molecule-level infor-
mation and then denote a molecular graph as G = (E,V,u). In
this molecular graph, E = {(ek,rk,sk)}k=1:Ne is the set of bonds
(edges), where Ne is the total number of bonds in the molecule,
and (ek,rk,sk) holds the information of the kth bond: ek is a vec-
tor of bond features (e.g. whether a bond is in a ring), and rk and
sk are the indices of the two atoms forming the bond. Similarly,
V = {vi}i=1:Nv is the set of atoms (nodes), where Nv is the total
number of atoms in the molecule, and vi is a vector of features
for atom i (e.g. atom type). Finally, u is a global feature vector of
molecule-level information such as the total molecular charge.

BonDNet has two major components. The first is a graph-to-
graph (g2g) module that takes a molecular graph as input and
yields the same molecular graph but with updated atom, bond,
and global features. The g2g module is applied multiple times
to learn better molecular representations from the data. The sec-
ond component is a graph-to-property (g2p) module. Taking as
input the molecular representations learned by the g2g module,
the g2p module constructs chemically inspired representations of
reactions and maps them to chemical properties (in this work,
BDEs). In this section, we first provide a thorough discussion of
the two components and then briefly introduce the input features
and how the model is trained.

2.1 Graph-to-graph module

The g2g module takes a molecular graph G(E,V,u) as input, up-
dates the bond, atom, and global features, and outputs the same
molecular graph with updated features G(E ′,V ′,u′). The feature
update scheme is based on the gated graph convolutional network
(GatedGCN),56 which has been shown to consistently perform
well for a number of regression and classification tasks across
various datasets.57 The GatedGCN, however, can only operate on
graphs having node and edge features. To support our molecu-
lar graph, we extend GatedGCN for graphs that also have global
features.

A schematic illustration of the g2g module of BonDNet is shown
in Fig. 1a. First, each bond feature vector ek is updated from the
feature vectors for the two atoms participating in the bond, vrk

and vsk , the global feature vector u, and the current bond feature
vector:

e′k = ek + τ[φ1(vrk +vsk )+φ2(ek)+φ3(u)], (4)

where τ is the rectified linear unit (ReLU) activation function58

that introduces nonlinearity into the model. Each of φ1, φ2, and φ3

is a two-layer fully connected neural network (FCNN) of the form
W2(τ(W1x+b1))+b2, in which W1 and W2 are weight matrices,
b1 and b2 are bias vectors, and x denotes the input vector for the
network (e.g. x = vrk +vsk for φ1). Note that the weights W1 and
W2 and the biases b1 and b2 are different for φ1, φ2, and φ3. The
feature vector vi of each atom i is similarly updated based on the
features of the atom itself, all neighboring atoms Ni that form
bonds with the atom, the formed bonds, and the global state:

v′i = vi + τ

[
φ4(vi)+ ∑

j∈Ni

êi j�φ5(v j)+φ6(u)

]
, (5)

êi j =
σ(e′i j)

∑ j′∈Ni
σ(e′i j′)+ ε

, (6)

where φ4, φ5, and φ6 are two-layer FCNNs as discussed above,
� denotes the elementwise Hadamard product, σ is the sigmoid
function, ε is a small constant for numerical stability, and e′i j is
another way to denote the bond feature e′k such that atoms i and
j form bond k, i.e. i = rk and j = sk. The edge gate êi j can be re-
garded as a soft attention mechanism57 that enables neighboring
atoms to contribute with different magnitude to the atom feature
update. Finally, the global feature vector u is updated based on
all atoms, all bonds, and itself:

u′ = u+ τ

[
φ7

(
1

Nv

Nv

∑
i

v′i

)
+φ8

(
1

Ne

Ne

∑
k

e′k

)
+φ9(u)

]
, (7)

where Nv and Ne are the total number of atoms and bonds in the
molecule, respectively, and once again φ7, φ8, and φ9 are two-layer
FCNNs.

The bond feature update in Eq. (4) and the atom feature update
in Eq. (5) pass messages based on the connectivity of the molec-
ular graph, and the information exchange is thus inherently lo-
calized. To enable long-range interactions, we can compose mul-
tiple g2g modules together, taking the output of one module as
the input for another module. For example, with four stacked
g2g modules, the hydrogens of the H2CO3 molecule shown in
Fig. 1a can interact because each g2g module lets an atom "see"
other atoms one bond away from it. However, this is not real-
istic for large molecules where a large number of g2g modules
would be needed to let all atoms interact as such an approach
would make the model too deep to be effectively trained. This
long-range interaction problem is addressed by the global feature
update in Eq. (7). In addition to encoding molecule-level infor-
mation, the global features also serve as a central memory bank
to facilitate long-range interaction. The bond and atom messages
are aggregated to the memory bank in each g2g module and then
disseminated from the memory bank to all bonds and atoms in
the next g2g module. As a result, starting from the second g2g
module, an atom or a bond can interact with all other atoms and
bonds in the molecule. Our tests show that, with the help of the
global features, three g2g modules are sufficient to learn good
molecular representations.

2.2 Graph-to-property module

As discussed in Section 1, to build a general machine learning
model for the prediction of both homolytic and heterolytic BDEs
for molecules of any charge, one must take into consideration
both the reactant and the products. Using the g2g module, we are
able to describe single molecules of any charge. The key challenge
is then to construct a representation for a reaction using both the
reactant and products, a representation that should emphasize
the breaking bond and its local environment.

Our approach is illustrated in Fig. 1b. First, we stack multiple
g2g modules together (a later module takes as input the output
of a former module) and apply them to the reactant and prod-
ucts to obtain a better molecular representation for each of them.

Journal Name, [year], [vol.],1–11 | 3

Page 3 of 13 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
D

ec
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

2/
8/

20
20

 4
:1

6:
16

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D0SC05251E

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D0SC05251E


a)

b)

Fig. 1 Schematic illustration of the BonDNet model for the prediction
of bond dissociation energies (BDEs). (a) Graph-to-graph module to
learn molecular representations. First, bond features are updated using
messages passed from the two atoms forming the bond, the global state,
and the bond itself. Similarly, atom features and global features are
updated in sequence according to the messages passed among atoms,
bonds, and the global state. This module is typically applied multiple
times to learn better molecular representations. (b) Graph-to-property
module to map molecular representations to a BDE. First, the features
of the reactant are subtracted from the products; then the difference
features are concatenated to form a representation of the reaction; and
finally the representation of the reaction is mapped to the BDE via a
fully connected neural network (FCNN).

The number of g2g modules is determined via a hyperparame-
ter search based on the model performance on the validation set
(see Table S4 in the ESI). We then take the differences of the fea-
tures of each atom, each bond, and the global state between the
products and the reactant:

∆v′i = v′i,p−v′i,r

∆e′k = e′k,p− e′k,r

∆u′ = u′p1
+u′p2

−u′r,

(8)

where the subscript r denotes the reactant, p1 and p2 denote the
first and second products, respectively, and p denotes either the

first or the second product. Therefore, v′i,p is the feature vec-
tor of atom i in the product, and a similar explanation applies
for the other terms appearing on the right-hand side of Eq. (8).
Upon bond dissociation, all atoms in the reactant are present
in either the first product or the second product, and thus we
can compute the difference feature for each atom. However, the
breaking bond only exists in the reactant and not in the prod-
ucts. Thus, the breaking bond’s product feature is set to a zero
vector, i.e. its difference feature is equal to its negative reactant
feature. Calculating the difference features requires atom map-
ping between the products and the reactant, which can be readily
obtained via graph isomorphism. Next, we apply the set-to-set
(set2set) model59 to aggregate the set of atom difference fea-
ture vectors {∆v′i} into a single vector, ∆v′ = set2set({∆v′i}). Sim-
ilarly, set2set is applied to the bond difference feature vectors:
∆e′ = set2set({∆e′k}). Note that set2set is not applied to the global
difference features since there is only one global difference fea-
ture vector for the reaction. The set2set model is invariant to
permutation of atom/bond indices, and it is chosen over simply
summing/averaging the difference features because it has more
expressive power.39 After the set2set model, the atom, bond, and
global difference feature vectors are concatenated to form a rep-
resentation of the reaction,

r = ∆v′‖∆e′‖∆u′, (9)

where ‖ denotes vector concatenation. Finally, we input the reac-
tion vector r into an FCNN to obtain the BDE.

The key aspect of our approach is to represent a bond dissoci-
ation reaction with difference features. Operating on the differ-
ence features has several advantages. First, they are obtained by
subtracting the features of the reactant from the products, equiv-
alent to how a BDE is computed from the energies of the products
and the reactant. Second, since atoms and bonds far away from
the breaking bond in the reactant and the products tend to have
similar feature values,53,54 the difference features deviate signif-
icantly from zero only for atoms and bonds near the breaking
bond. This enables the model to focus on the breaking bond and
its surrounding environment, consistent with the chemical intu-
ition that a BDE depends on the relatively local environment of
the bond.

2.3 Input features

There are a number of atom, bond, and global raw features suit-
able as input for BonDNet, such as atom type, ring status of a
bond, and molecular charge. A major consideration in choos-
ing the features is that they should require little effort to obtain
and do not require a quantum chemical calculation. Thus, we ig-
nore geometric information such as bond length and bond angle
which would not be available for new molecules for which the
BDEs are to be predicted. For the same reason, we include the
total charge of a molecule as a global feature instead of atomic
partial charges (e.g. the restrained electrostatic potential (RESP)
partial charge60) as atom features. A summary of the chosen in-
put features is given in Tables S2 and S3 in the ESI, and they are
all generated with RDKit.61 The atom, bond, and global feature
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vectors typically do not have the same length, and thus linear
transformations are applied to unify their length before passing
them to BonDNet.

2.4 Dataset and model training

There are two publicly available BDE datasets constructed
from quantum chemical calculations: (1) the ZINC BDE
dataset2 for the subset of “fragment-like” molecules in the ZINC
database,62,63 and (2) the PubChem BDE dataset3 for CxHyOzNm

molecules in the PubChem compound database.64 Both datasets
only contain homolytic BDEs for neutral molecules. Using a novel
framework for high-throughput simulation of charged and radi-
cal molecules,65 we constructed a new dataset consisting of over
60000 unique homolytic and heterolytic bond dissociations of
neutral and charged molecules and their unique fragments, mo-
tivated by the need to understand reactivity in energy storage
devices with organic electrolytes. (See the Datasets section in
the ESI for details on how the dataset is constructed.) This bond
dissociation of neutral and charged molecules (BDNCM) dataset
contains organic and inorganic species, closed-shell and radical
molecules, molecules coordinated with metal ions, and molecules
of charge −1, 0, and +1, all in the presence of an implicit solvent
environment. (We note that BonDNet is a general model that can
be applied to molecules of any charge, although we demonstrate
its capabilities here with molecules of charge −1, 0, and +1.) See
Table S1 in the ESI for a summary of the three datasets.

Each dataset is split into three subsets for training, validation,
and testing with a split ratio of 8:1:1. We optimize all model
parameters in an end-to-end fashion using the training set, select
hyperparameters based on the performance on the validation set,
and report results on the test set unless otherwise stated. The
model is implemented in Python using DGL66 with the PyTorch67

backend. To facilitate the training, we add a batch normalization
(BN) layer68 and a dropout layer69 before the ReLU activation
functions in Eqs. 4, 5, and 7. We train the model with the Adam
optimizer to minimize a mean-squared-error loss function with a
mini-batch size of 100. The learning rate is set to 0.001 at the
start and is reduced if the validation error does not decrease for
50 epochs with a reducing rate of 0.5. The training stops when
the validation error does not decrease for 150 epochs, and the
optimization is allowed to run for a maximum of 1000 epochs.
The optimal hyperparameters are obtained using a grid search
and are given in Table S4 in the ESI.

3 Results and discussion

3.1 Model performance

BonDNet outperforms previous models on homolytic BDEs for
neutral molecules by a substantial margin. It also achieves a
mean absolute error (MAE) significantly below the chemical ac-
curacy on our BDNCM dataset of homolytic and heterolytic BDEs
for both neutral and charged molecules.

The mean absolute errors (MAEs) of BDEs predicted by BonD-
Net are presented in Table 1. The standard deviations are ob-
tained by running the model five times with different data splits.
Also included are MAEs by two other machine learning models:

Table 1 Comparison of MAEs by BonDNet, ALFABET, and ANN for
three different datasets

BDNCM PubChem ZINC
BonDNet 0.0221±0.0026 0.0204±0.0002 0.1013±0.0076
ALFABET 0.0252
ANN 0.1453
MAEs are reported in eV.

(1) ALFABET3 for the PubChem BDE dataset and (2) ANN2 for
the ZINC BDE dataset. The ALFABET model is a GNN and the
ANN model is an associate neural network trained on manually
crafted features. MAEs by BonDNet are far below the chemical
accuracy of 0.043 eV (i.e. 1 kcal/mol)49 for both the BDNCM and
PubChem BDE datasets. Although both BonDNet and ALFABET
are GNN models, BonDNet outperforms ALFABET by 20% for the
PubChem BDE dataset. BonDNet does not perform as well for the
ZINC BDE dataset, with an MAE of about twice the chemical ac-
curacy. One plausible explanation is that the ZINC BDE dataset
is much smaller than the other two datasets (it consists of 16626
BDEs, only 5.7% the size of the PubChem BDE dataset); another
could be that the reference BDE values in this dataset are less re-
liable and consistent, perhaps because the molecular geometries
are optimized using a semiempirical tight-binding method as op-
posed to the DFT methods employed in the other two datasets.
Nevertheless, BonDNet still achieves a 30% performance boost
compared with the ANN model.

To briefly test the transferability of BonDNet, we applied it pre-
dict the BDEs of a set of 82 drug-like molecules that are much
larger than the molecules in the PubChem training set. The MAE
for the drug-like molecules is 0.0460 eV (about twice the value of
the MAE for the PubChem test set 0.0204 eV), which is acceptable
considering that the drug-like molecules are much larger than the
molecules in the PubChem dataset, and considering that this er-
ror is still roughly equal to chemical accuracy. See Figure S2 in
the ESI for individual predictions.

As discussed in Section 1, it is possible to construct a machine
learning model for the prediction of homolytic BDEs for neutral
molecules based only on the reactants. For example, given the
molecular graph G = (E,V ) of a reactant (with no global fea-
tures), we can update the atom and bond features with a proce-
dure similar to the g2g module and then map the updated bond
features to BDEs. In fact, ALFABET3 is such a model. In contrast,
BonDNet (1) introduces global features to encode molecule-level
information and (2) takes advantage of the chemically inspired
difference features between the products and the reactant to rep-
resent a bond dissociation reaction.

To determine whether it is the inclusion of global features or
the use of difference features that allows BonDNet to peform bet-
ter than ALFABET, we conducted an ablation analysis by training a
reactant-only model and testing its performance on the PubChem
BDE dataset. The reactant-only model sits between ALFABET and
BonDNet. It is effectively the same as ALFABET except that it
includes global features which are not present in ALFABET. Com-
pared with BonDNet, the reactant-only model uses reactant fea-
tures instead of the difference features between the products and
the reactant. (See Table S5 in the ESI for architectural details of
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Fig. 2 Mean absolute error (MAE) of model prediction versus the size
of the dataset used for training the model. BonDNet makes predictions
based on the difference of the features between the products and the
reactant of a bond dissociation reaction, while the reactant-only model
only uses the reactant features.

the reactant-only model.) The reactant-only model achieves an
MAE of 0.0251 eV for the PubChem BDE dataset, virtually the
same as ALFABET (see Table 1), suggesting that the difference
features are responsible for the superior performance of BonD-
Net. In addition to the whole PubChem BDE dataset, we also
trained on randomly selected 1/2,1/4, . . . ,1/128 subsets. Fig. 2
shows the MAE versus dataset size relation. We see that BonDNet
performs better than the reactant-only model across a range of
dataset sizes, small or large. The trend suggests that the accuracy
of both models can be further improved when more data becomes
available.

BonDNet is a general model capable of learning any type of
BDEs. To obtain a deeper understanding of its behavior on com-
plex datasets, we provide a more fine-grained performance analy-
sis on the newly generated BDNCM dataset consisting of both ho-
molytic and heterolytic BDEs for neutral and charged molecules.

Fig. 3a shows the BDEs predicted by BonDNet versus the ref-
erence values from quantum chemical computations. The predic-
tion closely follows the reference along the diagonal line, yield-
ing good results in a range of BDEs from −5 eV to 20 eV. Fig. 3b
shows a distribution of the prediction error defined as the dif-
ference between the predicted BDE and the reference BDE. The
prediction errors are tightly localized around 0, although there
are a few larger ones which can be seen more clearly in the inset
of Fig. 3b where the vertical axis is plotted on a log scale. We
analyzed the reactions for which the magnitude of the prediction
error is larger than 0.43 eV (10 times the chemical accuracy) and
found that these reactions can be broadly categorized into two
groups. First, some types of reactions are underrepresented in
the dataset. It is expected that a machine learning model such as
BonDNet cannot provide good predictions for such underrepre-
sented data. Second, most reactions with large prediction errors
are more complex than one-bond dissociation. For example, when
breaking a bond leads to the spontaneous change of a neighboring
single bond to a double bond. Such a change would substantially
alter the reference BDE, adding complexity that BonDNet is not

Table 2 MAEs and bond counts by the type of the breaking bond

Bond type MAE (train) Counts (train) MAE (test) Counts (test)
C−O 0.0050 17037 0.0185 2152
C−H 0.0045 12920 0.0189 1545
C−C 0.0047 11774 0.0177 1557
O→Li+ 0.0046 3868 0.0272 474
H−O 0.0046 2313 0.0197 270
C−F 0.0049 1890 0.0269 228
C→Li+ 0.0051 1070 0.0496 138
F→Li+ 0.0055 437 0.0539 54
O−F 0.0131 75 0.0409 8
O−O 0.0137 51 0.4886 5
H−F 0.0181 7 - 0
F−F 0.0031 4 - 0
H−H 0.0088 4 - 0
MAEs are reported in eV; the arrow “→” denotes a coordinate bond.

Table 3 MAEs and counts for C−O bonds by reactant charge and bond
dissociation type

MAE (eV) Counts
−1 0.0146 787

Charge 0 0.0178 890
1 0.0265 475

Dissociation type homolysis 0.0189 1373
heterolysis 0.0178 779

yet designed to deal with. The reactions with the 10 largest pre-
diction errors are given in Fig. S1 in the ESI, together with an
explanation for each of them.

Table 2 presents the MAEs and bond counts by the type of the
breaking bond for both the training set and test set. BonDNet
makes predictions almost equally well for all types of bonds in
the training set irrespective of their counts. However, this does
not mean the model would generalize equally well for unseen
data (e.g. the test set) of different bond types. In fact, if a bond
type has more instances in the training set, the model can more
easily learn the corresponding underlying chemistry; thus, the
model would generalize better for unseen data of this bond type.
This can be seen from the test set MAEs in Table 2: the MAE
decreases in general as the bond counts increase. As a specific
example, although the training MAE for C−O and F→Li+ bonds
are almost the same, the test MAE for C−O bonds is about only
one third of that for F→Li+ bonds because the dataset has many
more BDEs for C−O bonds. This data imbalance problem can be
solved by collecting more BDEs for the underrepresented bonds
in the future.

Next, we assess how BonDNet performs with respect to the re-
actant charge using C−O bonds as an example. (Results for other
bond types are given in Figs. S3 and S4 in the ESI.) We divide the
C−O bonds into three groups according to the charge of the re-
actants and plot the distribution of the prediction error in Fig. 3c.
For all three groups, the prediction error is centered around 0.
The prediction error for −1 charged molecules is somewhat more
localized than for neutral molecules. As a result, the MAE for −1
charged molecules is smaller than for neutral molecules, as can
be seen in Table 3. For the same reason, the MAEs for both −1
charged and neutral molecules are smaller than the MAE for +1
charged molecules. Nevertheless, these differences are not large,
and BonDNet is able to accurately predict the BDEs for molecules
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a) b)

c) d)

Fig. 3 Performance of BonDNet on the BDNCM dataset. (a) BDEs predicted by BonDNet versus reference values computed from quantum chemistry;
(b) Histogram of the prediction error (difference between the prediction and the reference); (c) Distribution of the prediction error in C−O bonds by
reactant charge; and (d) Distribution of the prediction error in C−O bonds by bond dissociation type.

of different charges. In a similar manner, we assess the perfor-
mance of BonDNet with respect to the bond dissociation type:
homolysis or heterolysis. The difference in the distributions of
the prediction error (Fig. 3d) is negligible; the same can be said
for the MAEs (Table 3), demonstrating that BonDNet is able to
accurately predict both homolytic and heterolytic BDEs.

3.2 Analysis of the learning process

Deep learning models can typically achieve good performance
when trained on reasonably large datasets, but they are often-
times regarded as “black boxes” because it is not easy to interpret
what a model learns by mapping it to scientific domain knowl-
edge and how a model learns by adjusting its parameters.42 By
design, we tried to incorporate chemical insights into the archi-
tecture of BonDNet. For example, the difference of the features
between the products and the reactant is taken to construct the
feature vector representing a bond dissociation reaction, which is
similar to how a BDE is computed from the energies of the prod-
ucts and the reactant. In this section, we further explore how
BonDNet learns by adjusting its parameters to capture the under-
lying nature of chemical bonding in the data via the analysis of
the patterns in the learned features.

First, we look at the learned representations of the bond disso-

ciation reactions. This provides us with an idea of how the model
learns to map the inputs to the BDE predictions. For easier visual
discovery of patterns, we embed the high-dimensional difference
feature vector in Eq. (9) for each reaction into a two-dimensional
(2D) space by the uniform manifold approximation and projec-
tion (UMAP) method.70 Fig. 4 shows the embedding for the BD-
NCM test set. In general, points that are close together in the 2D
embedded space are similar in the original vector space. There-
fore, since reactions with similar BDEs are close to each other in
the embedded 2D space (Fig. 4a), their feature vectors are similar
to each other. Note that all model parameters are optimized in an
end-to-end fashion, where the g2g module and the g2p module
work together to achieve the goal of reproducing the reference
BDEs in the training set. Consequently, the feature vectors rep-
resenting the reactions are adapted in accordance with the BDEs
during the training process. Fig. 4b shows that reactions with the
same type of breaking bond tend to “cluster” together, but there
can be multiple faraway clusters for each bond type. The former
is simply because reactions with the same type of breaking bond
are similar to each other as we would expect. The latter, however,
is because the surrounding environment of the bonds and/or the
global state (e.g. total charge) of the molecules are different such
that the model assigns distinctive feature vectors to them, in spite
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Fig. 4 Embedding of the high-dimensional feature vectors representing the bond dissociation reactions into a two-dimensional space. The embedding
is obtained using the uniform manifold approximation and projection (UMAP) technique. Each data point in the plot represents one bond dissociation
reaction and the points are colored according to their (a) BDE value and (b) bond type. The arrow “→” denotes a coordinate bond.

of being the same bond type. These observations suggest that the
model “listens” to both the input (e.g. bond type) and the tar-
get (BDE) and learns by transforming the feature vectors to be
aligned with them.

Furthermore, the patterns in the data yield chemical insights
that may align with common chemical knowledge or, in some
cases, challenge chemical intuition.42,71,72 Such insight would
provide new perspectives on the data and thus help us to better
understand the system under study. For example, in Fig. 4b we
see that O−H bonds (pink) are always associated with C−H bonds
(dark blue). This means that, despite the unique nature of O−H
bonds, the model finds them to be fairly similar to C−H bonds.
However, from the perspective of the learning model this is unsur-
prising because both O−H and C−H are covalent bonds formed
with hydrogen atoms, and more importantly, unlike other atoms,
hydrogen can only form one bond. The behavior of bonds formed
with lithium is more interesting. We might expect F→Li+, C→Li+,
and O→Li+ bonds to be similar because they are all coordinate
bonds involving a lithium ion Li+. This is indeed the case for some
F→Li+ bonds, as can be seen from the upper part of Fig. 4b where
the F→Li+ (orange), C→Li+ (red), and O→Li+ (gray) bonds are
close to each other. Surprisingly, there are a fair number of F→Li+

bonds (orange) deemed more similar to C−F bonds (dark green)
than to the other coordinate bonds. There are two major reasons
for this counterintuitive behavior. First, both F→Li+ and C−F are
bonds formed with F. Second, the F→Li+ bonds have a wide spec-
trum of BDEs (−0.2 to 21.1 eV in the dataset), and some of them
have BDEs more close to the C−F bonds. Such close BDEs re-
sult in the adaption of the feature vectors corresponding to these
F→Li+ bonds towards the feature vectors of the C−F bonds dur-
ing the training. For example, the F→Li+ and C−F bonds in the
circle have very similar energies and, obviously, they are close to

each other in the embedded 2D space.
In addition to the reaction-level difference features in the g2p

module, each bond has its own features in each g2g module. To
investigate how the bond features evolve in the learning process,
we calculate the similarity between bond pairs by measuring the
Pearson correlation coefficient between their feature vectors and
observe how the similarity changes in different layers of BonDNet
(a layer means a g2g module). Taking the fluorine-substituted
lithium butylene dicarbonate molecule (F-LBDC) in the BDNCM
dataset as an example (Fig. 5b), Fig. 5a shows the heatmap of
the bond similarity matrix for various layers of BonDNet. The
input bond features only include “whether a bond is in a ring”,
“ring size”, and “whether a bond is a coordinate bond” (see Ta-
ble S2 in the ESI for more information on input features). As
a result, the bond similarity for input features (layer 0) aggre-
gates into two groups mainly based on the “whether a bond is
in a ring” information. Moreover, the bonds in rings (bonds 1,
2, 3, and 4 in Fig. 5b) further aggregate into two subgroups ac-
cording to “whether a bond is a coordinate bond.” As the learn-
ing proceeds, the bond similarity heatmap presents a distinctive
pattern in later layers. For example, were it not for the fluorine
substitution, bonds 9 and 11 would exhibit a similarity score of
1 in all layers due to the symmetry in the LBDC molecule. How-
ever, bond 11 in layer 3 is more similar to bond 10 (correlation
score 0.92) than to bond 9 (correlation score 0.81), in agreement
with our chemical intuition that the fluorine atom substantially
impacts the properties of its neighboring bonds.

As a comparison, Fig. 5c displays the heatmap of the bond
similarity matrix for layer 3 before training the BonDNet model.
There is hardly any visual pattern in the heatmap that is in strong
agreement with the chemical structure of the F-LBDC molecule.
This demonstrates that BonDNet has learned to transform the
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Fig. 5 Bond similarity for the fluorine-substituted lithium butylene dicarbonate molecule (F-LBDC) measured as the Pearson correlation coefficient
between the bond feature vectors. (a) Heatmap of the bond similarity matrix for the input features (layer 0), first g2g module (layer 1), and last
g2g module (layer 3); (b) the F-LBDC molecule, where identical bonds are labelled only once (the arrow “−→” denotes a coordinate bond); and (c)
heatmap of the bond similarity matrix for the last g2g module (layer 3) before training the model.

raw input features into more refined features via the exchange
of information among atoms, bonds, and the global state in the
g2g module. More importantly, the refined features are in agree-
ment with our understanding of the molecules, suggesting that
BonDNet learns to predict the BDE by trying to understand the
underlying chemical rules.

4 Conclusions

By incorporating chemical insights into the model architecture
via global features and difference features, we have designed
a GNN model for accurate prediction of BDEs. Our BonDNet
model learns by adjusting its parameters to capture the under-
lying nature of chemical bonding in the data, and it outperforms
previous state-of-the-art models in prediction accuracy. BonD-
Net is the very first machine learning model capable of predict-
ing both homolytic and heterolytic BDEs for molecules of any
charge. An interface to use the developed model to make pre-
dictions is provided via binder55 and can be accessed at https:
//github.com/mjwen/bondnet. A user can simply provide a
molecule of interest (e.g. as a SMILES string or connectivity ma-
trix along with the total molecular charge), and the tool will re-
turn the BDEs of all the bonds in the molecule. As an intrinsic
property of bond dissociation reactions, BDEs and their relative
strengths are crucial in understanding many chemical processes,
such as drug metabolism, biofuel combustion, photochemical de-
contamination of water pollutants, formation of side products in
batteries and solar cells, and so forth. We expect applications in-
volving such processes will benefit from our model to conduct fast

and accurate high-throughput screening for critical reactions and
molecules based on BDEs.

BonDNet does not take as input any geometric information of
molecules, and thus stereoisomers (e.g. cis/trans isomers) can-
not be distinguished. This, however, could be addressed by di-
rectly encoding the isomerism information into the atom, bond,
and global features without explicitly using the geometric infor-
mation, which we leave for future investigation.

In essence, BonDNet is a model that represents chemical re-
actions using molecular features of both the reactants and the
products. Therefore, our approach is not limited to just predict-
ing BDEs but could be applied to learn other reaction proper-
ties such as activation energy, retrosynthesis chemical reactivity,
and reaction conditions (e.g. temperature and solvents). Such
capabilities would require little to no modification of the current
model besides modifying the training target to be another prop-
erty of interest. Future generation of large quantitative datasets
through high-throughput experimentation and/or quantum com-
putational chemistry methods will thus enable the adoption of
BonDNet and similar methods for rapid and accurate prediction
of such properties.

Code availability
The BonDNet graph neural network model is released as an open-
source repository at https://github.com/mjwen/bondnet.
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Prediction of bond dissociation energies for charged molecules with a graph
neural network enabled by global molecular features and reaction difference
features between products and reactants.
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