
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Matminer: An open source toolkit for materials data mining

Logan Warda,b, Alexander Dunnc,d, Alireza Faghaniniac, Nils E.R. Zimmermannc, Saurabh Bajajc,e,
Qi Wangc, Joseph Montoyac, Jiming Chenf, Kyle Bystromd, Maxwell Dyllag, Kyle Charda,b,
Mark Astad, Kristin A. Perssonc, G. Jeffrey Snyderg, Ian Fostera,b, Anubhav Jainc,⁎

a Computation Institute, University of Chicago, Chicago, IL 60637, United States
bData Science and Learning Division, Argonne National Laboratory, Argonne, IL 60439, United States
c Lawrence Berkeley National Laboratory, Energy Technologies Area, 1 Cyclotron Road, Berkeley, CA 94720, United States
d Department of Materials Science and Engineering, University of California, Berkeley CA 94720, University of California, Berkeley, CA 94720, United States
e Citrine Informatics, Redwood City, CA 94063, United States
fDepartment of Chemical Engineering, University of Illinois, Urbana, IL 61801, United States
g Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States

A R T I C L E I N F O

Keywords:
Data mining
Open source software
Machine learning
Materials informatics

A B S T R A C T

As materials data sets grow in size and scope, the role of data mining and statistical learning methods to analyze
these materials data sets and build predictive models is becoming more important. This manuscript introduces
matminer, an open-source, Python-based software platform to facilitate data-driven methods of analyzing and
predicting materials properties. Matminer provides modules for retrieving large data sets from external data-
bases such as the Materials Project, Citrination, Materials Data Facility, and Materials Platform for Data Science.
It also provides implementations for an extensive library of feature extraction routines developed by the ma-
terials community, with 47 featurization classes that can generate thousands of individual descriptors and
combine them into mathematical functions. Finally, matminer provides a visualization module for producing
interactive, shareable plots. These functions are designed in a way that integrates closely with machine learning
and data analysis packages already developed and in use by the Python data science community. We explain the
structure and logic of matminer, provide a description of its various modules, and showcase several examples of
how matminer can be used to collect data, reproduce data mining studies reported in the literature, and test new
methodologies.

1. Introduction

Recently, the materials community has placed a renewed emphasis
in collecting and organizing large data sets for research, materials de-
sign, and the eventual application of statistical or “machine learning”
techniques. For example, the mining of databases comprised of density
functional theory (DFT) calculations has been used to identify materials
for batteries [1,2], to aid the design of metal alloys [3,4], and for many
other applications [5]. Importantly, such data sets present new oppor-
tunities to develop predictive models through machine learning tech-
niques: rather than designing and programming such models manually,
such techniques produce predictive models by learning from a body of
examples. Machine learning models have been demonstrated to predict
properties of crystalline materials much faster than DFT [6–9], estimate
properties that are difficult to access via other computational tools
[10,11], and guide the search for new materials [12–16]. With the

continued development of general-purpose data mining methods for
many types of materials data [17–19] and the proliferation of material
property databases [20], this emerging field of “materials informatics”
is positioned to have a continued impact on materials design.

In this paper, we describe a new software library, “matminer”, for
applying data-driven techniques to the materials domain. The main
roles of matminer are depicted in Fig. 1: matminer assists the user in
retrieving large data sets from common databases, extracts features to
transform the raw data into representations suitable for machine
learning, and produces interactive visualizations of the data for ex-
ploratory analysis. We note that matminer does not itself implement
common machine learning algorithms; industry-standard tools (e.g.,
scikit-learn or Keras) are already developed and maintained by the
larger data science community for this purpose. Instead, matminer's
role is to connect these advanced machine learning tools to the materials
domain.

https://doi.org/10.1016/j.commatsci.2018.05.018
Received 16 April 2018; Accepted 7 May 2018

⁎ Corresponding author at: Lawrence Berkeley National Laboratory, Energy Technologies Area, 1 Cyclotron Road, Berkeley, CA 94720, United States.
E-mail addresses: loganw@uchicago.edu (L. Ward), AJain@lbl.gov (A. Jain).

Computational Materials Science 152 (2018) 60–69

0927-0256/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2018.05.018
https://doi.org/10.1016/j.commatsci.2018.05.018
mailto:loganw@uchicago.edu
mailto:AJain@lbl.gov
https://doi.org/10.1016/j.commatsci.2018.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2018.05.018&domain=pdf

Matminer solves many problems encountered when conducting
data-driven research. For example, learning the Application
Programming Interface (API) for each data source and preprocessing
retrieved data adds significant complexity to the task of building new
machine learning models. Matminer provides a simplified interface that
abstracts the details of these API interactions, making it easy for the
user to query and organize large data sets into the standard pandas [21]
data format used by the Python data science community. Furthermore,
as we will further discuss later in the text, matminer implements a suite
of 47 distinct feature extraction modules capable of producing thou-
sands of physically relevant descriptors that can be leveraged by ma-
chine learning algorithms to more efficiently determine input-output
relationships. Although many such feature extraction methods are re-
ported in the literature, many lack an open source implementation.
Matminer not only implements these domain-specific feature extraction
methods but provides a unified interface for their use, making it trivial
to reproduce or compare (and, eventually, extend) these methods. Fi-
nally, matminer contains many pre-defined recipes of visualizations for
exploring and discovering different data relationships. In aggregate,
these features allow for cutting edge materials informatics research to
be conducted with a high-level, easy-to-use interface.

We note that prior efforts have produced software for computing
features for materials (e.g., Magpie[22,23], pyMKS [24]), building deep
learning models of molecular materials (e.g., deepchem [25,26]), pro-
viding turnkey machine learning estimates of various properties, or
integrating machine learning with other software [27–29]. In contrast
to these prior efforts (which have their own intended applications and
scope), matminer is designed to interact and integrate with standard
Python data mining tools such as pandas and scikit-learn [30], imple-
ments a library of feature generation methods (“featurizers”) for a wide
variety of materials science entities (e.g., compositions, crystal struc-
tures, and electronic structures), and includes tools to assist with data
retrieval and visualization.

The source code for the version of matminer described in this
manuscript (version 0.3.2) and examples of its use are available as
supplementary information. Updated versions are regularly published
to the Python Package Index (https://pypi.python.org/pypi/matminer).
The actively developed version of matminer is available on GitHub at
https://github.com/hackingmaterials/matminer. Matminer also in-
cludes a dedicated repository of examples and tutorials (many in an

interactive, runnable Jupyter notebook format [31]) for using the data
retrieval, featurization, and visualization tools, located at https://
github.com/hackingmaterials/matminer_examples. Full documenta-
tion for matminer is also available from https://hackingmaterials.
github.io/matminer/. The matminer code currently contains 109 unit
tests to ensure the integrity of the code, which are run automatically
with each code commit through a continuous integration process. A
help forum for matminer is available at: https://groups.google.com/
forum/#!forum/matminer.

2. Software architecture and design principles

A guiding principle of matminer is to integrate domain-specific
knowledge and data about materials into larger ecosystem of Python
data analysis software. The Python community has developed a rich
suite of interoperable tools for data science, which are broadly used
across the data science community and occasionally known as the
“PyData” or “SciPy” stacks [32]. These libraries include NumPy and
Scipy [33], which provide a suite of high-performance numerical
methods, and Jupyter [31], which facilitates interactive data analysis.
Matminer is designed to allow users to leverage these professional-level
data science libraries for materials science studies.

A central tool in the PyData stack is the pandas DataFrame, which is
a tabular representation of data similar to (but more powerful than) a
virtual spreadsheet [21]. Pandas makes it possible, for example, to load
a data set and perform many common data post-processing procedures,
such as filtering, grouping, joining, computing rolling averages, and
producing descriptive statistics. Additionally, data formatted into a
pandas DataFrame can be easily used with other Python data analysis
libraries, such as scikit-learn, numpy, and matplotlib. DataFrames can
also be visualized as interactive tables within Jupyter notebooks. They
can also be serialized into multiple formats to allow them to be archived
and shared. Because of all the benefits and features that are achieved by
transforming data into the DataFrame format, matminer's data retrieval
API automatically formats data that it retrieves from external sources
into this format. Data retrieved through matminer is thus immediately
ready for a wide variety of tasks, including data cleaning, data ex-
ploration, data transformations, data visualization, and machine
learning. As described in later sections, all data extraction, featuriza-
tion, and visualization tools in matminer can generate or operate on

Fig. 1. Overview of the capabilities of matminer. Matminer aids the user in constructing a data pipeline for materials informatics and is composed of three main
components: (1) tools for retrieving data from a variety of materials databases, (2) tools for extracting features (or descriptors) from materials data, and (3) re-useable
and customizable recipes for visualizing materials data. Data is retrieved and processed in a way that makes it simple to integrate matminer with external machine
learning libraries such as scikit-learn and Keras.

L. Ward et al. Computational Materials Science 152 (2018) 60–69

61

https://pypi.python.org/pypi/matminer
https://github.com/hackingmaterials/matminer
https://github.com/hackingmaterials/matminer_examples
https://github.com/hackingmaterials/matminer_examples
https://hackingmaterials.github.io/matminer/
https://hackingmaterials.github.io/matminer/
https://groups.google.com/forum/#!forum/matminer
https://groups.google.com/forum/#!forum/matminer

pandas DataFrame objects.
Matminer is also designed to integrate closely with the scikit-learn

machine learning library [30]. Scikit-learn is the de facto standard
machine learning library for Python. In addition to its rich suite of
machine learning algorithms, scikit-learn contains utilities useful for all
aspects of the machine learning process (e.g., data preprocessing, model
selection, hyperparameter tuning). Other machine learning libraries,
such as Keras [34] and TensorFlow [35], also provide scikit-learn-
compatible wrappers for their models, which further motivates the
importance of making matminer easily compatible with scikit-learn.
Matminer achieves integration with scikit-learn in two ways. First, the
pandas DataFrame objects produced by matminer are tightly integrated
with scikit-learn through the interoperability built in to the PyData
stack. Second, the feature extraction methods implemented by mat-
miner follow the same model (and, more formally, subclass) scikit-
learn’s preprocessing methods. This allows matminer feature extraction
methods to be used with scikit-learn's Pipeline functionality and makes
it easy to combine data processing methods present in the two libraries.

Matminer also heavily leverages the pymatgen [36] materials sci-
ence library. Matminer's use of the pymatgen library makes it un-
necessary to recreate complex or materials-science-specific algorithms
(e.g., space group determination) when implementing new feature ex-
traction methods. Overall, the software architecture of matminer is
designed to bridge the gap between the professional-level data science
tools developed by the Python community and the tools, techniques,
and data specific to the materials domain.

3. Components of matminer

We now describe the main functions of matminer. We describe each
of the three major components. data retrieval, featurization, and vi-
sualization, separately.

3.1. Data retrieval

The first step in data mining is to obtain a data set that is ideally
large and diverse. There are several efforts underway in the materials
community to build such databases of materials properties [37–44].
However, while the proliferation of databases is a great benefit to
materials informatics, the use of these data sources is complicated by
the fact that each database implements a different API, authentication
method, and schema. One core function of matminer is to provide a
consistent API around different databases and return the data in a form
that is suitable for use in data mining tools.

At the time of writing, matminer supports data retrieval from four
commonly used materials databases: Citrination [40,43], Materials
Project (MP) [39], Materials Data Facility (MDF) [44], and Materials
Platform for Data Science (MPDS) [45]. In addition, a generic MongoDB
interface supports data retrieval from any MongoDB resource [46].
Below, we describe these data retrieval tools in detail:

(i) Citrination, developed by Citrine Informatics [40], is a centralized
database that contains a variety of materials data, including ex-
perimental measurements and computational results, all in a
common data schema – the “pif” [47]. The matminer data retrieval
tool uses Citrine’s citrination-client library to retrieve data from
Citrination, and then converts the data from the hierarchical pif
format to a tabular DataFrame format. In the process of converting
the pif records, matminer retrieves all details describing a material
(e.g., composition), its known properties, and how these properties
were determined.

(ii) The Materials Project (MP) [39] primarily contains DFT [48,49]
computed properties for over 60,000 compounds. In a similar
fashion to the Citrination data extractor, matminer uses the ex-
isting MP API [50] (as implemented in the “MPRester” class of the
Python Materials Genomics (pymatgen) library [36]) to query the

database. MPDataRetrieval allows users to access a wide variety of
properties of crystalline materials, including their crystal struc-
tures, electronic band structure, phonon dispersion, piezoelectric,
dielectric and elastic constants.

(iii) The Materials Data Facility (MDF) is geared towards enabling re-
searchers to publish their own data sets across a wide array of data
types and materials subdisciplines. Matminer contains an
MDFDataRetrieval class that uses the MDF's own Forge library [51]
to perform the bulk of the search function but assists the user in
formatting the final data to a standardized pandas DataFrame
object.

(iv) The Materials Platform for Data Science (MPDS) [45] is a com-
mercial database that includes phase diagram data (∼60,000 en-
tries), crystal structure data (∼400,000 entries), and materials
property values (∼800,000 entries). The MPDSDataRetrieval class
in matminer can retrieve and format information from this data-
base.

(v) MongoDB is a popular tool in the data mining community due to its
efficient and flexible data model [46]. For example, data generated
through the atomate [52] computational suite is stored in such
databases. The “MongoDataRetrieval” class of matminer converts
MongoDB documents to rows of a pandas DataFrame.

All database tools are consistent in that they (i) contain a “get_da-
taframe” method that makes a query to the database and (ii) returns the
data in a Pandas DataFrame object. The “get_dataframe” method for
each source takes query instructions in a simple, standard format. We
also provide the ability to run queries in the language specific to each
source. In so, we provide both a novice-friendly route for using new
data sources and maintain the ability for experts to access all features of
a familiar data source. However, matminer does standardize the output
such that data mining tools written for one database can be easily ap-
plied to another. One benefit of the uniformity of the APIs and output
formats provided by matminer is that these features make it easy to
combine data from multiple sources. The data merging tools built into
the pandas DataFrame object facilitate this procedure. For example, it is
straightforward to retrieve experimental band gap energies from
Citrination and then easily compare those values with computed band
gap energies from Materials Project or the OQMD (this specific example
is described in detail in Section 4.2).

Matminer also contains several built-in datasets that can be loaded
directly with a single line of Python and do not require external data-
base calls or setting any options. These built-in datasets include: 1181
DFT-based elastic tensors [53], 941 DFT-based piezoelectric tensors
[54], 1056 DFT-based dielectric constants [55], and 3938 DFT-based
formation energies [39,56]. The built-in data sets make it simple to
begin testing and developing data mining methods.

Finally, a user can load their own data set using the built-in tools of
the pandas library, which can load data from CSV, Excel, or various
other formats. This process can be conducted independently of mat-
miner but the final data format will be compatible with the subsequent
data featurization tools of matminer.

3.2. Data featurization: Transforming materials-related quantities into
physically relevant descriptors

Typically, machine learning employs an intermediate step between
compiling raw data and applying a machine learning algorithm. This
step converts data from a raw format (often specialized for parsing by a
particular software package or formatted for human readability) into a
numerical representation that is useful for visualization or machine
learning software. This process is called “feature extraction”, “featur-
ization”, or generating “descriptors”. Featurization transforms or aug-
ments the raw data (which might have a very complicated and difficult
to learn relationship between inputs and outputs) into a set of physi-
cally relevant quantities that reflect the relationships between the input

L. Ward et al. Computational Materials Science 152 (2018) 60–69

62

and output variables. The feature extraction step is one of the main
ways in which one can exploit domain knowledge to vastly improve the
performance of a machine learning algorithm. For example, common
features that are extracted from a chemical composition include the
differences in electronegativities of the component elements or the sum
of atomic radii of the various elements.

Many generalizable featurization approaches have been proposed in
the literature for different types of materials data [18,22,25,56–61].
However, the software required to use them are often unavailable, not
open-source, or are distributed across many repositories. The lack of
published software means that employing these methods in practice
requires a significant time investment. Through matminer, we make
these community developments in machine learning available to the
community by providing open-source implementations of various fea-
turization methods. Furthermore, despite the diversity of methodolo-
gies, matminer provides a uniform interface to all featurizers, freeing
researchers to rapidly iterate through different approaches and de-
termine the method best suited to their application.

All featurizer classes in matminer follow a common code-design
pattern by inheriting from a base class, BaseFeaturizer, which defines
the template for all featurization classes. BaseFeaturizer prescribes the
four methods that must be implemented by each new featurizer:

1. The “featurize” method does the core work. It transforms materials
data (e.g., a composition) into the desired feature values (e.g., ele-
ment properties such as atomic weight, atomic radii, and Mendeleev
number).

2. The “feature_labels” method provides descriptive labels that corre-
spond to the feature values computed in the “featurize” method.
These feature_labels can be thought of as column labels for the
various features (and are indeed used as column labels when fea-
turizing an entire DataFrame).

3. The “citations” method returns a list of BibTex-formatted references
that a user should read to fully understand the features and cite if
they are used. The citations method thus provides background and
context for the featurizers and appropriate attribution to the original
developers of the methodology.

4. The “implementors”method provides the name of the person(s) who
implemented and are responsible for maintaining the featurizer.
This is useful if one has a question, comment, or suggestion re-
garding the specific implementation details of a featurization
method.

BaseFeaturizer provides additional functions that a user can call
once these four methods are implemented. For example, the “featur-
ize_dataframe” method uses the “featurize” and “feature_labels” op-
erations to add the features to an entire pandas DataFrame. That is,
featurize_dataframe will process potentially thousands or millions of
rows of data, exploiting Python's multiprocess functionality to paral-
lelize over available cores. The BaseFeaturizer class also follows the
pattern used by featurizers in the scikit-learn machine learning library,
which allows matminer featurization classes to be integrated easily
with existing scikit-learn tools. For example, one can build a data
processing pipeline that mixes some of the data normalization tools
present in scikit-learn with the materials-specific features implemented
in matminer.

Matminer contains, at the time of writing, a total of 47 featurizers
that support the generation of features for diverse types of materials
data. Each of these featurizers can produce many individual features/
descriptors, such that it is possible to generate thousands of total fea-
tures with the matminer code. For example, the ElementProperty fea-
turizer will convert a chemical composition into various summary sta-
tistics of the properties of that composition's component elements (e.g.,
average ionic radius or standard deviation of elemental melting points).
The BandFeaturizer will convert a complex electronic band structure
into quantities such as band gap and the norm of k point coordinates at
which the conduction band minimum and valence band maximum
occur.

We have grouped the featurizers into five different Python modules
based on the input data type: (i) composition, (ii) (crystal) structure,
(iii) density of (electronic) states, (iv) band structure, and (v) (atomic)
site. The featurizers available in matminer in each module are pre-
sented in Fig. 2. In Table 1, we briefly describe each featurizer and
provide the canonical reference(s). The complete source code for each
featurizer is available in matminer such that users can employ, fully
inspect, and modify the implementations of these methods.

In addition to these individual featurizers, we provide a
FunctionFeaturizer that combines individual features into functions
such as products, quotients, logarithms, or any arbitrary mathematical
expression. This procedure allows one to generate a large space of
candidate features from even a small number of initial input features
and has been observed to be useful in several previous works in the
materials domain [18,62]. The implementation in matminer leverages
the sympy library [63] which can eliminate symbolically redundant
features.

3.3. Data visualization

A crucial step of a materials informatics workflow is visualizing
data, which is helpful in understanding outliers, selecting features, and
guiding the machine learning process. Many data-driven materials
studies generate a standard suite of similar charts, such as heatmaps or
two-dimensional scatter plots, which condense multiple complex re-
lationships into simple, informative figures. For example, visualizing
distributions of data (such as histograms and violin plots) at inter-
mediate steps in the workflow process is a useful tool for pruning data
and identifying outliers. Matminer drastically simplifies making many
common visualizaitons.

Although there exist several excellent plotting libraries in Python
(e.g., matplotlib [81] and seaborn [82]), these libraries are not de-
signed to generate interactive plots that are also easy to share and se-
rialize to a raw data format. Fortunately, the Plotly library [83] pro-
vides the needed functionality; however, its integration with standard

Fig. 2. Overview of the 47 featurizers that are currently available in five dif-
ferent modules (composition, site, structure, bandstructure, dos) of matminer.
Each featurizer can generate one or hundreds of features, such that matminer as
a whole is capable of producing thousands of individual features.

L. Ward et al. Computational Materials Science 152 (2018) 60–69

63

Table 1
A list of the featurizers currently implemented in matminer. Each row in the table provides the name of the relevant Python class, a concise description of the features
it computes, and the appropriate references to the original methodology.

Featurizer Description Reference

composition.py
AtomicOrbitals Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) using orbital energies from

NIST.
[64]

AtomicPackingEfficiency Packing efficiency based on a geometric theory of the amorphous packing [90]
BandCenter Estimation of absolute position of band center using geometric mean of electronegativity. [65]
CationProperty Element property attributes of cations in a composition [66]
CohesiveEnergy Cohesive energy per atom of a compound by adding known elemental cohesive energies from the formation energy of the

compound.
[67]

ElectronAffinity Average electron affinity times formal charge of anion elements. [66]
ElectronegativityDiff Statistics on electronegativity difference between anions and cations. [66]
ElementFraction Fraction of each element in a composition. –
ElementProperty Statistics of various element properties [22,36,66]
IonProperty Maximum and average ionic character, whether a composition is charge-balanced [22]
Miedema Formation enthalpies of intermetallic compounds, solid solutions, and amorphous phases using semi-empirical Miedema

model (and some extensions).
[68–70]

OxidationStates Statistics of oxidation states. [66]
Stoichiometry Lp norm-based stoichiometric attributes. [22]
TMetalFraction Fraction of magnetic transition metals. [66]
ValenceOrbital Valence orbital attributes such as the mean number of electrons in each shell. [22,66]
YangSolidSolution Mixing thermochemistry and size mismatch terms of Yang and Zhang (2012) [91]

structure.py
BagofBonds Representation where each structure is represented based on the types of and distances between each pair of sites [71]
BondFraction Fraction of nearest neighbors between each element (e.g., C-O vs C-C) bonds [71]
ChemicalOrdering How much the ordering of species in the structure differs from random [6]
ColoumbMatrix Coulomb matrix (Mij = Zi Zj /|Ri – Rj| for i≠ j, Zi2.4/2 for i= j, with Zi and Ri the nuclear charge and the position of atom i). [7]
ElectronicRadialDistributionFunction RDF in which the positions of neighboring sites are weighted by electrostatic interactions inferred from atomic partial

charges.
[72]

EwaldEnergy Energy from Coulombic interactions based on charge states of each site [73]
GlobalSymmetryFeatures Symmetry information such as spacegroup number and (enumerated) crystal system type. –
MaximumPackingEfficiency Maximum possible packing efficiency of this structure [6]
MinimumRelativeDistances Closest neighbor distances for all sites, where relative distance are used fij = rij/(riatom + rjatom) with riatom being radius of

atom or ion i.
[74]

OrbitalFieldMatrix Average of the 32 by 32 matrix descriptions of the chemical environment of each atom in the unit cell, based on the group
numbers, row numbers (optional), distances of coordinating atoms, and Voronoi Polyhedra weights.

[75]

PartialRadialDistributionFunction Frequency of bonds across varied ranges of length between certain pairs of elements [58]
RadialDistributionFunction Conventional radial distribution function (RDF) of a crystal structure. –
RadialDistributionFunctionPeaks Distances of the largest peaks in the RDF of a structure –
StructuralHeterogeneity Variance in the bond lengths and atomic volumes in a structure [6]
SineCoulombMatrix Same as the CoulombMatrix, except the nondiagonal elements are weighted by ̂ ̂∑ =

− −B B re πe· sin [·]ijk x y z k k{ , , }
2 1

2
1, where rij

is the vector between atoms i and j and B is the lattice matrix, rather than 1/rij.

[56]

SiteStatsFingerprint Generates features pertaining to an entire structure by computing statistics across the features of all sites in the unit cell –

bandstructure.py
BandFeaturizer Non-zero band gap, direct band gap, k-point degeneracy, relative energy to CBM/VBM at arbitrary list of k-points and at

conduction/valence bands.
–

BranchPointEnergy Branch-point energy by averaging the energy of arbitrary number of conduction and valence bands throughout the full
Brillouin zone.

[76]

dos.py
DopingFermi Fermi level associated with a specified carrier concentration and temperature –
DOSFeaturizer The top N contributors to the density of states at the valence and conduction band edges. Includes chemical specie, orbital

character, and orbital location information.
–

site.py
AGNIFingerprints Fingerprints based on integrating the distances product of the radial distribution function with a gaussian window function [77]
AngularFourierSeries Encodes both radial and angular information about site neighbors. Each feature is a sum of the product of two distance

functions between atoms that share the central site and the cosine of the angle between them.
[17]

ChemEnvSiteFingerprint Local site environment fingerprint computed with the chemenv module in pymatgen. [74,78]
ChemicalSRO Chemical short-range ordering features to evaluate deviation of local chemistry with the nominal composition of entire

structure.
[79]

CoordinationNumber Number of first nearest neighbors of a site [74]
CrystalSiteFingerprint Coordination number percentage and local structure order parameters computed from the neighbor environment of a site;

Voronoi decomposition-based neighbor finding.
[74]

GaussianSymmFunc Gaussian radial and angular symmetry functions originally proposed for fitting machine learning potentials. [28,80]
GeneralizedRadialDistributionFunction A radial distribution function where the bins do not need to act in a “histogram” mode. The bins can be any arbitrary

function such as Gaussians, Bessel functions, or trig functions.
[17]

LocalPropertyDifference Differences in elemental properties between site and its neighboring sites [6]
OPSiteFingerprint Local structure order parameters computed from the neighbor environment of a site; distance-based neighbor finding. [74]
VoronoiFingerprint Voronoi indices, i-fold symmetries and statistics of Voronoi facet areas, sub-polyhedron volumes and distances derived by

Voronoi tessellation analysis.
[79]

L. Ward et al. Computational Materials Science 152 (2018) 60–69

64

Python data libraries such as pandas remains minimal. Thus, to accel-
erate visualization, matminer includes its own module, FigRecipes, that
provides a set of pre-defined methods for creating well-formatted,
common figures (Fig. 3). Plotly was selected as the backend of FigRe-
cipes because (1) its interactivity enables the rapid identification (via
Plotly “hoverinfo”) of outliers in data sets, which are frequently the
most important data points in materials informatics studies, and (2) it
uses a portable JSON representation of Plotly plots, which enables
FigRecipes to output fine-tunable Plotly figure templates with a few
lines of code. Furthermore, interactive Plotly figures can be shared
easily on the web via URL, which facilitates making figures collabora-
tively.

The PlotlyFig class in matminer's FigRecipes module supports seven
types of plots: x-y plots, scatter matrices, histograms, bar charts, heat-
maps, parallel plots, and violin plots. FigRecipes also facilitates gen-
erating often-overlooked figures, such as parallel coordinate plots [84],
which have been found to be useful in materials science applications as
they provide a technique for representing relationships between vari-
ables in high dimensional spaces. PlotlyFig can generate several plots
using the same DataFrame content, automatically determining relevant
labels and legend information from DataFrame column headers. Plo-
tlyFig can also automatically bin and transform data to be compatible
with the selected plot type; for example, PlotlyFig can automatically bin
data in a DataFrame to create a heatmap and can generate multiple
violin plots from a DataFrame lacking an explicit 'group' column. Plo-
tlyFig's succinct syntax and automatic conversions provide robust ex-
tensions of Plotly's plotting functionality.

PlotlyFig interfaces with several Plotly options for visualization,

such as interactive offline plotting, static images, and the online Plotly
interface. All figures generated with FigRecipes can be returned as a
PlotlyDict object, a JSON-like dict representation of a figure that can be
serialized and stored for reproducibility and sharing. This ability makes
FigRecipes a useful plotting tool for creating scientific representations
of data; complex data can first be easily converted into a PlotlyDict
template, and this figure template specifically edited to create custom-
made publication-quality images.

4. Examples of using matminer

Next, we present four usage examples that showcase the capabilities
of matminer. The source code for these and other examples are avail-
able as part of the matminer_examples GitHub repository (https://
github.com/hackingmaterials/matminer_examples). Users can down-
load, inspect, and execute the full code for these examples themselves
and modify them for their own applications.

4.1. Retrieving data sets and visualizing them

In our first example, we use matminer's CitrineDataRetrieval tool to
collect the experimental thermoelectric materials properties reported
by Gaultois et al. [85] and compiled in the Citrine database. We then,
with the help of FigRecipes, visualize this data in just a few lines of
code. An example output is depicted in Fig. 4, in which electrical
conductivity, Seebeck coefficient, thermal conductivity and the figure
of merit of thermoelectric materials (zT) are visualized in a single plot.
This example effectively recreates Fig. 3 of Ref. [85] but allows the user

Fig. 3. Examples of plots based on a built-in data set of elastic tensors [53] and generated through the FigRecipes interface. Clockwise from top-left: a scatter matrix,
a heat map, a violin plot, and an x-y plot with color dimension that represents Poisson ratio.

L. Ward et al. Computational Materials Science 152 (2018) 60–69

65

https://github.com/hackingmaterials/matminer_examples
https://github.com/hackingmaterials/matminer_examples

to process the data locally, perhaps adding in their own data filtering or
featurization procedure. Once the data set is loaded into a DataFrame
called “df_te”, re-creating this figure can be accomplished by two Py-
thon commands, as follows:

pf = PlotlyFig(df_te, x_scale='log',
x_title='Electrical Resistivity (cm/S)',

y_title='Seebeck Coefficient (uV/K)',
colorbar_title='Thermal Conductivity (W/

m.K)')
pf.xy(('Electrical resistivity', 'Seebeck

coefficient'),
labels='chemicalFormula', sizes='zT',
colors='Thermal conductivity', color_range=[0,

5])
The first line defines the data used by the charts and names for the axes.
The second line defines the data being plotted. Further details are
handled automatically. For example, zT values are normalized for
better visualization. In addition, because the user specified a color_-
range of [0, 5] for the thermal conductivity values, all thermal con-
ductivity values equal or greater than 5 are denoted by a bright yellow
color with a “5+” tick label is automatically added to the colorbar.
Thus, FigRecipes includes both automatic and customizable options
that balance speed and flexibility of visualization.

4.2. Comparing experiment and theory data

In another example, we retrieve all the experimental band gap data
available in Citrine and compare them with the calculated values
available in the Materials Project [39]. Comparing data from two dif-
ferent sources is often complicated by the need to match records from
one system to another. In this example, we need to find records in
Materials Project with the same composition. As many entries in Ci-
trination lack an associated crystal structure, we match each band gap
to the ground-state structure with the same composition in Materials
Project. Merging these data sources also demonstrates how combining
data sources can fill in missing information from each database. Owing
to the CitrineDataRetrieval class, the Material Project API and Pandas,
merging the two data sources requires only 9 lines of code:

c = CitrineDataRetrieval() # Create an adapter to the
Citrine Database.

df = c.get_dataframe(prop='band gap',
data_type='EXPERIMENTAL',

show_columns=['chemicalFormula', 'Band
gap'])

mpr = MPRester()
def get_MP_bandgap(formula):
formula = Composition
(formula).get_integer_formula_and_factor()[0]
strcs = mpr.get_data(formula)
if strcs:

return sorted(strcs, key = lambda e: e
[‘energy_per_atom’])[0][‘band_gap’]

df[‘DFT Band gap’] = data[‘chemicalFormula’].apply
(get_MP_bandgap)

As shown in Fig. 5, most computed DFT band are lower than the ex-
perimental values, which is a known drawback of DFT calculations
performed using LDA or GGA functionals [86–88]. Because the com-
parison is performed automatically, minimal human effort is required
to update the result as new experimental band gaps are added to Ci-
trination or new calculations are performed by Materials Project. As
exemplified by this example, the tools matminer provides to automate
data-driven analyses can make reproducing data-driven materials stu-
dies much simpler.

4.3. Building a machine learning model using OQMD data

To demonstrate how matminer can facilitate the process of machine
learning, we recreate a machine learning model from a 2016 paper by
Ward et al. [22] In this work, the authors trained a machine learning
model using data from the Open Quantum Materials Database (OQMD)
[42,92] to predict the formation enthalpy of crystalline materials given
their composition.

The first step is to retrieve the OQMD data used by Ward et al.,
which is available through the Materials Data Facility [44]. We can use
matminer’s data retrieval tools to access this data directly with only
three lines of code:

mdf = retrieve_MDF.MDFDataRetrieval
(anonymous = True)
query_string = 'mdf.source_name:oqmd_v3 AND
(oqmd_v3.configuration:static OR
oqmd_v3.configuration:standard) AND
dft.converged:True'
data = mdf.get_data(query_string,
unwind_arrays=False)

The next step is to process the dataset to create a suitable training set:

Fig. 4. Thermoelectric properties of nearly 1000 materials compiled by Gaultois et al. [85] and as retrieved and visualized with matminer. The marker size is scaled
according to the figure of merit, zT.

L. Ward et al. Computational Materials Science 152 (2018) 60–69

66

removing errors, duplicates, and outliers. For example, removing all
entries which lack a computed formation enthalpy can be achieved in a
single line of Python:

data = data[∼ data['oqmd_v3.delta_e.value'].isnull
()]

The third step in building a machine learning model is computing a
representation. We have implemented the techniques developed by
Ward et al. into matminer as Featurizer classes. These Featurizers,
which operate on DataFrame objects, are also simple to run:

featurizer = MultipleFeaturizer([
cf.Stoichiometry(),
cf.ElementProperty.from_preset(“magpie”),
cf.ValenceOrbital(props=['avg']), cf.IonProperty
()])

featurizer.featurize_dataframe(data,
col_id='composition_obj')

These two lines of code generate the 145 features used by Ward et al.
and store them within the DataFrame object. At this point, the data are
in a form that is compatible with existing machine learning libraries,
such as scikit-learn or Keras. After using scikit-learn’s Random Forest
implementation and cross-validation utilities, we find that our model
achieves a MAE of 0.071 eV/atom in 10-fold cross-validation, which is
consistent with the results reported by Ward et al. (as low as 0.088 eV/
atom using a different tree-based ML method). Overall this example
serves to demonstrate how matminer, combined with community-
standard data analysis and machine learning libraries, facilitates the
construction of machine learning models from materials data.

4.4. Comparing crystal structure featurization methods

Another benefit of matminer is that it simplifies comparing machine
learning methods. To illustrate, we used matminer to compare three
methods for predicting the formation energy for a given crystal struc-
ture: the Sine Coulomb Matrix (SCM) [56], the Orbital Field Matrix
(OFM) [75], and a recent modification to the OFM in development that
also includes the row of each element in the periodic table in addition
to the column (OFMR).

The first step in comparing the models is to gather training sets. For
this task, we use the original 3938 structures selected by Faber et al.
from the Materials Project (FLLA) [56] and a dataset of all 7735 stable
ternary oxides in the Materials Project with unit cell size at most 30
atoms (TER_OX). Gathering the data is simple with matminer. The FLLA
data set is built into matminer and the TER_OX dataset can be gathered
with a single MPDataRetrieval query:

from matminer.data_retrieval.retrieve_MP import
MPDataRetrieval

mpr = MPDataRetrieval()
criteria = '∗-∗-O'
properties = ['structure', 'nsites',

'formation_energy_per_atom',
'e_above_hull']
df = mpr.get_dataframe(criteria = criteria,

properties = properties)
df = df[df['e_above_hull'] < 0.1]
df = df[df['nsites'] < = 30]

Each of the three methods use Kernel Ridge Regression (KRR) as the
machine learning algorithm; we employ the implementation of this
method from scikit-learn. scikit-learn includes a well-optimized im-
plementation of KRR, and has a tool – GridSearchCV – for easily se-
lecting the optimum kernel and regularization parameter for KRR [30].
We tested each method using five-fold cross validation, and used four-
fold cross-validation when selecting optimizing hyperparameters for
each fold. We tested Laplacian and RBF (radial basis function) kernels
for both features, and used the r2 value of the formation energy per
atom predictions to score each hyperparameter set [30].

The orbital field matrix can be time consuming to calculate for a
large dataset because of its size; however, the process can be ac-
celerated by the parallelization feature of matminer. Matminer auto-
matically runs in parallel across all available CPU cores using Python’s
multiprocessing package. The following code computes the OFM re-
presentation and automatically runs in parallel:

from matminer.featurizers.structure import
OrbitalFieldMatrix

ofm = OrbitalFieldMatrix()
df = ofm.featurize_dataframe(df, 'structure')

The cross-validation results for the FLLA and TER_OX datasets are
presented in Table 2. We find very close agreement between the Mean
Absolute Error (MAE) reported by Faber et al. for the SCM (0.37 eV/
atom) and our result with matminer of 0.387 eV/atom, despite minor
differences in the cross-validation procedure [56]. This demonstrates
that we are able to reproduce the methodology of a published machine
learning paper and compare it with a new featurization method (OFMR)
with very little effort.

Our results indicate that for both data sets, the OFMR outperforms
the OFM featurizer, which in turn outperforms the SCM (Table 2). All
methods perform better on the TER_OX dataset than the FLLA dataset,
demonstrating that the specific data set influences both absolute and
relative model performance. Featurization and evaluation of the OFM
and OFMR take much longer than for the SCM because of the size of the

Fig. 5. Comparison of experimentally-measured band gap energies retrieved from the Citrine database to DFT-PBE computed electronic band gaps retrieved from the
Materials Project. As expected, the data set demonstrates that computed band gaps underestimate experimental values [86–88].

L. Ward et al. Computational Materials Science 152 (2018) 60–69

67

descriptors, which may result in a time-accuracy tradeoff in some ap-
plications. We also note that Faber et al. have been developing updated
structure representations [89] that in the future might be further
compared to the current results. Being able to probe the applicability of
different featurization methods for different data sets is significantly
simplified by the ability to easily swap out different machine learning
methods and datasets within a machine learning pipeline. This allows
for rapid testing of new methods against various data sets.

5. Conclusion

Performing materials informatics requires developing a data pipe-
line that encompasses data retrieval, feature extraction, and visualiza-
tion prior to the actual machine learning step. The matminer software
described in this manuscript is designed to facilitate the development,
reuse, and reproducibility of data pipelines for materials informatics
applications. We have designed matminer to connect the domain-spe-
cific aspects of materials informatics (i.e., materials data extraction,
feature extraction of materials science concepts, common plotting
routines) with the professional level machine learning and data pro-
cessing software already developed and in use by the Python commu-
nity. It is our hope that matminer can serve as a community repository
for new materials data analytics techniques as they become available
such that researchers can rapidly develop and test new methods against
standard techniques, accelerating the use of data mining in the mate-
rials community at large.

Acknowledgements

This code was intellectually led and primarily developed using
funding provided by U.S. Department of Energy, Office of Basic Energy
Sciences, Early Career Research Program, which funded the efforts of
AJ, AD, AF, SB, and QW. LW and IF were supported by financial as-
sistance award 70NANB14H012 from U.S. Department of Commerce,
National Institute of Standards and Technology as part of the Center for
Hierarchical Material Design (CHiMaD), by the National Science
Foundation as part of the Midwest Big Data Hub under NSF Award
Number: 1636950 “BD Spokes: SPOKE: MIDWEST: Collaborative:
Integrative Materials Design (IMaD): Leverage, Innovate, and
Disseminate,” and by the Department of Energy contract DE-AC02-
06CH11357. NER, JM, MA, and KAP were funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division under Contract
No. DE-AC02-05-CH11231: Materials Project program KC23MP. JC and
KC were supported by NSF, United States grant 1541450 (CC∗DNI
DIBBS: Merging Science and Cyberinfrastructure Pathways: The Whole
Tale). KWB acknowledges the University of California, Berkeley College
of Chemistry for a summer research stipend. MD and GJS were funded
by NSF DMR program Grant nos. 1334713 and 1333335.

This research used the Savio computational cluster resource pro-
vided by the Berkeley Research Computing program at the University of
California, Berkeley (supported by the UC Berkeley Chancellor, Vice
Chancellor for Research, and Chief Information Officer). This research
used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

We thank all those in the materials community who have con-
tributed code commits to matminer, including Ashwin Aggarwal,
Evgeny Blokhin, Jason Frost, Matthew Horton, Kiran Mathew, Shyue
Ping Ong, Sayan Rowchowdhury, and Donny Winston.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.commatsci.2018.05.
018.

References

[1] H. Chen, G. Hautier, A. Jain, C. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, Y. Tang,
G. Ceder, Chem. Mater. 24 (2012) 2009.

[2] M. Aykol, S. Kim, V.I. Hegde, D. Snydacker, Z. Lu, S. Hao, S. Kirklin, D. Morgan,
C. Wolverton, Nat. Commun. 7 (2016) 13779.

[3] C. Nyshadham, C. Oses, J.E. Hansen, I. Takeuchi, S. Curtarolo, G.L.W. Hart, Acta
Mater. 122 (2017) 438.

[4] S. Kirklin, J.E. Saal, V.I. Hegde, C. Wolverton, Acta Mater. 102 (2016) 125.
[5] A. Jain, K.A. Persson, G. Ceder, APL Mater. 4 (2016) 53102.
[6] L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton,

Phys. Rev. B 96 (2017) 24104.
[7] M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108

(2012) 58301.
[8] J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Phys. Rev. X 4 (2014) 11019.
[9] L. Ward, C. Wolverton, Curr. Opin. Solid State Mater. Sci. 21 (2017) 167.

[10] J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Chem. Mater.
28 (2016) 4267.

[11] E.W. Bucholz, C.S. Kong, K.R. Marchman, W.G. Sawyer, S.R. Phillpot, S.B. Sinnott,
K. Rajan, Tribol. Lett. 47 (2012) 211.

[12] T.D. Sparks, M.W. Gaultois, A. Oliynyk, J. Brgoch, B. Meredig, Scr. Mater. 111
(2015) 10.

[13] R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue,
T. Lookman, Adv. Mater. 1702884 (2018) 1702884.

[14] A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania,
V. Botu, R. Ramprasad, Mater. Today (2017), http://dx.doi.org/10.1016/j.mattod.
2017.11.021.

[15] F.A. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Phys. Rev. Lett. 117
(2016) 135502.

[16] F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A.
Mehta, Sci. Adv. 4 (2018) eaaq1566.

[17] A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Phys. Rev. B 95 (2017)
144110.

[18] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, Npj Comput.
Mater. 3 (2017) 54.

[19] S.R. Kalidindi, ISRN Mater Sci. 2012 (2012) 1.
[20] J. Hill, G. Mulholland, K. Persson, R. Seshadri, C. Wolverton, B. Meredig, MRS Bull.

41 (2016) 399.
[21] W. McKinney, Proc. 9th Python Sci. Conf. 1697900 (2010) 51.
[22] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, Npj Comput. Mater. 2 (2016)

16028.
[23] http://bitbucket.org/wolverton/magpie.
[24] W. Daniel, B. David, F. Tony, K. Surya, R. Andrew, PyMKS: Materials Knowledge

System in Python, 2014. doi: 10.6084/m9.figshare.1015761.
[25] Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, K. Leswing,

V. Pande, Chem. Sci. 9 (2018) 513.
[26] https://github.com/deepchem/deepchem.
[27] E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete,

N. Mingo, A. Tropsha, S. Curtarolo (2017) arXiv:1711.10744v1.
[28] A. Khorshidi, A.A. Peterson, Comput. Phys. Commun. 207 (2016) 310.
[29] https://github.com/libAtoms/QUIP.
[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12
(2011) 2825.

[31] F. Perez, B.E. Granger, Comput. Sci. Eng. 9 (2007) 21.
[32] K.J. Millman, M. Aivazis, Comput. Sci. Eng. 13 (2011) 9.
[33] S. van der Walt, S.C. Colbert, G. Varoquaux, Comput. Sci. Eng. 13 (2011) 22.
[34] https://github.com/keras-team/keras.
[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.

Table 2
Performance (in terms of both accuracy and time needed to featurize) of several
machine learning methods on two different datasets: the FLLA [56] and TER_OX
datasets. We compare the Sine Coulomb Matrix (SCM) [56], Orbital Field Ma-
trix (OFM) [75], and Orbital Field Matrix+ row in periodic table (OFMR). The
performance scores are for each model in 5-fold cross-validation. Each model
was run on 24, 2.3 GHz processor cores on a system with 64 GB of RAM.

Dataset Descriptor MAE
(eV/
atom)

RMSE
(eV/
atom)

r2 Featurize
time (s)

Cross-
validation
time (h:mm:ss)

FLLA SCM 0.387 0.575 0.708 2.0 0:07:42
OFM 0.229 0.346 0.894 138. 0:50:40
OFMR 0.171 0.277 0.932 138. 1:20:14

TER_OX SCM 0.123 0.220 0.917 5.0 0:30:16
OFM 0.090 0.140 0.967 366. 4:30:16
OFMR 0.059 0.100 0.983 363. 7:06:42

L. Ward et al. Computational Materials Science 152 (2018) 60–69

68

http://dx.doi.org/10.1016/j.commatsci.2018.05.018
http://dx.doi.org/10.1016/j.commatsci.2018.05.018
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0005
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0005
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0010
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0010
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0015
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0015
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0020
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0025
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0030
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0030
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0035
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0035
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0040
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0045
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0050
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0050
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0055
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0055
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0060
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0060
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0065
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0065
http://dx.doi.org/10.1016/j.mattod.2017.11.021
http://dx.doi.org/10.1016/j.mattod.2017.11.021
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0075
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0075
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0080
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0080
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0085
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0085
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0090
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0090
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0095
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0100
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0100
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0110
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0110
http://bitbucket.org/wolverton/magpie
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0125
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0125
https://github.com/deepchem/deepchem
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0135
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0135
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0140
https://github.com/libAtoms/QUIP
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0150
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0150
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0150
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0150
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0155
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0160
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0165
https://github.com/keras-team/keras

Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, 2015.<https://www.tensorflow.
org/> .

[36] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter,
V.L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68 (2013) 314.

[37] A. Frantzen, J. Scheidtmann, G. Frenzer, W.F. Maier, J. Jockel, T. Brinz, D. Sanders,
U. Simon, Angew. Chemie Int. Ed. 43 (2004) 752.

[38] Y. Xu, M. Yamazaki, P. Villars, Jpn. J. Appl. Phys 50 (2011) 11RH02.
[39] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia,

D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1 (2013) 11002.
[40] https://citrination.com.
[41] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson,

G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput.
Mater. Sci. 58 (2012) 227.

[42] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65 (2013) 1501.
[43] J. O’Mara, B. Meredig, K. Michel, JOM 68 (2016) 2031.
[44] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, I. Foster, JOM 68

(2016) 2045.
[45] https://mpds.io/.
[46] https://www.mongodb.com/.
[47] K. Michel, B. Meredig, MRS Bull. 41 (2016) 617.
[48] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[49] L.O. Wagner, T.E. Baker, E.M. Stoudenmire, K. Burke, S.R. White, Phys. Rev. B 90

(2014) 45109.
[50] S.P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, K.A. Persson, Comput.

Mater. Sci. 97 (2015) 209.
[51] https://github.com/materials-data-facility/forge.
[52] K. Mathew, J.H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang,

I. Chu, T. Smidt, B. Bocklund, M. Horton, J. Dagdelen, B. Wood, Z.-K. Liu, J. Neaton,
S.P. Ong, K. Persson, A. Jain, Comput. Mater. Sci. 139 (2017) 140.

[53] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K.
Ande, S. Van Der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. a Persson, M.
Asta, Sci. Data (2015) 1.

[54] M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, Sci. Data 2 (2015)
150053.

[55] I. Petousis, W. Chen, G. Hautier, T. Graf, T.D. Schladt, K.A. Persson, F.B. Prinz, Phys.
Rev. B 93 (2016) 115151.

[56] F. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115
(2015) 1094.

[57] T. Fast, S.R. Kalidindi, Acta Mater. 59 (2011) 4595.
[58] K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys.

Rev. B 89 (2014) 205118.
[59] A. Seko, A. Takahashi, I. Tanaka, Phys. Rev. B 90 (2014) 24101.
[60] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Commun. 8

(2017) 15679.
[61] K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Mu, A. Tkatchenko, Nat. Commun. 8

(2017) 13890.
[62] L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett.

114 (2015) 105503.
[63] A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, Am.

Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P.
Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R.
Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Scopatz, PeerJ
Comput. Sci. 3 (2017) e103.

[64] S. Kotochigova, Z.H. Levine, E.L. Shirley, M.D. Stiles, C.W. Clark, Phys. Rev. A 55
(1997) 191.

[65] M.A. Butler, J. Electrochem. Soc. 125 (1978) 228.
[66] A.M. Deml, R.O. Hayre, C. Wolverton, V. Stevanovic, Phys. Rev. B 93 (2016) 85142.
[67] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2005.
[68] F.R. de Boer, Cohesion in Metals: Transition Metal Alloys, North-Holland,

Amsterdam, 1988.
[69] R.F. Zhang, S.H. Zhang, Z.J. He, J. Jing, S.H. Sheng, Comput. Phys. Commun. 209

(2016) 58.
[70] L.J. Gallego, J.A. Somoza, J.A. Alonso, J. Phys. Condens. Matter 2 (1990) 6245.
[71] K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. Von Lilienfeld, K.-

R.R. Müller, A. Tkatchenko, J. Phys. Chem. Lett. 6 (2015) 2326.
[72] E.L. Willighagen, R. Wehrens, P. Verwer, R. de Gelder, L.M.C. Buydens, Acta

Crystallogr. Sect. B Struct. Sci. 61 (2005) 29.
[73] P.P. Ewald, Ann. Phys. 369 (1921) 253.
[74] N.E.R. Zimmermann, M.K. Horton, A. Jain, M. Haranczyk, Front. Mater. 4 (2017) 1.
[75] T. Lam Pham, H. Kino, K. Terakura, T. Miyake, K. Tsuda, I. Takigawa, H. Chi Dam,

Sci. Technol. Adv. Mater. 18 (2017) 756.
[76] A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94

(2009) 12104.
[77] V. Botu, R. Ramprasad, Phys. Rev. B 92 (2015) 94306.
[78] D. Waroquiers, X. Gonze, G.-M. Rignanese, C. Welker-Nieuwoudt, F. Rosowski,

M. Göbel, S. Schenk, P. Degelmann, R. André, R. Glaum, G. Hautier, Chem. Mater.
29 (2017) 8346.

[79] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tesselations, 2009.
[80] J. Behler, J. Chem. Phys. 134 (2011) 74106.
[81] J.D. Hunter, Comput. Sci. Eng. 9 (2007) 90.
[82] M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, S. Lukauskas, D.C. Gemperline, T.

Augspurger, Y. Halchenko, J.B. Cole, J. Warmenhoven, J. de Ruiter, C. Pye, S.
Hoyer, J. Vanderplas, S. Villalba, G. Kunter, E. Quintero, P. Bachant, M. Martin, K.
Meyer, A. Miles, Y. Ram, T. Yarkoni, M.L. Williams, C. Evans, C. Fitzgerald, Brian,
C. Fonnesbeck, A. Lee, A. Qalieh, 2017. doi: 10.5281/ZENODO.883859.

[83] https://plot.ly/.
[84] J.M. Rickman, Npj Comput. Mater. 4 (2018) 5.
[85] M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke,

Chem. Mater. 25 (2013) 2911.
[86] J.P. Perdew, M. Levy, Phys. Rev. Lett. 51 (1983) 1884.
[87] L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51 (1983) 1888.
[88] M.K.Y. Chan, G. Ceder, Phys. Rev. Lett. 105 (2010) 196403.
[89] F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148

(2018) 241717.
[90] K.J. Laws, D.B. Miracle, M. Ferry, A predictive structural model for bulk metallic

glasses, Nat. Commun. 6 (2015) 8123.
[91] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-

component alloys, Mater. Chem. Phys. 132 (2012) 233–238.
[92] S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, et al., The

Open Quantum Materials Database (OQMD): assessing the accuracy of DFT for-
mation energies, Npj Comput. Mater. 1 (2015) 15010, http://dx.doi.org/10.1038/
npjcompumats.2015.10.

L. Ward et al. Computational Materials Science 152 (2018) 60–69

69

https://www.tensorflow.org/
https://www.tensorflow.org/
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0180
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0180
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0185
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0185
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0190
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0195
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0195
https://citrination.com
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0205
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0205
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0205
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0210
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0215
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0220
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0220
https://mpds.io/
https://www.mongodb.com/
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0235
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0240
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0245
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0245
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0250
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0250
https://github.com/materials-data-facility/forge
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0260
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0260
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0260
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0270
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0270
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0275
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0275
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0280
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0280
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0285
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0290
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0290
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0295
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0300
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0300
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0305
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0305
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0310
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0310
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0320
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0320
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0325
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0330
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0335
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0340
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0340
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0345
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0345
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0350
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0355
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0355
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0360
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0360
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0365
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0370
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0375
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0375
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0380
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0380
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0385
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0390
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0390
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0390
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0405
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0410
https://plot.ly/
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0425
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0430
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0430
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0435
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0440
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0445
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0450
http://refhub.elsevier.com/S0927-0256(18)30325-2/h0450
http://refhub.elsevier.com/S0927-0256(18)30325-2/h9000
http://refhub.elsevier.com/S0927-0256(18)30325-2/h9000
http://refhub.elsevier.com/S0927-0256(18)30325-2/h9005
http://refhub.elsevier.com/S0927-0256(18)30325-2/h9005
http://dx.doi.org/10.1038/npjcompumats.2015.10
http://dx.doi.org/10.1038/npjcompumats.2015.10

	Matminer: An open source toolkit for materials data mining
	Introduction
	Software architecture and design principles
	Components of matminer
	Data retrieval
	Data featurization: Transforming materials-related quantities into physically relevant descriptors
	Data visualization

	Examples of using matminer
	Retrieving data sets and visualizing them
	Comparing experiment and theory data
	Building a machine learning model using OQMD data
	Comparing crystal structure featurization methods

	Conclusion
	Acknowledgements
	Supplementary material
	References

