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ABSTRACT: The nuclear magnetic resonance (NMR) chemical shift tensor is a
highly sensitive probe of the electronic structure of an atom and furthermore its
local structure. Recently, machine learning has been applied to NMR in the
prediction of isotropic chemical shifts from a structure. Current machine learning
models, however, often ignore the full chemical shift tensor for the easier-to-
predict isotropic chemical shift, effectively ignoring a multitude of structural
information available in the NMR chemical shift tensor. Here we use an
equivariant graph neural network (GNN) to predict full 29Si chemical shift
tensors in silicate materials. The equivariant GNN model predicts full tensors to a
mean absolute error of 1.05 ppm and is able to accurately determine the
magnitude, anisotropy, and tensor orientation in a diverse set of silicon oxide local
structures. When compared with other models, the equivariant GNN model
outperforms the state-of-the-art machine learning models by 53%. The
equivariant GNN model also outperforms historic analytical models by 57% for
isotropic chemical shift and 91% for anisotropy. The software is available as a simple-to-use open-source repository, allowing similar
models to be created and trained with ease.

■ INTRODUCTION
Many useful properties of materials manifest from the precise
structure of a given composition. Traditional structure
determination techniques such as X-ray diffraction (XRD)
are suitable for atoms of moderate to high atomic number;
however, they can lead to ambiguous structure assignments for
materials containing atoms with low atomic number.1 In
addition, XRD relies heavily on long-range order for correct
measurement, but such long-range order is often lacking in
many classes of materials, e.g., nanostructures, amorphous
materials, and materials with a tetrahedral network, making
structural characterization of such materials via XRD difficult.
Such a class of materials are exemplified by silicates, which
consist of a tetrahedral structure of silicons and oxygens
(which have low atomic number and are difficult to observe via
XRD).
Silicate materials are ubiquitous, from naturally occurring

rocks and minerals like quartz2−5 and garnet6 to diverse
manufacturing applications such as glasses,7,8 cements,9 and
zeolite catalysts.10,11 To discover new potential applications of
silicates, accurate elucidation of their structures is a
prerequisite.
Nuclear magnetic resonance (NMR) spectroscopy has

become a reliable tool for structural investigations in such
materials. As a spectroscopy technique, NMR is highly
sensitive to the electron density about an atom and relies on
local structure rather than any long-range order. NMR
measurements are typically combined with powder XRD

measurements and ab initio simulations to obtain refined
crystal structures in a technique termed NMR crystallogra-
phy.12−22 These refinement procedures, however, often take an
expensive iterative approach, as many ab initio NMR
calculations are repeated until the results converge. Despite
advances in computational power and algorithmic efficiencies,
the NMR calculation is still expensive and time-consuming.23

Machine learning (ML) has increasingly been shown to be
useful for providing high-quality predictions for material
properties but with orders of magnitude less computational
demand.24−28 ML techniques have recently been applied to
NMR, with most applications focused on organic mole-
cules29−34 and a few focused on 29Si chemical shift
prediction.35,36 With 29Si NMR databases becoming more
widely available37,38 machine learning will begin to take a
greater role in structural studies. While chemical shifts are
useful, as they correlate to the average electronic environment
about an atom, shifts are only one piece of the spectrum. The
line shape observed in an NMR measurement is described by a
tensor, of which the chemical shift is the isotropic part. By
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ignoring the tensorial nature of the NMR measurement, a
myriad of structural information is lost, which is an issue for
many previous ML models, as they are only capable of
predicting scalar quantities.
Recent advances in the field of geometric deep learning have

allowed for prediction of tensorial targets.39−41 These models
seek to constrain the functions used internally in the model
such that only functions that respect the symmetry of the
target object can be learned. In the work herein, we present an
equivariant GNN model capable of predicting full NMR
shielding tensors and demonstrate its capability via 29Si nuclear
chemical shift tensors in silicate materials.
In the first part of this work we will assess the use of more

traditional ML methods to attempt to learn NMR tensor
parameters in order to demonstrate that a symmetry-invariant
model is insufficient for NMR tensor parameter prediction. We
show that all of the symmetry-invariant models trained herein
fall short of predicting tensor elements and that instead a
symmetry-equivariant model is needed to respect the
symmetries of the tensor, as evidenced by a 53% (3.05 ppm
vs 6.44 ppm) decrease in mean absolute error compared to
invariant models. In the second part of this work we
comprehensively assess the performance of our equivariant
model. We show that it can learn the full NMR chemical shift
tensor to a mean absolute error (MAE) of 1.05 ppm. When
converted to the scalar isotropic chemical shift (which previous
symmetry-invariant models can predict), our equivariant GNN
model outperforms the state-of-the-art model by a large
margin, with an MAE of 2.82 ppm versus 5.87 ppm.
We also assess the predicted tensors to show that the

equivariant GNN model is capable of learning both tensor
magnitude and shape as well as the tensor orientation in a
diverse set of silicon local structures.

■ METHODS
Dataset. The 29Si NMR dataset used in this study is a

subset of ab initio NMR chemical shift tensors of relaxed
structures calculated by Sun et al.38 The dataset is composed of
oxygen-coordinated silicon tetrahedral networks consisting of
SiO2 along with silicates containing group 1 and 2 cations (Li+,
Na+, Mg2+, etc.). It contains a wide variety of structures with
different numbers of bridging oxygen atoms, n, commonly

denoted as Qn, as shown in Figure 1. Each Qn species has a
different chemical environment and local point-group
symmetry due to the differing bond lengths to bridging
oxygen (BO) and nonbridging oxygen (NBO), which in effect
results in different chemical shift tensor symmetries. In total
there are 421 unique silicate structures, consisting of 1387
unique silicon sites. The silicon sites consist of 874 Q4 sites,
174 Q3 sites, 172 Q2 sites, 32 Q1 sites, and 97 Q0 sites. From
each site, the raw calculated rank-2 asymmetric chemical shift
tensor was extracted and processed in accordance with each
tensor space or tensor convention used in the training of the
ML models outlined below.
For each ML model, a train, validation, and test split of 8:1:1

was used. As the dataset consists of multiple types of sites (i.e.,
each Qn species), an attempt was made to stratify the data such
that there would be an approximately equal weighting of each
Qn species in each of the training, validation, and test sets. To
remove any opportunity for data leakage, stratification was
done at the structure level rather than the site level. Due to
structures containing multiple sites, often with different Qn,
each structure was given a label based on whichever n was least
common in the dataset. For example, in a structure with both a
Q1 and Q2 site, the structure would be labeled as Q1 because
the dataset consists of a smaller number of Q1 sites (32) than
Q2 sites (172). Structures were then randomly stratified to give
roughly equal proportions of each n type in each set.
Chemical Shift Tensor Conventions. Often in the

context of NMR, the quantity of interest is a scalar value,
the isotropic chemical shif t, δiso, but it is important to keep in
mind that the chemical shift is a tensor quantity, formally an
antisymmetric second-rank tensor. Typically, only the
symmetric part of the tensor is used, as the symmetric tensor
influences the line shapes seen in the NMR spectrum. The
distinction between nuclear shielding and chemical shift should
also be noted. Nuclear shielding describes the relative change
in magnetic field about a nuclear position with respect to the
external field and is the quantity calculated during an ab initio
calculation. In NMR experiments, however, the shielding is not
measured directly, and instead, the common practice is to
measure the chemical shift as the difference in resonant
frequencies between the nucleus of interest and a reference
compound.

Figure 1. Structural and spectral representations of the NMR chemical shift tensors of different Qn species. The structural and geometric variety
due to the differences in bridging and nonbridging oxygen bonds results in different chemical environments for each Qn and thus different chemical
shift tensors.
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While nuclear shielding tensors are the typical quantities
calculated by ab initio methods, we elect to instead use the
absolute chemical shif t tensor, which is the quantity calculated
by VASP42 and the form originally reported for the database
from which the data used herein was obtained.38 The formal
relationship between the absolute chemical shift tensor, δ, and
the nuclear shielding tensor, σ, is given by43

1 iso=
where σiso is the isotropic nuclear shielding, which is defined as
the average of the trace of the nuclear shielding tensor, given as

1
3

Tr( )
1
3

( )iso
11 22 33= = + +

or in the case of the isotropic chemical shift,

1
3

Tr( )
1
3

( )iso
11 22 33= = + +

(1)

To convert from the absolute chemical shift tensor to the more
familiar referenced chemical shift tensor, δreferenced, the nuclear
shielding tensor of the reference compound, σref, must be
calculated and added to the absolute chemical shift tensor:

referenced ref= +
For more information on NMR conventions, the reader is
directed to the numerous reviews and textbooks on the
topic.1,44,45

In symmetry-invariant ML models, an assortment of tensor
conventions are used as the training targets. The targets will, in
each case, consist of three parameters: the isotropic chemical
shift and two additional parameters used to describe the shape
of the tensor. The two additional parameters broadly fall into
two categories based on the ordering of the principal
components of the chemical shift tensor in the principal axis
system. The complete list of the conventions used herein is
presented in Table 1.
Of the conventions used, the Maryland (Ωκ) and Haeberlen

(ζη) conventions are the most commonly found, as both are
recommended for reporting by IUPAC.46 It should be noted
that Haeberlen is occasionally presented as (Δδη), but the
(ζη) definition is far more common. In addition to Haeberlen

(Δδη), another less practiced convention, the axiality/
rhombicity (AxRh) convention,47 is sometimes used in spin
dynamics and spin relaxation theory, as the parameters come
from the irreducible spherical tensor expansion of an
interaction Hamiltonian. In addition to the four conventions
listed in Table 1, we also investigate learning directly on the
principal axes (i.e., δ11, δ22, and δ33) in the standard convention
to give a total of five conventions investigated for the invariant
property predictions.
For our new symmetry-equivariant GNN model, we use

both symmetric and asymmetric tensor spaces as targets. In
addition to the traditional Cartesian tensors, we also use
irreducible representations (irreps) of the Cartesian tensor, δ,
which are defined as48

E

A

S

1
3

Tr( )

1
2

( )
1
3

Tr( )

ik ik ki

ik ik ki ik

=

=

= +
(6)

where E is the isotropic part of the tensor, Aik is the traceless-
antisymmetric part of the tensor, Sik is the traceless-symmetric
part of the tensor, and δik is the Kronecker delta.
Additionally, in the case of the symmetry-equivariant

models, a decision must be made on which representation is
to be used for interpreting the results. The MAE is satisfactory
for a machine to come to an optimized solution but tells us
nothing about how well we learned the tensors. A symmetric
second-rank tensor has six independent parameters, each of
which will need to be assessed. The spherical tensor elements
are ideal but are difficult to interpret, as are the tensor indices
themselves. The IUPAC-recommended conventions may not
be optimal either. The Maryland convention is a descriptor of
the line shape as a statistical distribution and is only applicable
in specific cases and lacks generalization. The Haeberlen
convention is based on the tensor itself and is generally true to
the chemical shift tensor; however, the convention requires the
ζ parameter to be sign-invariant at η = 1, which creates a
degeneracy. Instead, we turn toward a convention recently
proposed by Srivastava and Grandinetti49 to improve on the
issues of the Haeberlen convention. In this convention, ζ and η
from the Haeberlen (ζη) convention are first mapped to a
polar grid:
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Then the polar grid is mapped onto the first quadrant of the
Cartesian grid to give X and Y, where

X r

Y r

cos

sin

=

= (7)

For interpretation and discussion of the tensors, we use the
isotropic chemical shift (magnitude of the tensor), X and Y

Table 1. Chemical Shift Tensor Conventions, Which Fall
into Two Categories Based on the Principal Axis Labeling
Scheme: Standard Ordering (δ11, δ22, δ33) and Haeberlen
Ordering (δXX, δYY, δZZ)

Standard Ordering: δ11 ≥ δ22 ≥ δ33
convention name parameter 1 parameter 2

Maryland (Ωκ) Ω = δ11 − δ33
3
2

iso
22= (2)

axiality/rhombicity
(AxRh)

Ax = 2δ11 − (δ33 +
δ22)

Rh 22 33= (3)

Haeberlen Ordering: |δZZ − δiso| ≥ |δXX − δiso| ≥ |δYY − δiso|
convention

name parameter 1 parameter 2

Haeberlen
(Δδη)

1
2

( )ZZ XX YY= + 3( )
2

YY XX= (4)

Haeberlen
(ζη) ζ = δZZ − δiso YY XX=

(5)
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(shape/anisotropy of the tensor), and the Euler angles between
the laboratory frame and the molecular frame using the ZYZ
ordering (α, β, γ) (orientation of the tensor).
Machine Learning Models. Graph Neural Networks. In a

chemical graph neural network (GNN), shown in Figure 2a, a
crystalline structure can be represented as a graph in which
each atom is represented by a node, v, and relationships
between nodes are represented by edges, e, which are
commonly considered to be chemical bonds, Coulombic
interactions, etc. Often the notion of a chemical bond is ill-
defined in a crystalline structure, so edges are frequently
constructed as all pairwise node connections within some
cutoff radius, rcut, about each atom, taking into account the
periodic boundary conditions of the system. All together, the
set of nodes, V = {v1, v2, ..., vN}, and the set of edges, E = {e1, e2,
..., eM}, make up a graph, G(V, E). To make the graph G
amenable to machine learning, each node is assigned a feature
vector (information of the atomic number and the Cartesian
coordinates of the atom in this work). The node data may also
be processed to create edge features, eij, which encode
positional information between the two nodes i and j, as
shown in Figure 2b.
The GNNs used in the present work follow the message

passing neural network (MPNN) paradigm, in which node
features are updated from neighboring nodes in a message
passing phase and then the updated features on a node are
mapped to a property of interest in a readout phase,50−53 as
shown in Figure 2c. The objective of the message passing
phase is to learn an embedding for each node, h, such that
unique structural fingerprints for the node are encoded. The
message passing typically occurs over a certain number of
iterations. During iteration t, pairwise interactions between
atom i and neighboring atoms j are summed and processed to
produce a message

m M h h e( , , )i
t

j N
t i

t
j
t

ij
i

=
(8)

where Ni is the neighborhood of all atoms surrounding atom i
within a distance cutoff rcut,Mt is a learnable function that takes
as input the embeddings hit and hjt of atoms i and j as well as
their edge data eij. The embedding of atom i is then updated
using the message from eq 8:

h f h m( , )i
t

t i
t

i
t1 =+

(9)

where f t is a learnable function. Once the embeddings have
been satisfactorily learned, the embedding hi of atom i in the
last iteration is then passed to a readout function to produce
the property of interest for this atom (NMR tensor of Si atoms
in this work).

Invariant Graph Neural Networks. We explored rotation-
invariant GNNs as example ML models designed for scalar
properties. Specifically, the DGL (deep graph library)
implementation54 of the DimeNet++55,56 invariant GNN is
selected (we note that DimeNet++ is a strong baseline model
in terms of accuracy). The model is customized to allow for the
prediction of node properties. A hyperparameter grid sweep
was performed to optimize the DimeNet++ model to predict
the shift tensor eigenvalues. A total of six separate models are
created, each trained on a different shift tensor convention
(eqs 1−5) and the standard convention eigenvalues, using the
three parameters of the convention as the target. See the
Supporting Information for further implementation details and
the optimal hyperparameters.
The DimeNet++ model itself is limited to a rotation-

invariant mapping from the input structure to the target
chemical shift tensor parameters. While the basis functions
used in eqs 8 and 9 themselves are rotation-equivariant, the
message passing framework is rotation-invariant. Specifically,
the coordinate information on each node is only used to
initialize distances and angles, which are invariant geometric

Figure 2. Schematic of an equivariant graph neural network. Each component of the model can have different choices, and the examples here are
for the herein-used TFN-based model. (a) Black-box overview of the model, where a structure (represented by a set of atomic numbers, Z, and the
associated xyz coordinates) is passed in as model input and a tensor (which may be represented as tensor irreps or converted to a Cartesian tensor)
is obtained as model output. (b) The embedding procedure, in which edge encoding utilizes atomic coordinates to build angular embeddings from
a set of spherical harmonics and distance embeddings from a set of learned distance functions. Node encoding utilizes one-hot encoding of the
atomic number. (c) The message passing update procedure, in which the edge and node encodings from the neighboring atoms are passed through
a convolution filter, aggregated via a sum, and passed through an activation function to update the feature vector on the atom of interest.
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properties. As a result, DimeNet++ and similar frameworks are
limited to predictions of scalar targets, in our case multiple
uncorrelated scalar values. The target shift tensor parameters,
henceforth called scalar NMR parameters, fall under the
assumption that the tensor parameters are independent of
crystal orientation, as the powder pattern may be used to
obtain the scalar NMR parameters. Therefore, the parameters
are invariant to rotations.
Equivariant Graph Neural Networks. A rotation-equivar-

iant model was created using the Tensor Field Network
(TFN)41 and e3nn57 frameworks, as implemented in the
MatTEN58 package. In addition to the scalar NMR shift tensor
parameters discussed above, this model can directly predict the
full chemical shift tensors. An initial equivariant GNN model
was implemented (details are given in the Supporting
Information) to determine the optimal target on which to
train (symmetric vs asymmetric and spherical vs Cartesian
tensors). A symmetric spherical tensor target was found to
yield the best loss, and a hyperparameter grid search was
performed to optimize the equivariant GNN model for the
symmetric spherical tensor. To yield a useful model, the
symmetric spherical tensor is then converted to a Cartesian
tensor, which may be processed as a shift tensor.
An additional rotation-invariant GNN model was similarly

created, but this model was trained on the shift tensor
eigenvalues. Internally, this model still does message passing
using equivariant embeddings (as explained in the following
paragraph), but in this case the target is set to the (scalar)
eigenvalues instead of the full chemical shift tensor. A
hyperparameter grid search was performed to optimize the
invariant GNN model (implementation details may be found
in the Supporting Information).
In the TFN framework, similarly to DimeNet++, the

embedding functions in eq 9 are rotation-equivariant. The
TFN framework, however, differs in that the message update
function contains convolution filters constrained to the form

W r R r Y r( ) ( ) ( )l
m= (10)

where R(r) is a learnable function of the distance between the
two nodes and Ylm(r)̂ are spherical harmonics taking in the
orientation between the nodes. TheW matrix has the form of a
block-diagonal matrix where the blocks correspond to the
irreps selected for the network. Additionally, the embedding
vectors used in the TFN framework contain blocks
corresponding to the irreps. The W matrix along with the
embedding vectors may then be convolved according to
Clebsch−Gordan tensor products to ensure that the symmetry
of each irrep is preserved. Thus, the message passing phase of
the TFN model uses equivariant embeddings.

Benchmarking. To the best of our knowledge, no previous
model has been proposed to predict full shift tensors. Thus,
benchmarking will take place in two steps. The current state-
of-the-art model for 29Si scalar NMR parameter prediction was
introduced by Chaker et al.,35 who used linear ridge regression
(LRR) over the smooth overlap of atomic positions (SOAP)59

features to predict the 29Si isotropic chemical shift. We
reimplemented this approach using the SOAP features
generated by DScribe60 and the LRR in scikit-learn.61 During
the invariant-target benchmark, an LRR-SOAP model will be
trained to predict the three eigenvalues of the chemical shift
tensor, and all models will be compared on their predictions of
the eigenvalues. An LRR-SOAP model will also be trained to
predict chemical shift and compared to the models as a
benchmark of NMR property prediction. It should be noted
that the SOAP formalism has been adapted to be symmetry-
equivariant, which may allow SOAP-based models to better
predict tensor components.62 However, we opted to look only
at the invariant SOAP kernel in our benchmarking, as that was
the original kernel used by Chaker et al.
Additionally, wherever possible, historic models will be

added in the benchmark. These models are neglected in the
ML literature for NMR modeling; however, they are widely
used in the NMR community, and therefore, benchmarking on
such models can provide valuable information. One of these
models is the Si−O−Si angle-based ρ model by Engelhardt
and Radeglia:63

a b= + (11)

where a and b are fitting parameters and ρ is a function of the
Si−O−Si bond angle (ΩSi−O−Si) that approximates the oxygen
s character:

( )
1
4

cos

cos 1i

i

iSi O Si
1

4
Si O Si
( )

Si O Si
( )

=
=

An 29Si ζ model introduced by Grimmer et al.64,65 and later
improved by Jardoń Álvarez et al.66 is also considered. This
model correlates the anisotropy to the difference between the
nonbridging-oxygen Si−O bond length and the average
bridging-oxygen Si−O bond length in Q3 species:

m d d( )Si BO Si NBO= (12)

■ RESULTS AND DISCUSSION
Symmetry-Invariant Learning. The first model types

investigated are those trained on rotation-invariant scalar
targets. The models are categorized according to the
symmetries of the internal embeddings and the final target,
labeled as “embedding symmetry” and “target symmetry”,

Table 2. Mean Absolute Error (MAE) for Individual Eigenvalues and Their Averaged Total Prediction Error for Invariant-
Target Modelsa

MAE/ppm

model embedding symmetry target symmetry total δ11 δ22 δ33
LRR invariant invariant 7.66 8.89 5.86 8.24
DimeNet++ invariant invariant 6.44 6.45 7.18 5.70
GNN equivariant invariant 7.82 9.50 5.23 8.73
GNN equivariant equivariant 3.05 3.08 2.84 3.22

aModels are categorized by the symmetry of the embedding functions used in training (training symmetry) and the symmetry of the target at the
time the loss was calculated (target symmetry). It should be noted that the last row was not obtained by directly fitting the eigenvalues but rather by
fitting the full tensor and then computing the eigenvalues.
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respectively, in Table 2. Of the invariant target models,
DimeNet++ performs the best, and LRR-SOAP and the
equivariant GNN are on par with each other. However, if a
fully equivariant GNN model (equivarant embedding and
equivariant target) is used to predict the full shift tensor and
then diagonalized to yield the eignevalues, significant improve-
ment over the invariant target models can be achieved. For
example, the total MAE is reduced to 3.05 ppm, which is less
than half of that from the DimeNet++ model (6.44 ppm).
Comparing the equivariant GNN models trained using
invariant versus equivariant target symmetry, it is clear that
the boost in performance is due to the additional constraint
afforded by learning a second-rank tensor rather than three
independent scalars. The fully equivariant model will be further
discussed in the next section, and here we focus on the
invariant models.
The eigenvalues of the shift tensor are not the only invariant

targets to consider; one can train ML models to directly
predict the NMR parameters in different conventions outlined
in Table 1. For this purpose, we selected the DimeNet++
model based on its superior performance in eigenvalue
prediction. Five DimeNet++ models were trained (one for
each convention), and for ease of comparison, their predictions
were converted to the eigenvalues in the standard convention
and the two IUPAC-recommended conventions (i.e., the
Haeberlen (ζη) convention and the Maryland (Ωκ) con-
vention) using the equations in Table 1. The results are listed
in Table 3. We observe that there is no single optimal model,
only a “best-in-class” per NMR parameter. For example, the
Axiality/Rhombicity convention has the best overall perform-
ance but still underperforms on isotropic shift and Maryland Ω
values. Furthermore, tensor conventions should be intercon-
vertible. While this is typically true for experimental spectra, we
find that it is not the case for ML models trained on individual
NMR parameters. For example, the model trained in the
Maryland convention performs well when predicting Maryland
convention values, but when converted to Haeberlen (ζη), the
model ranks the lowest.
Indeed, it is worthwhile to note that the three NMR

parameters predicted are not independent scalars, and when
fitted as such, information and internal symmetry constraints
are lost. It is therefore not surprising that the use of rotation-
invariant models (e.g., DimeNet++) provide inferior results
compared to a fully equivariant model. As noted earlier, some
conventions are ill-defined and discontinuous for certain
values. Additionally, all tensor conventions based on the
Cartesian tensor have an issue of explicitly defined axes that
can cause confusion when parameters are predicted outside
their range, which results in a change of the order of the
eigenvalues. A full discussion of the numerical issues that arise
when fitting with the tensor conventions can be found in the
Supporting Information.

Symmetry-Equivariant Learning. We now turn our
attention toward the rotation-equivariant GNN model, which
was shown to significantly outperform the invariant models
(see Table 2). Similar to the case of invariant models, there are
a variety of output targets available for the equivariant model,
among which there is not an a priori optimal choice. We focus
on using an asymmetric Cartesian tensor, symmetric Cartesian
tensor, asymmetric irreps (E, Aik, Sik), or symmetric irreps (E,
Sik) as the target (refer to eq 6). Additionally, the question of
which loss function is suitable for learning chemical shift
tensors has not, to our knowledge, been investigated for
training of ML models. However, there has been substantial
work by the MRI diffusion tensor community on optimal
tensor metrics for diffusion tensors.67−72 The ln norms offer a
good balance of optimizing the shape, magnitude, and
orientation of a tensor, and in our case we adopted the l1
norm as the loss function. We found there is a small benefit to
learning on a symmetric tensor versus an asymmetric tensor
before symmetrizing. Additionally, there is a minor decrease in
both epoch time and the loss when training on an irreps tensor
versus a Cartesian tensor. Thus, the optimal space was chosen
to be a symmetric irreps tensor using an l1 norm loss function,
and all subsequent results are obtained from models trained
using this optimal space.
The best-performing equivariant GNN model exhibits an

MAE of 1.05 ppm over the entire chemical shift Cartesian
tensor. However, we admit that an MAE calculated for all of
the tensor components is challenging to interpret because an
asymmetric second-rank tensor has six independent parameters
that must be assessed in order to evaluate the performance
without loss of information. Therefore, we compare the
predicted and DFT-calculated isotropic chemical shift, X, Y,
and Euler angles (α, β, γ) (see Chemical Shift Tensor
Conventions for their definition). These parameters were
chosen because they provide an intuitive view of the
magnitude, shape, and orientation of the tensor, as described
above. Additionally, because the shift tensor is very closely
linked to the structural point group,73 the results are grouped
by Qn into three clusters reflecting the broad symmetry point
group: Td, C3, and C2. The results are summarized in Table 4.
The tetrahedral (Td) sites exhibit low error in the prediction

of the magnitude and shape of the tensor, and the tensors are
well-predicted by the equivariant GNN model, as shown in
Figure 3. While the errors for the Euler angles appear severe in
the Td case, the context of this prediction should be kept in
mind. The tensor for a Td site is highly spherical, showing little
to no anisotropy. The axes of a sphere are not unique in these
cases, and one would expect a random distribution of the Euler
angles. Close inspection of the outlier Euler angles reveals that
the high error predictions correspond to sites which are very
nearly spherical (small X and Y). Even in these cases where the
orientation of the tensor is less meaningful, the model still

Table 3. Performance of DimeNet++ Trained on Different Tensor Conventionsa

training convention eigenvalues (δ11, δ22, δ33)/ppm Haeberlen (ζη) convention (ζ/ppm, η) Maryland (Ωκ) convention (Ω/ppm, κ) isotropic shift/ppm

Haeberlen (ζη) (7.53, 6.24, 7.54) (10.88, 0.24) (11.56, 0.36) 4.43
Haeberlen Δδ (7.83, 5.36, 7.85) (10.91, 0.21) (12.21, 0.38) 4.07
Maryland (Ωκ) (6.58, 5.83, 6.10) (12.51, 0.30) (7.92, 0.38) 4.12
Axiality/Rhombicity (5.58, 4.62, 6.39) (9.71, 0.12) (7.96, 0.17) 4.21
principal axis system (6.45, 7.18, 5.70) (11.02, 0.26) (7.18, 0.32) 4.23
aFor each model, the convention used to train is specified, along with the evaulation errors upon conversion to the Haeberlen (ζη) and Maryland
conventions as well as to the eigenvalues and isotropoic shifts. Mean absolute error (MAE) values are reported.
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provides an accurate prediction of the magnitude and shape of
the tensor.
Moving to the lower-symmetry point group, the C3-

symmetric Q1 and Q3 sites are responsible for a cylindrically
symmetric tensor. The equivariant GNN model shows low
error in the anisotropy prediction, as expected due to the
strong correlation to the C3 axis in these sites, as shown in
Figure 4. The isotropic shift, however, performs considerably
worse than in the tetrahedral case, as is clearly seen in Table 4
(3.28 and 8.58 ppm in Q3 and Q1, respectively, vs 1.52 and
1.46 ppm in Q4 and Q0, respectively). Barring a cluster of three
data points, the Q3 isotropic shift tends to be overpredicted by
the equivariant GNN. The sites with overpredicted isotropic
shift also correspond to the sites with poorly predicted Euler
angles in Figure 4d−f. We speculate that the relatively poor
performance of the model is due to the lack of Q3 sites in the
training data combined with the significant increase in
structural diversity compared to the Q4 and Q0 sites.
Furthermore, the structures with anomalous Q3 sites trend as
outliers in the training set as well and are not well-sampled,
which results in poor learning of their structural correlations.
In some cases the formula of the material was not seen in the
training set, nor were any similar formulas seen, which resulted
in a poor extrapolation by the equivariant GNN model. In
other cases, the same formula was seen but with minor
structural variation, which led to an unfortunate case of the
equivariant GNN memorizing the solution poorly.
The situation is made even more extreme in the Q1 case due

to the low number of samples. The Q1 case is, however,
fortunate in that despite the poor isotropic shift prediction, the
remaining five parameters all show good correlation.
The C2-symmetric sites exhibit the lowest-order symmetry

group and represent a tensor with the shape of an asymmetric

spheroid. These sites show the highest error for the isotropic
shift, as shown in Figure 5, compared to the Td and C3 sites.
This is likely a combination of fewer samples in the training
data and also the high structural distortion, impairing learning
of the isotropic shift (a parameter representing an average).
However, the X and Y values still show that the equivariant
GNN model is well-suited for predicting the shape of the
tensor, as even in the C2 case the tensor has rotational axes to
which it can correlate. Similar to the C3 case, the outliers
observed in the C2 case are likely due to the high degree of
local structural variation possible. The outliers seen are all
poorly sampled in the training set, resulting in the model
learning these cases poorly, as was seen with the C3 sites.
Overall, the equivariant GNN model is able to learn to

predict the tensors of silicates, with the best performance being
on sites with high symmetry, as summarized in Table 4. Even
in cases where the model struggles with isotropic shift or
tensor orientation, the shape of the tensor is well-predicted.
It is also instructive to benchmark our equivariant GNN

model to historic models and previous state-of-the-art models
to ensure that our model constitutes an advance in the field,
especially for the domains where previous models were
successful. For 29Si NMR, the current state-of-the-art model
is the LRR-SOAP model proposed by Chaker et al.35 to predict
isotropic shift.
We trained this model using our dataset to predict isotropic

nuclear shifts and obtained an error of 5.87 ppm over the
entire dataset (compared to 2.82 ppm with the equivariant
GNN over our entire dataset), a Q4 MAE of 4.78 ppm
(compared to 1.52 ppm with the equivariant GNN), and a Q3

MAE of 7.23 ppm (compared to 3.28 ppm with the equivariant
GNN) for isotropic shifts. If we instead train the LRR-SOAP
on the Q4 and Q3 chemical shifts separately rather than the
entire set, the Q4 trained model has an MAE of 4.88 ppm, and
the Q3 trained model has an MAE of 6.57 ppm, showing that
the equivariant GNN improves significantly over state of the
art. Additionally, it should be noted that one drawback of the
SOAP descriptor is that its size scales with the number of
species in the dataset, N, as N(N − 1). Thus, for our entire
dataset the SOAP descriptor encoding has a size of 10 980, and
while this is not an issue for LRR, the dimensionality may be
an issue for other methods especially as the descriptor size is
far greater than the dataset size. It should also be noted that
the LRR model can only handle scalar values, whereas the

Table 4. Performance (Reported as Mean Absolute Error)
of the Equivariant GNN Model for Each of the Relevant Six
Tensor Parameters δiso, X, Y, α, β, and γ, Organized by Qn

Qn δiso/ppm X/ppm Y/ppm α/deg β/deg γ/deg
Q4 1.52 0.52 0.60 60.6 12.2 42.4
Q3 3.28 0.80 0.66 47.9 17.9 59.2
Q2 6.95 1.71 1.80 39.2 9.0 27.4
Q1 8.58 0.85 1.00 1.2 1.3 0.7
Q0 1.46 1.27 1.10 49.4 39.9 107
total 2.82 0.85 0.85 53.6 13.9 45.1

Figure 3. Predicted vs true values of (a) δiso, (b) X, (c) Y, (d) α, (e) β, and (f) γ for Td-symmetric Q4 and Q0 sites.
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main benefit of the equivariant GNN model is in providing the
full shift tensor.
It is also important to consider historical analytical

expressions, as we lose the descriptive power of analytical
expressions when we select an ML method. Determining the
coefficient and intercept from eq 11, we obtain a = −186.3
ppm and b = 477.6 ppm to yield a linear expression with an
MAE of 3.60 ppm over the Q4 subset. Performing the same
analysis with eq 12, we obtain a coefficient of m = −1009 ppm
Å−1 to yield a model with an MAE of 8.77 ppm over the Q3

data subset. Compared to the equivariant GNN’s performance
with a Q4 isotropic shift MAE of 1.52 ppm and a Q3 anisotropy
MAE of 0.78 ppm, the benefits of the equivariant GNN
outweigh the loss of a simple functional form.

■ CONCLUSIONS
Machine learning approaches are increasingly employed to
predict a variety of physical properties, accelerating and
expanding access to material data. However, many of those
physical properties adhere to inherent constraints, such as
symmetry relationships or limits. In the case of tensorial
properties, each eigenvalue may be predicted as an
independent scalar, but such treatment effectively ignores the
underlying symmetry information on the tensor. In this work,
we explore the performance of machine learning models that
rely on symmetry-invariant fitting procedures and contrast the
results with a symmetry-equivariant approach. We find that the
NMR tensor parameters cannot be easily learned via

symmetry-invariant processes and often contain algebraic
structure that makes the learning process more difficult,
independent of the tensor convention. By imposing symmetry
equivariance, our equivariant GNN model is able to outper-
form by 53% the symmetry invariant models, demonstrating
that handling the tensorial nature of the target is the key to
accurately modeling the system.
Examining the results of the equivariant GNN model, we

observe that the model is able to accurately predict the tensor,
not just in terms of shape and magnitude, but in most cases in
the orientation as well. Closer inspection of the cases where
the orientation seems to fail shows that these are often the
cases of highly spherically symmetric tensors where an
orientation is not meaningful. Most surprisingly, the model is
able to capture the shape (anisotropy and asymmetry) of the
tensor, even in cases where the tensor exhibits very little
anisotropy, for example for Q4 and Q0 sites. Despite the
successes of the model, there are still cases where it fails;
however, these failures are likely associated with a lack of data
in the training set. Future work will be focused toward
expanding the dataset, particularly for the Qn species, which are
less well sampled.
Notably, through the demonstrated work on silicates, it is

feasible to predict the full NMR tensor with reasonable
accuracy in seconds rather than hours to days as required for
ab initio calculations. This opens a realm of possibilities from
high-throughput screening of materials via comparison to

Figure 4. Predicted vs true values of (a) δiso, (b) X, (c) Y, (d) α, (e) β, and (f) γ for C3-symmetric Q3 and Q1 sites.

Figure 5. Predicted vs true values of (a) δiso, (b) X, (c) Y, (d) α, (e) β, and (f) γ for C2-symmetric Q2 sites.
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experimental NMR spectra to expediting NMR crystallography
refinement procedures.
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