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ABSTRACT: This Methods/Protocols article is intended for
materials scientists interested in performing machine learning-
centered research. We cover broad guidelines and best practices
regarding the obtaining and treatment of data, feature engineering,
model training, validation, evaluation and comparison, popular
repositories for materials data and benchmarking data sets, model
and architecture sharing, and finally publication. In addition, we
include interactive Jupyter notebooks with example Python code to
demonstrate some of the concepts, workflows, and best practices
discussed. Overall, the data-driven methods and machine learning
workflows and considerations are presented in a simple way, allowing
interested readers to more intelligently guide their machine learning
research using the suggested references, best practices, and their own
materials domain expertise.

■ INTRODUCTION

Materials scientists are constantly striving to advance their
ability to understand, predict, and improve materials proper-
ties. Due to the high cost of traditional trial-and-error methods
in materials research (often in the form of repeated rounds of
material synthesis and characterization), material scientists
have increasingly relied on simulation and modeling methods
to understand and predict materials properties a priori.
Materials informatics (MI) is a resulting branch of materials
science that utilizes high-throughput computation to analyze
large databases of materials properties to gain unique insights.
More recently, data-driven methods such as machine learning
(ML) have been adopted in MI to study the wealth of existing
experimental and computational data in materials science,
leading to a paradigm shift in the way materials science
research is conducted.
However, there exist many challenges and “gotchas” when

implementing ML techniques in materials science. Further-
more, many experimental materials scientists lack the know-
how to get started in data-driven research, and there is a lack of
recommended best practices for implementing such methods
in materials science. As such, this article is designed to assist
those materials science scholars who wish to perform data-
driven materials research. We demonstrate a typical ML
project step-by-step (Figure 1), starting with loading and
processing data, splitting data, feature engineering, fitting
different ML models, evaluating model performance, compar-
ing performance across models, and visualizing the results. We

also cover sharing and publication of the model and
architecture, with the goal of unifying research reporting and
facilitating collaboration this emerging field. Throughout this
process, we highlight some of the challenges and common
mistakes encountered during a typical ML study in materials
science, as well as approaches to overcome or address them.
Highlighting the best practices will improve the research and
manuscript quality and ensure reproducible results.
To demonstrate some of the best practices discussed

throughout this work, we have created several interactive
Jupyter notebooks with relevant Python code structured in a
tutorial format (Table 1). The sections in this article that
include accompanying notebooks are marked with an asterisk*.
The notebooks walk the readers through a basic ML study in
materials science: the prediction of heat capacity for solid
inorganic compounds. We demonstrate this by implementing
several classical machine learning as well as neural network
models from the well-known Python packages scikit-learn and
PyTorch, respectively. The Jupyter notebooks can be accessed
at the online GitHub repository: https://github.com/anthony-
wang/BestPractices. Setup, usage, further instructions, and
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pertinent information can also be found there. Please note, an
intermediate knowledge of the Python programming language
and general programming principles is required.

■ MEANINGFUL MACHINE LEARNING
Machine learning is a powerful tool, but not every materials
science problem is a nail. It is important to delineate when to
use ML and when it may be more appropriate to use other
methods. Consider what value ML can add to your project and
whether there are more suitable approaches. Machine learning
is most useful when human learning is impossible, such as
where the data and interactions within the data are too
complex and intractable for human understanding and
conceptualization. Contrarily, machine learning often fails to
find meaningful relationships and representations from small
amounts of data, when a human mind would otherwise likely
succeed.
When developing ML tools and workflows, consider how

(and with what ease) they can be used not only by yourself but
by others in the research community. If another researcher
wants to use your method, will they be able to do so, and will it
be worth it for them? For example, if you include data from ab
initio calculations such as density functional theory (DFT), or
crystal structure as one of the input features of your ML model,
would it not be simpler for other researchers to use DFT or
other simulation methods themselves, instead of using your
ML model?
Another limitation to consider when using ML as a tool is

the model interpretability vs predictive power trade-off. If you
are looking for physical or chemical insights into your
materials, you are unlikely to find them when using powerful
and complex models such as neural networks: these models
while they can exhibit high model performanceare usually
too complex to be easily understood. These are so-called
“black-box” models because outside of their inputs and
outputs, it is nearly impossible for a human to grasp the

inner model workings and its decision making processes. In
contrast, simpler models might be easier to understand but
tend to lack the predictive power of the more complex models.
In general, a good ML project should do one or more of the

following: screen or down-select candidate materials from a
pool of known compounds for a given application or
property,1−3 acquire and process data to gain new insights,4,5

conceptualize new modeling approaches,6−10 or explore ML in
materials-specific applications.1,11−13 Consider these points
when you judge the applicability of ML for your project.

■ MACHINE LEARNING IN MATERIALS SCIENCE

Machine learning has been applied in the study of many
inorganic material properties, such as mechanical, electronic,
thermodynamic, and transport properties. It has also been used
in many different material application areas, such as photo-
voltaic materials, materials for energy storage, catalysts/
photocatalysts, thermoelectric materials, high-temperature
superconductors, and high entropy and metallic glass alloys.
We highlight some current examples in the literature of
inorganic material properties and their application areas in
Table 2. Here, we are not attempting to summarize the
methods or results of these studies; instead, we advise the

Figure 1. Schematic of a machine learning study in materials science.

Table 1. List of Accompanying Jupyter Notebooks and the
Topics Demonstrated

no. notebook contents

1 Loading data; examining, processing, cleaning up of data
2 Splitting data into train/validation/test data sets
3 Featurizing data; modeling with classical models, evaluating models,

effect of different train/validation/test splits
4 Modeling with neural networks, evaluating models, exporting models,

avoiding overfitting
5 Visualizing results

Table 2. Examples of Using Machine Learning in the Study
of Inorganic Materials

material properties refs

Mechanical properties 1, 6, 9, 25−30
Formation energy 7, 9, 29, 31−34
Band gap 6, 9, 29, 35−39
Density of states 40, 41
Crystal structure/stability 32, 42−52
Debye temperature/heat capacity 6, 53, 54
Thermal expansion coefficient 6, 53
Thermal conductivity 6, 53, 55−57
Seebeck coefficient 56, 58

material classes refs

Photovoltaic materials 34, 59, 60
Energy storage 61−65
Catalysts/photocatalysts 2, 66−71
Thermoelectric materials 4, 13, 56, 72, 73
High-temperature superconductors 74, 74−80
High entropy alloys 81, 82
Metallic glass alloys/glass-forming ability 34, 83, 84
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interested reader to refer to the cited works as well as other
well-written reviews available in the literature.3,14−24

■ WORKING WITH MATERIALS DATA
Data Source. Some of the more commonly used

repositories for materials property data are shown above in
Table 3.
Other repositories that host predominantly crystal structure

information are shown below in Table 4. While these
repositories do not necessarily host material property
information, the structure information contained within these
repositories are also valuable.

There is an ever-increasing number of materials informatics-
related resources and repositories; as such, only the more
commonly used repositories are mentioned above. Keep in
mind that each data set is different and may contain domain-
specific information and features that are restricted to certain
research fields or applications. There may also be differences in
the methodologies with which the data are experimentally or
computationally derived, curated, and recorded in these
databases. As a result of this, the values for material properties

might not be directly comparable across the different
repositories. Be mindful of this when you are comparing
property data across the repositories, especially if you plan on
aggregating or merging data from different sources.

Data Set Size and Composition*. When collecting your
data set for your ML study, be mindful of your data set size.
Ensure that your data set size is large enough and includes
most examples of the combinations of material compositions in
the material space you want to study. It is also important to
consider data balance or bias in your data sets. Does your data
form clusters based on chemical formula, test condition,
structure type, or other criteria? Are some clusters greatly over-
or under-represented? Many statistical models used in ML are
frequentist in nature and will be influenced by data set
imbalance or bias. Visualization techniques such as t-
distributed stochastic neighbor embedding (t-SNE110), uni-
form manifold approximation and projection (UMAP111), or
even simple elemental prevalence mapping112 may be useful in
investigating data set imbalance and bias.
Lastly, if your data set is too large (a rare luxury in the

materials science field), you may find yourself having to wait a
long time to train and validate your models during the
prototyping phase of your project. In this case, you can
subsample your data set into a small-scale “toy data set” and
use that to test and adjust your models. Once you have tuned
your models to your satisfaction on the toy data set, you can
then carry on and apply them to the full data set. When
sampling the original data set to create the toy data set, be
aware that you do not introduce any data set biases through
your sampling. Also keep in mind that not all performance-
related problems can be fixed by subsampling your data. If your
model can only train successfully on the toy data set and
cannot train on the full data set (e.g., due to memory or time
constraints), you may wish to focus on improving its
performance first.

Data Version Control. Be sure to save an archival copy of
your raw data set as obtained and be sure that you can retrieve
it at any time. If you make any changes to your data set, clearly
record the steps of the changes and ensure that you are able to

Table 3. Comparison of Materials Data Repositories with Predominantly Property Information

name
structure

information
mechanical
properties

thermal
properties

electronic
properties APIa data license refs

Materials Project Y Y Y Y Y CC BY 4.0 85
Open Quantum Materials Database Y N Y Y Y CC BY 4.0 86
AFLOW for Materials Discovery Y Y Y Y Y b 87
Novel Materials Discovery (NOMAD) Y Y Y Y Y CC BY 4.0 88
Open Materials Database Y N Y Y Y CC BY 4.0 89
Citrine Informatics Y Y Y Y Y CC BY 90
Materials Platform for Data Science (MPDS) Y Y Y Y Y CC BY 4.0 91
AiiDA/Materials Cloud Y Y Y Y Y Varies 92, 93
NREL MatDB Y N Y Y N Own license 94
NIST TRC Alloy Data N N Y N On request Free 95
NIST TRC ThermoData N N Y N N NIST SRD 96
NIST JARVIS-DFT/-ML Database Y Y Y Y Y Public domain 97, 98
MatWeb N Y Y N N Paid 99
Total Materia N Y Y N N Paid 100
Ansys Granta (MaterialUniverse repository) N Y Y N N Paid 101
MATDAT N Y Y N N Paid 102

aAn “application programming interface” is a set of defined functions, procedures, methods, or classes which enable a structured way of exchanging
data between programs. In the framework of a materials data repository, an API facilitates, e.g., the uploading, examining, and downloading of data
and other forms of interactions between the user and the repository. bNot specified.

Table 4. Comparison of Materials Data Repositories with
Predominantly Structure Information

name
no.

recordsa API
Data
license ref

Cambridge Structural Database
(CSD)

1,055,780 Y Paid 103

Inorganic Crystal Structure
Database (ICSD)

216,302 N Paid 104

Pearson’s Crystal Data (PCD) 335,000 N Paid 105
International Centre for Diffraction
Data (ICDD)

1,004,568 N Paid 106

Crystallography Open Database
(COD)

455,714 Y Open-
access

107

Pauling File 357,612 Y Paid 108
CrystMet database 160,000 N Paid 109
aNote: values for number of records were updated as of the
submission date (May 2020).
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reproduce them on the data set in the future if needed. To
simplify version control, consider using a version control
system (such as Git,113 Mercurial,114 or Subversion115) for
your data sets.
Cleanup and Processing*. Once you have curated your

data set, examine and explore the data on a high level to see if
there are any obvious flaws or issues. These mayand often
doinclude missing or unrealistic values (e.g., NaN’s, or
negative values/positive values where you do not expect them),
outliers or infinite values, badly formatted or corrupt values
(e.g., wrong text encoding, numbers stored in non-numeric
format), nonmatching data formats or data schema caused by
changes in the repository, and other irregularities. If you find
any irregularities, deal with them in an appropriate way and be
careful not to introduce any bias or irregularities of your own.
Make sure you document any data cleanup and processing
steps you performed; this is an important step in ensuring
reproducibility that is often overlooked in ML studies. In
addition, during your model prototyping stage, you may find
some additional problematic data samples which adversarially
affect your model performance. In this case, consider
performing another round of data cleanup before finalizing
your model.
Train−Validation−Test Split*. Split your data once into

three data sets: train, validation, and test. The split should be
performed in a reproducible way (e.g., by assigning a random
seed and shuffling the data set); alternatively, you can save the
split data sets as files for reuse. Make sure that no same (or
similar) data appear in the test data set, if they are already
present in the train or validation data set. For example, if you
have several measurements of a chemical compound that are
performed at different measurement conditions in the train
data set (e.g., temperature or pressure), during the testing
phase, your model would likely perform well if it is asked to
predict the property of the same compound at a different
condition. This, however, gives you an inflated estimate of how
well the model will generalize in cases where it has not seen a
particular chemical compound before. For a truly rigorous
evaluation of your model’s generalization performance, you
should take care to avoid this data leakage when you split your
data.
During the training stage, models may only be shown the

training data as part of the learning process. Validation data
may be used to assess and tune different model hyper-
parameters and may be compared with the predictions of
different model/hyperparameter combinations to evaluate a
model’s performance. In contrast, test data may only be used in
order to evaluate a model’s performance as a final step, after
the model has been finalized. Models must not be trained nor
tuned on the test data set. Use the same train, validation, and
test data sets for all modeling and model comparison/
benchmarking steps.
The training data set can be further partitioned to be used

for cross-validation (CV). CV is a method that is often
employed to estimate the true ability of a model to predict on
new unseen data and to catch model-specific problems such as
overfitting or selection bias.116 One typical method is k-fold
cross-validation. In k-fold CV, the training data set is first
randomly partitioned into K subsets (remember to note down
your partitioning details). Then, for each k of the data subsets
k = 1, 2, ..., K, the model is trained on the combined data of the
other K − 1 subsets and then evaluated using the kth subset.
The resulting K prediction errors are then typically averaged to

give a more accurate estimate of the model’s true predictive
performance compared to evaluating the model performance
on one single train/validation/test split. Typical choices for K
in the literature are 5 or 10. In the case of a small input data set
size, k-fold CV or other methods of cross-validation can also be
used as a data resampling technique for models that are more
robust against overfitting on the validation set (e.g., linear
regression).

■ MODELING
Choosing Appropriate Models and Features*. The

data set size will almost always determine your available
choices of ML models. For smaller data set sizes, classical and
statistical ML approaches (e.g., regression, support vector
machines, k-nearest neighbors, and decision trees) are more
suitable. In contrast, neural networks require larger amounts of
data and only start becoming feasible/useful when you have
training data points on the order of thousands or more.
Typically, ML models such as regression, decision tree/
random forest, k-nearest neighbors, and support vector
machines are used on smaller data sets. These algorithms
can be further improved by applying bagging, boosting, or
stacking approaches. There are many existing Python libraries
for implementing the above, with perhaps the most well-known
being scikit-learn.117 For larger data sets, neural networks and
deep learning methods are more commonly used. In the
scholarly community, the Python libraries PyTorch118 and
TensorFlow119 are often used to implement these architec-
tures.
Feature engineering is important for smaller data set sizes

and can contribute to a large model performance increase if the
features are well-engineered.1,54,120 A common way to
transform chemical compositions into usable input features
for ML studies is through the use of composition-based feature
vectors (“CBFVs”). There are numerous forms of the CBFV
available, such as Jarvis,121 Magpie,34 mat2vec,4 and Oliynyk.13

These CBFVs contain values that are either experimentally
derived, calculated through high-throughput computation, or
extracted from materials science literature using ML
techniques. Instead of featurizing your data using CBFVs,
you can also try a simple onehot-encoding of the elements.
These CBFV featurization schemes as well as the relevant
functions and code for featurizing chemical compositions are
included in the online GitHub repository associated with this
work.
For sufficiently large data sets and for more “capable”

learning architectures like very deep, fully connected net-
works7,122 or novel attention-based architectures such as
CrabNet,6 feature engineering and the integration of domain
knowledge (such as through the use of CBFVs) in the input
data becomes irrelevant and does not contribute to a better
model performance compared to a simple onehot-encoding.11

Therefore, due to the effort required to curate and evaluate
domain knowledge-informed features specific to your research,
you may find it more beneficial to seek out additional sources
of data and already-established featurization schemes or use
learning methods that do not require domain-derived features6

instead.
Data Scaling and Normalization*. In most cases, it may

be beneficial to scale your input data (X). For a regression task,
it may also be helpful to scale the targets (y) as well. Scaling
can be done in many ways. Often, the input data is scaled to
have zero-mean and unit variance. This allows for more stable
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gradients and faster model convergence, since the resulting
feature dimensions are similar in scale.123−126

This is done by using the transformation:

σ′ = − ̅X X X( )/ X (1)

where X̅ denotes the mean and σX the standard deviation of X.
In some cases, applying the logarithm function to your values
before scaling them according to eq 1 may further improve
your model performance.
Keep in mind that the scaling operations must be conducted

using solely the statistics from the training data set (i.e., the
train/validation/test data sets are scaled using only the mean
and standard deviation values computed from the training
data) and that the validation and test data statistics must not
be used. Remember also to undo the scaling operation(s) on
the target values (if these were scaled) after loss computation
but before performance evaluation. Similar to scaling, normal-
ization of X is recommended for regression tasks. Here it is
also important to use only the training data statistics when
normalizing input data.
Scaling and normalization are not commutable: their

ordering matters. You should scale, then normalize. When
undoing this operation, the inverse is required: unnormalize
and then unscale.
Keep It Simple. Sometimes, especially in the case of small

data set sizes, simpler models can perform better than more
complex models on the held-out test data. Some simpler
models that you can try are linear (or ridge/lasso) regression,
random forest, or k-nearest neighbors.
Furthermore, consider the model complexity−explainability

trade-off. Typically, more complex models achieve higher
model performance but have the caveat that they are generally
not easily interpretable by humans. In contrast, simpler models
are typically assumed to be more easily understood by humans
and lead to better opportunities for model introspection. This
is an important consideration in materials science, since
synthesis and characterization are costly and time-consuming
and the costs must be justified.
Hyperparameter Optimization. Depending on your

choice of ML model, there may be model hyperparameters
that can be tuned. Examples of hyperparameters are the
number of neighbors (k) in k-nearest neighbors, the number
and depth of trees in a random forest, the kernel type and
coefficient in support vector machines, the maximum number
of features to consider in gradient boosting, and loss criterion,
learning rate, and optimizer type in neural networks. These
hyperparameters are properties of the models themselves and
can significantly affect your model’s performance, speed (in
training and inference), and complexity.
The hyperparameters are not learned by the model during

the training step; rather, they are selected by you when you
create the model. The recommended way to optimize your
model hyperparameters is by training numerous models (each
with a different set of hyperparameters) using the same
training set and then evaluating the models’ performance using
the same validation set. By doing this, you will be able to
identify the set of hyperparameters that generally leads to
good-performing models. This is commonly referred to as a
“grid search”. Imagine that your model has two continuous-
variable hyperparameters, h1 and h2, and that there is a range of
values for each of these parameters that you wish to investigate,
[h1,min, h1,max] and [h2,min, h2,max], respectively. You can then
define a grid that spans between (h1,min, h2,min) and (h1,max,

h2,max). At each point on this grid, you train a model
corresponding to that set of hyperparameters using the training
set and then evaluate its performance on the validation set.
After repeating this for every point on the grid, you obtain a
mapping that you can then use to determine the best set of
hyperparameters for your specific model and data.
Once again, we stress the importance of reserving a held-out

test data set during data set splitting. By training and
optimizing your model on the training and validation data
sets, you have effectively tunedand possibly biasedyour
model to perform exceptionally well on these data samples.
Therefore, the performance metrics of your model on these
data sets are no longer good indicators of your model’s true
generalization ability. In contrast, evaluating your model’s
performance on the held-out test data set (which your model
has never seen before) will give you a much more realistic
estimate.

Model Evaluation and Comparison. Typically, studies in
materials science will compare the performance of several ML
model and hyperparameter combinations on a given task.
Trained models are typically compared by evaluating their
performance on the held-out test data set using computed test
metrics such as accuracy, logarithmic loss, precision, recall, F1-
score, ROC (receiver operating characteristic curve), and AUC
(area under curve) for classification tasks and r2 (Pearson
correlation coefficient), mean absolute error, and (root) mean
squared error for regression tasks. Also consider using cross-
validation (as discussed earlier) to give a more accurate
estimate of your model’s true performance.

Show Your Model*. If you are reporting a new model
architecture or algorithm, you must include all pertinent
information necessary to reproduce, evaluate, and apply your
models. This entails providing the complete source code for
your implementation, the hyperparameters used, the random
seeds applied (if any), and the pretrained weights of the
models themselves. In addition, clear descriptions and
schematics of your new system should be provided, as well
as instructions to reproduce your model and work. Ideally, you
can show your model and results in an interactive manner,
such as through the use of Jupyter notebooks.

■ FITTING AND TESTING
Avoid Overfitting*. In an ML problem, the model is asked

to perform two contradicting tasks: (1) minimize its prediction
error on the training data set and (2) maximize its ability to
generalize on unseen data. Depending on how the model, loss
criterion, and evaluation methods are set up, the model may
end up memorizing the training data set (an unwanted
outcome) rather than learning an adequate representation of
the data (the intended outcome). This is called “overfitting”
and usually leads to decreased generalization performance of
the model. Overfitting can occur on all kinds of models,
although it typically occurs more often on complex models
such as random forests, support vector machines, and neural
networks.
During model training, observe the training metrics such as

your loss output and r2 score on the training and validation set.
For example, when training a neural network, you can use a
learning curve to track validation errors over each epoch during
the training process. As the model trains, the validation and
training error will ideally decrease. Your training error will
approach zero, but this is not the metric we care about! Rather,
you should closely observe the validation error. When your
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validation error increases again while your training error
continues to decrease, you are likely memorizing your training
data and thus overfitting your data.
Overfitting can have an adverse effect on your model’s ability

to generalize (that is, returning a reasonable output prediction
for new and unseen data), thus performing poorer on the test
data set. If you notice that your model overfits your data very
easily, consider reducing the complexity of your model or using
regularization.
Beware of Random Initialization*. Many ML models

require an initial guess as a starting point for their internal
parameters. In many model implementations (e.g., in scikit-
learn’s linear regression, random forest, support vector
machines, boosting implementations), these initial internal
model parameters are provided by your system’s random
number generator. The same applies for neural network-based
models, in the initialization of the weights and biases of the
networks and some optimizer parameters. Depending on how
sensitive your model is to initialization, different initial states of
the models can lead to significant differences in your model
performance.
It is therefore important that you ensure reproducible results

across different model runs and different models (both for your
internal testing and for publication). To accomplish this, you
can choose a seed to use for the random number generator. Do
not forget to mention this seed in your publication and code.
Note that alternative ways of model initialization exist, such as
using different estimators for initial parameter guesses as well
as different initialization schemes for neural network weights
and biases; here, you should note down your changes if you
use an alternative implementation.
Avoid p-Hacking. Train your models on the training data

set only and use the validation data set for tuning your model
hyperparameters. Do not evaluate your model on the held-out
test data set until you have finished tuning your model and it is
ready for publication. Looking at the test data set multiple
times to pick ideal model hyperparameters is a form of p-
hacking and is considered cheating!127

■ BENCHMARKING AND TESTING

Reproducibly Testing Various Methods*. For compar-
ison/ablation studies against other ML models and/or
architectures, make sure you use the same train/validation/
test data sets (refer to above for best practices on data set
splitting and management). For the most informative and fair
comparison between different published models, consider
running the models yourself. If you perform any additional
model-specific data manipulation steps, make sure to docu-
ment them and make them reproducible for your readers.
During the model tuning process, train your models on the

train data set and evaluate their performances on the validation
set. After you have finalized your model architecture and
hyperparameters, train the models once more on the combined
train and validation data sets and evaluate their performances
on the test data set.
Existing Benchmarks. There are some tools and software

packages online that can be used as baselines to judge the
performance of your models.128−131 Some of these tools can
perform automatic feature engineering and testing of several
different ML models. We suggest that you download these
tools and compare the performance of your models against
them. If your model does not perform better or does not offer

any advantages over these existing tools, consider other venues
of improvement.

■ MAKING PUBLICATION-READY, REPRODUCIBLE
WORK

Source Code and Documentation*. Publishing in peer-
reviewed journals relies on the foundational principle that the

methodology be sufficiently described in order to ensure
reproducibility. Therefore, for your ML-based study, full
source code for your models and architecture (if any) must
be provided, including implementation details of data
processing, data cleanup, data splitting, model training, and

Figure 2. Example predicted vs actual material property plots, plotted
(left) without and (right) with a marginal histogram. In addition, lines
corresponding to ideal predictions (where the predicted values exactly
match the actual values) and a linear regression fit (for estimating the
correlation between the predicted and actual values) are shown.

Figure 3. Example residual error plots, plotted (left) against the actual
value and (right) as a histogram with a kernel density estimation
(kde). A lower error indicates a more accurate model prediction.

Figure 4. Example loss curve plot of a neural network, showing model
performance (loss) evaluated on the train and validation data sets at
each epoch throughout the training process. A lower loss indicates a
better-performing model.
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model evaluation. If you can, you should also publish your
source code under a permissive or an open-source license so
that others may (re)use, improve, collaborate on, and
contribute further to your work.132

Your published source code must be completethat is,
somebody should be able to take your source code verbatim,
execute it, and obtain the same results that you did. Required
libraries and other software dependencies (if any) must be
listed, preferably with the pertinent version numbers. Ideally,
these dependencies will be listed in an “environment file” that
others can use to directly create a working software
environment on their local system. If you use any code or
packages developed by others, make sure to adhere to their
licenses. Also consider hosting your code in an online, version-
controlled repository such as GitHub, GitLab, Bitbucket,
DLHub,133 or similar.
Make sure the source code is well-documented and follows

well-established code standards. Instead of writing additional
comments to explain your code, consider writing code in a way
such that it is self-explanatory without the need for additional
comments. This entails using clear variable names, closely
following formatting guidelines (such as PEP 8), and writing

“explicit” code. Add a “README” file as well that provides
your readers with instructions for the installation, setup, and
usage of your code and for the reproduction of your published
results. To ensure large-scale deployability and consistency on
any infrastructure, consider also publishing your project as a
containerized application, using tools such as Docker.134

All Data Should Be Provided*. All results and data sets
reported in the manuscript should be provided with the
manuscript; alternatively, code for the users to obtain the data
themselves must be given, ideally with clear instructions of the
process. Additionally, all raw dataif their licenses allow it
should be provided with the manuscript as well. In the case
where the data cannot be provided, due to licensing, legal and
intellectual property protection, or other insurmountable
hurdles, an explanation should be given. You are nevertheless
encouraged to find alternative solutions for providing data
within reason. Examples may be to provide a partial data set, an
anonymized data set, trained model weights, or instructions for
users on how to obtain the data set themselves. Consult with
the owner of the data before considering these approaches, and
as always, make sure you adhere to the data license.

Figure 5. Example visualization of element prevalence in a data set, shown as a histogram.

Figure 6. Example visualization of element prevalence in a data set, shown as a heatmap on a periodic table.
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Trained Models and Weights*. Ideally, you should
provide a record of all model hyperparameters tested, as well as
the best hyperparameters reported. For neural network
implementations, the trained weights from the models should
also be provided. In this case, be sure to provide the necessary
code to recreate the neural network architecture and to load
the saved weights for use. Ideally, you should also offer a
friendly way to make predictions on user-supplied input data
using these saved weights.
Visualizations*. All visualizations shown in the manuscript

should be reproducible by a user who accesses your code.
Ensure that you have included the required data (and ideally
the code) used to generate the visualizations or have given the
users a way to obtain the required data themselves. If there are
additional figures, such as in the Supporting Information (SI),
ensure that they are understandable by themselves and do not
require additional explanation. If they do require explanation,
provide this in the SI along with the figures.
Some of the typical visualizations that have shown

themselves to be generally usefuland are thus commonly
shownin MI studies are predicted property value vs actual
property value plots (Figure 2), residual error plots and
histograms of residual errors (Figure 3), loss curves throughout
the training process of a neural network (Figure 4), and
element prevalence visualizations (Figures 5 and 6).

■ BENCHMARK DATA SETS

While there are currently several materials property data sets
online which could potentially be used as benchmark data sets
for benchmarking model performance in MI, there exist few
published train/validation/test splits of these data sets which
can be used by researchers to conduct a fair benchmark. Here,
we note that examples of such data sets are commonly found in
the fields of computer vision (e.g., CIFAR, Google Open
Images data set, CelebFaces, ImageNet) as well as in natural
language processing (e.g., Glue, decaNLP, WMT 2014 EN-
DE).
Furthermore, the data heterogeneityin terms of the classes

of materials, the reported material properties, or the diversity
in the types of compounds and constituent elementsof the
available materials data sets are typically quite limited and vary
from data set to data set. Additionally, the methods to access
some of the data stored in the online data repositories are
sometimes restricted and, therefore, hinder potential MI
studies. This is due in part to the fact that certain data sets
are proprietary or licensed under terms that do not allow their
sharing (whether online or offline).
Another challenge is that the online material property

repositories do not offer a “checkpointed” repository state;
therefore, the repository and its data may change at any point
in time, and there is no easy way to revert or refer back to the
state of the repository at an earlier time. Therefore, current ML
researchers typically download materials data sets from the
repositories and archive them locally to run their benchmarks
internally. However, there are recent emerging works from
researchers that aim to address this issue of missing benchmark
data sets for MI and ML studies in materials science.131,135,136

■ SUMMARY

While various machine learning methods, including classical
methods and more advanced techniques such as deep learning
and neural network-based architectures, have successfully been

used for the prediction of materials properties, unique
challenges still exist for their application in the domain of
materials informatics. There are common pitfalls in the
gathering, analysis, and reporting of materials science-related
data and machine learning results and in the facilitation of
reproduction studies. This Methods/Protocols article high-
lights a large number of these issues which are found in
submitted manuscripts and published works in the field of
materials informatics. Proper observation of the recommenda-
tions given above will certainly ensure higher publication
standards and more reproducible science in this exciting
emerging field.
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