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ABSTRACT: Nuclear magnetic resonance (NMR) spectroscopy is an
important analytical technique in synthetic organic chemistry, but its
integration into high-throughput experimentation workflows has been limited
by the necessity of manually analyzing the NMR spectra of new chemical
entities. Current efforts to automate the analysis of NMR spectra rely on
comparisons to databases of reported spectra for known compounds and,
therefore, are incompatible with the exploration of new chemical space. By
reframing the NMR spectrum of a reaction mixture as a joint probability
distribution, we have used Hamiltonian Monte Carlo Markov Chain and
density functional theory to fit the predicted NMR spectra to those of crude
reaction mixtures. This approach enables the deconvolution and analysis of the
spectra of mixtures of compounds without relying on reported spectra. The
utility of our approach to analyze crude reaction mixtures is demonstrated with
the experimental spectra of reactions that generate a mixture of isomers, such as Wittig olefination and C−H functionalization
reactions. The correct identification of compounds in a reaction mixture and their relative concentrations is achieved with a mean
absolute error as low as 1%.

■ INTRODUCTION
The synthesis of novel chemical compounds is a crucial
component of organic chemistry, and the preparation of novel
compounds requires significant experimentation to identify
reaction conditions that form products with acceptable yield,
chemo- and stereoselectivity, purity, cost, and environmental
footprint. High-throughput experimentation (HTE) techni-
ques allow researchers to conduct hundreds or thousands of
experiments quickly, but the analysis of those experiments
remains a significant bottleneck.

The most common approach to identifying and quantifying
the reaction products in reaction mixtures in a high-throughput
fashion is gas or liquid chromatography. This approach
requires authentic standards of the expected products to
confirm the presence of reaction products and calibration
curves to accurately quantify product concentrations.1 When
only a small number of products are being considered, it is
manageable to isolate or independently generate an authentic
standard for each potential product or byproduct. However, if
a large library of novel compounds is made, isolating or
independently synthesizing each compound under consider-
ation is prohibitively time-consuming. The synthesis of large
libraries of compounds that span unexplored areas of chemical
space is critical for the diversity-oriented synthesis approach in
drug discovery,2 the generation of training data for machine
learning models,3,4 and the automated discovery of novel
reactions.5 Methods for reaction analysis that are based on

mass spectrometry have limited ability to differentiate
compounds that are isomers of one another and cannot be
used easily to quantify the concentrations of novel products.6−8

In contrast to gas or liquid chromatography, nuclear
magnetic resonance (NMR) spectroscopy is commonly used
to determine the relative concentrations of reaction products
without the need for an authentic standard or calibration curve.
Moreover, NMR spectroscopy provides detailed information
about the identity of products, allowing it to be used to
determine the structure of new chemical compounds. The use
of NMR spectroscopy to analyze the data generated by HTE
would dramatically expand the capabilities of HTE, especially
when large numbers of novel compounds are synthesized.
However, in most cases, NMR spectra are analyzed by experts,
slowing down the process of an otherwise automated
workflow. A tool that automatically analyzes the NMR spectra
of an unpurified reaction mixture (henceforth termed the
crude spectrum) would greatly enable HTE campaigns.
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Prior approaches to the automated analysis of NMR spectra
employed machine learning models to analyze the spectra. The
majority of current models analyze the spectrum of a pure
sample of an unknown compound to determine its
identity.9−13 These models can be employed only on spectra
that contain a single compound, but full workflows capable of
analyzing multicomponent spectra are becoming more
commonplace.14−18 Although powerful for their trained tasks,
these machine-learning models require a database containing
spectra of each potential component and cannot identify novel
compounds.

Markov Chain Monte Carlo (MCMC) methods have been
used for a diverse range of applications related to NMR
spectroscopy,19−23 including MCMC methods for the
deconvolution and quantification of multicomponent spectra,
given a library of known compounds.24,25 Like the machine
learning approaches, this approach has not been used to
identify or quantify compounds for which a spectrum is not
already documented, and this limitation leads to the same need
for authentic standards that hampers analysis by gas and liquid
chromatography. Therefore, a tool is needed that performs
automated analysis of crude NMR spectra without the NMR
spectra of pure individual components.

Hamiltonian Monte Carlo Markov Chain (HMCMC)
modeling is a statistical sampling method that allows for the
efficient sampling of a conditional probability distribution
when only a joint probability distribution is available. By
reframing the NMR spectrum of a reaction mixture as a joint
probability distribution, it could be possible to use HMCMC
to fit spectra predicted by density functional theory (DFT) to
crude reaction spectra. In most cases, a synthetic chemist
knows which products or side products are likely to have
formed in a reaction and can provide structures of all relevant
products. It is also becoming more common for reaction-
prediction models to enumerate probable reaction prod-
ucts.26−31 One could imagine creating a tool that considers a
list of products provided by a user, identifies which products
are in the crude spectrum, and determines their relative
concentrations. This approach relies on the use of computed
spectra in place of experimentally determined spectra of
authentic products, thereby dramatically increasing its utility
by enabling the identification and quantification of products in
a reaction mixture that have not been previously described.

To address this need, we developed a combined DFT−
HMCMC workflow to analyze crude NMR spectra of reaction
mixtures without the need for an experimentally generated
library of known spectra. This workflow consists of: (1)
obtaining ground state conformers of a set of candidate
compounds, (2) calculating the NMR isotropic shielding
constants via DFT to predict the 1H NMR spectrum of each
compound in solution, and (3) varying the stoichiometric
weights and chemical shifts of each candidate compound via
HMCMC analysis to identify the products and the relative
ratios of those products. We show that this model can analyze
experimental spectra of various reaction types, enabling the
automatic identification of reaction components and the
quantification of their relative concentrations.

■ METHODS
NMR Simulations. All molecular dynamics and ab initio

calculations were performed at the National Energy Research
Scientific Computing (NERSC) facility Cray XC40 computer
running an Intel Xeon Processor E5−2698 v3 node with 128

GB of memory. For each compound, a conformer search was
performed using the Conformer-Rotamer Ensemble Sampling
Tool (CREST),32 simulating a solvent environment of CHCl3.
The ground state conformer found via CREST was optimized,
and the NMR shielding tensors and J-coupling tensors were
calculated using approximate density functional theory (DFT)
in QChem v6.0.1.33 A generalized gradient approximation
(GGA) density functional was used following an implementa-
tion of Becke’s B3LYP GGA functional.34

Dunning’s correlation consistent triple-ζ cc-PVTZ basis
set35 was used to optimize the geometry of the structure and
calculate the shielding tensor, as suggested by Flaig et al.36

Jensen’s polarization-consistent pcJ-2 basis set37 was used for
the J-coupling calculation. These functionals and basis sets
were chosen to balance speed and accuracy; while more
accurate methods exist to calculate isotropic shieldings and J-
couplings,37−43 many of these methods are prohibitively
expensive for application in high-throughput workflows. We
used a linear scaling approach to compensate for the systematic
errors in DFT calculations. We show that the fitting procedure
developed herein enables the accurate identification of
products despite the relatively low accuracy of the DFT
calculations.

The HMCMC analysis is robust against small (ca. 0.1 ppm)
errors in isotropic chemical shifts, but it cannot accommodate
large errors in the predicted chemical shifts. The accuracy of
the isotropic shifts obtained from DFT calculations was
improved by correlating the calculated isotropic shieldings to
the experimentally observed isotropic shifts rather than
referencing the calculated chemical shifts to the calculated
chemical shift of a standard compound, such as trimethylsilane
(TMS). Kwan and Liu43 have shown that such calibrations
serve as simple rovibrational corrections to the predicted
isotropic shifts of the ground state conformations of small
molecules. To create a calibration line, 33 experimental NMR
spectra of compounds in CDCl3 solvent were obtained from
the Spectral Database for Organic Compounds (SDBS).44 The
selected compounds were subjected to the procedure above to
obtain isotropic shielding for nonlabile protons. The error in
the calibration curve shown in Figure 1 is 0.1 ppm and fits a
functional form of

Figure 1. Experimental isotropic chemical shielding versus the
calculated isotropic chemical shift derived from the DFT-calculated
isotropic nuclear shielding using the equation δiso = −0.9548σgas

iso +
30.435, which has an R2 = 0.9941 and an MAE of 0.1 ppm.
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= +0.9548 30.435CDCl
iso

gas
iso

3 (1)

in which CDCl
iso

3
is the isotropic chemical shift in a CDCl3

solvent environment, and σgas
iso is the DFT-calculated isotropic

nuclear shielding. This relationship was used to convert the
nuclear shieldings calculated by DFT to isotropic chemical
shifts.
Spectral Fitting with HMCMC. In our method, an initial

trial spectrum is generated as a linear combination of the
spectra calculated for the compounds hypothesized to be
present in the reaction mixture. That trial spectrum is then fit
to the experimentally observed NMR spectrum. To do so, we
reframe the NMR spectrum as a statistical distribution of
stoichiometric coefficients (relative concentrations) and NMR
parameters (chemical shifts) and use Hamiltonian Markov
Chain Monte Carlo (HMCMC) to fit a trial spectrum to the
observed spectrum. HMCMC is a technique that is widely
used to sample from target distributions when direct sampling
is not available. Typical MCMC methods are inefficient for this
application because they scale poorly with the number of
dimensions. HMCMC uses the principles of Hamiltonian
dynamics to produce Markov chains and scales more
efficiently45 than MCMC methods as the number of
dimensions increases.

A workflow was created around HMCMC modeling, as
shown in Figure 2, to determine the true composition of an
NMR spectrum containing multiple species, given a set of
candidate products. In the first step, approximate NMR spectra
for each candidate compound are calculated with DFT, and the
calculated isotropic shielding is converted to isotropic shifts by
using eq 1. Next, to simplify fitting the spectrum, regions of the
spectrum that are most likely to eliminate potential products
are identified and fit iteratively. The spectrum is divided into
subspectra by creating intervals of ±0.5 ppm around each
observed peak. Overlapping intervals are merged across all
compounds in the spectral library, and a set of spectral
intervals is determined. The information content (described in
Spectral Information Content below) of these intervals is used
to rank the order in which intervals are fit. Finally, iterative
HMCMC fitting is used to remove compounds present in low
concentrations based on a cutoff criterion.

To a first approximation, a spectrum in the time domain,
S(t), may be modeled as a sum of time signals, s(t), for each
proton, l

=S t s t( ) ( )
l

l
(2)

in which

=s t a i t( ) exp(2 )l l l (3)

al is the weight of the time signal, and Ωl is the frequency for
each proton. The presence of J-couplings splits the signals into
a predictable pattern, wherein the number of splittings is given
by the familiar N + 1 rule, with the spacing between split peaks
given as J/2 and the new intensities following Pascal’s triangle

= !
!

a a n
n r r( )l

r
l

( )

(4)

To approximate the decay characteristic of real NMR
signals, an exponential decay term, λ, is added to give

=s t a i t( ) exp(2 ( ) )l l l (5)

Upon Fourier transform into the frequency domain, the real
part of the spectrum is given by a sum of Lorentzian lineshapes

{ } =
+

S a( )
( )l

l
l

2 2
(6)

In the case of an experimentally acquired spectrum, the
frequencies are referenced to some compound, often TMS, and
chemical shifts, δl, are used rather than the frequencies.

For a library of candidate compounds derived from chemical
intuition, such as all possible constitutional isomers that could
form by a C−H bond functionalization reaction, we calculate
the conditional probability distribution of the component
weighting factors, given the set of NMR parameters and the
experimental spectrum, Sexp

{ }|{ } { }P a J S( , , )l l i l ij, ,
exp

(7)

From the DFT simulations, however, all that is available is
the joint probability distribution

{ } { } { }P a J S( , , , )l l i l ij, ,
exp

(8)

Figure 2. Overview of the three-step procedure for deconvoluting NMR spectra.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c01864
J. Chem. Inf. Model. 2024, 64, 3008−3020

3010

https://pubs.acs.org/doi/10.1021/acs.jcim.3c01864?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01864?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01864?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01864?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01864?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Fortunately, HMCMC allows one to generate samples from
the conditional probability distribution given only the joint
probability distribution (up to some constant). For more
information on the HMCMC algorithm, we refer the reader to
the numerous reviews on the topic.46,47

It is worth highlighting that our approach involves
approximating the NMR spectrum as a probability distribution.
This approximation introduces the potential for inaccuracies in
the predicted chemical shifts, especially in spectral regions
where significant overlap occurs. Nonetheless, the HMCMC
algorithm accurately fits probability densities, leading to
precise predictions of the concentration in our case. Moreover,
leveraging the representation of the probability distribution of
the NMR spectrum alongside the HMCMC technique
accelerates convergence compared to conventional methods
like least squares minimization.

All HMCMC runs were performed at the NERSC facility
Cray XC40 computer running an Intel Xeon Processor E5−
2698 v3 node with 128 GB of memory. The HMCMC runs
followed the python package NumPyro48,49 implementation,
along with the No-U-Turn Sampler.50 Component weighting
factors were sampled using a Half Cauchy prior distribution,
and isotropic chemical shifts were sampled from a normal
distribution centered around the isotropic shift with a standard
deviation based on the error of the DFT calculations (0.1
ppm). The J-couplings were held constant during our
procedure. While J-couplings and splitting patterns are useful
for manual analysis of a spectrum, our procedure applies a
broadening filter to the spectrum. This filter removes the fine
detail from the splitting patterns and instead yields broadened
Gaussian peaks with shapes dependent on the underlying
splitting patterns and, to a much lesser extent, the frequencies
of the J-couplings. As the J-couplings have a minimal effect on
the lineshapes, we keep them constant. The HMCMC run was
initialized with 1000 warmup samples and 3000 samples.

Calculated NMR lineshapes closely approximate delta
functions, so a Gaussian apodization was applied to the
simulated NMR lineshapes to broaden them and better
approximate an experimental spectrum. Gaussian apodization
was used because the resulting peak shape best matched the
experimental peak shape, although our procedure can be used
with any apodization method. A full width at half maximum
(fwhm) of 2 Hz was determined (based on fitting spectra to
the starting materials as described herein) and applied to each
simulated NMR spectrum. To increase the gradient overlap
between NMR peaks in the simulated and experimental
spectra, an additional broadening filter was applied to both the
experimental and simulated spectra. We found that a Gaussian
apodization with a fwhm of 10 Hz was sufficient for increasing
the gradient overlap in the HMCMC procedure. The
HMCMC analysis required less than 3 h on a high-
performance computing cluster in all cases studied. These
HMCMC calculations were performed on dual-socket, 20-
core, 2.1 GHz Intel Cascade Lake Xeon 6230 processors.

The HMCMC procedure was conducted iteratively with the
library of candidate compounds to fit the simulated spectra to
the experimental spectra. Compounds with a calculated
concentration under a threshold level (initially set to 10%)
were removed from the library, and HMCMC was repeated on
the remaining candidates. This procedure was repeated until all
remaining compounds were predicted to be present in the
mixture, corresponding to the spectrum.

Analytical Statistics. To measure the performance of our
approach, we considered two goals: (1) correctly identifying
which candidate compounds are present in a reaction mixture
and (2) correctly calculating the relative concentrations of each
compound in a reaction mixture. To determine the accuracy of
the HMCMC procedure when finding the correct components
of a mixture, we used classification accuracy. Classification
accuracy is defined as the ratio of the correctly labeled
components to all classifications

= +
+ + +

Acc.
TP TN

TP TN FP FN (9)

in which TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN is
the number of false negatives.

We next calculated the accuracy of our approach that
determines the concentrations of each compound in the
mixture. Concentrations form a simplex (i.e., the sum of
concentrations for the set is a constant, often normalized to 1),
and statistics over the simplex do not follow the same rules as
statistics over the unbound n. Two common approaches for
handling compositional data analysis over a simplex are the
logratio analysis method and the unit simplex method; in this
case, the unit simplex method was used for simplicity. For
further information on compositional data analysis and these
two approaches, we refer the reader to prior reports.51,52

Given a D-part composition, the composition vector is given
as = [ ]x C x x x, , ..., D1 2 in which each xi is a composition. Ĉ is
the closure operator, which normalizes the composition vector
to 1 by dividing each element of the vector by the sum of the
components. For the purposes of statistics over this simplex,
the sample space, SD, is given as the set

= {[ ]

> [ ]

= }

S x x x x

i D x

, , ..., :

0 1, 2, ..., ,

1

D
D i

i

1 2

(10)

Given N repeated measurements (or samples) of the
composition vector, we construct a D × N matrix, that
contains observations of compositions = [ ]x x x x, , ...,N

D1 2 , in
which each xi is a column vector of the xi compositions over
the observations. We are most interested in the measure of the
central tendency center, ξ of the data, which is similar in
interpretation to the mean of the data set in Euclidean
statistics. The center of the data is given as

= [ ]C g g g, , ..., D1 2 (11)

in which gi is the geometric mean of the component vector xi.
The geometric mean is used instead of the arithmetic mean
because the data are simplectic.51,52 In order to consider only a
subset of the elements of a mixture, we form a subcomposition
(or subsimplex). Given a D-part composition, a C-part
subcomposition, for which C < D, may be formed via

= [ ]x C x x x, , ...,C C1 2 , in which all xi ∈ C.
To calculate the mean absolute error (MAE), we use an

approach similar to that used by Matviychuk et al.,53 in which
MAE is calculated from mole fractions

=
=D

x xMAE
1

i

D

i i
1

est true

(12)
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Here, the sum runs over the individual components of the
D-component mixture, and xiest represents the estimated mole
fraction of component i as determined from the geometric
mean of the HMCMC sample (as described in eq 11). The
value xitrue is then the true mole fraction, as determined by the
integrated NMR spectrum (as described below).
Spectrum Acquisition. Simulated experimental spectra

were obtained by combining known quantities of commercial
reagents and directly acquiring an NMR spectrum. Crude
experimental spectra were obtained by analyzing the reaction
mixture at the end of an experiment without any purification.
NMR spectra were acquired on 500 and 700 MHz Bruker
instruments at the University of California, Berkeley NMR
facility. Chemical shifts were reported relative to residual
solvent peaks (CDCl3 = 7.26 ppm for 1H). Relative
concentrations of components were determined by manual
processing and integration of the NMR spectra.

The crude experimental spectra were obtained following
either the borylation of arene C−H bonds or the olefination of
aldehydes with a Wittig reagent. The borylation of C−H bonds
was accomplished by the following procedure:54 In a nitrogen-
filled glovebox, bis(pinacolato)diboron (B2Pin2, 10.4 mg, 0.04
mmol), (1,5-cyclooctadiene)(methoxy)iridium(I) dimer ([Ir-
(COD)OMe]2, 1.7 mg, 0.0025 mmol, 6.25 mol %), 3,4,7,8-
tetramethyl-1,10-phenanthroline (Me4Phen, 1.2 mg, 0.005
mmol, 12.5 mol %), and tetrahydrofuran (THF, 1 mL, 0.04
M) were combined in a 4 mL vial equipped with a stir bar. The
vial was heated at 80 °C for 1 h, and the catalyst mixture
became dark red. To a separate vial was added substrate (0.203
mmol, 5 equiv). The catalyst mixture was added to the
substrate, and the vial was sealed with a Teflon-lined cap. The
reaction mixture was stirred at room temperature for 18 h.
Volatile materials were evaporated with a rotary evaporator to
obtain the crude products, which were directly analyzed by 1H
NMR spectroscopy.

The olefination of aldehydes with a Wittig reagent was
accomplished by the following procedure: To a solution of
methyl (triphenylphosphoranylidene)acetate (100 mg, 0.30
mmol, 0.8 equiv) in water (5 mL, 0.08 M) was added
benzaldehyde (40 mg, 0.38 mmol). The reaction mixture was
heated at 80 °C for 1 h. The reaction was quenched by the
addition of brine and extracted with ethyl acetate (EtOAc).
The organic and aqueous layers were separated, the organic
layer was dried with sodium sulfate (Na2SO4), and the solvent
was evaporated with a rotary evaporator to obtain the crude
products, which were directly analyzed by 1H NMR spectros-
copy.

The starting materials and reagents used to assemble the
reactions are known compounds, and their NMR spectra are
either reported or can be immediately acquired. In such cases,
we used reported or experimental spectra to refine the
predicted spectra for these reaction components. To adjust
the NMR parameters (isotropic shifts, J-couplings, and
Gaussian fwhm broadenings), the simulated spectrum was fit
to the experimental spectrum using the python package
Mrsimulator.55 Mrsimulator allows fitting and increases the
accuracy of NMR parameters calculated by DFT, and this
approach resulted in better fitting with the HMCMC
procedure. Using simulation objects allows the fitting of
molecular properties (shifts) rather than direct line shapes
(spectra). This approach introduces flexibility in the source of
the NMR spectra, enabling the use of different spectrometer
field strengths or spectral widths.

Spectral Information Content. To simplify and accel-
erate the spectral fitting procedure, we considered the
spectrum as smaller spectral intervals and fit these intervals
rather than the whole spectrum. Dividing a spectrum into
smaller regions of interest is similar to how an expert manually
analyzes a spectrum and affords the workflow multiple benefits.
The major benefit is that better resolved regions are analyzed
first, allowing candidate compounds to be removed from
consideration before assessing more congested regions of the
spectrum.

To quantify the information content of spectral intervals, we
use a concept from information theory in which the
information content is quantified as information entropy, H,
defined as

=H x p x p x( ) ( ) log ( )
x X (13)

Here, our spectral space, X, is composed of possible
compounds present within an interval that is readily available
from the DFT-generated candidate library. The probability,
p(x), of identifying a candidate compound in a region of an
NMR spectrum is defined as the ratio of compounds predicted
to appear in that interval to the total number of compounds in
the candidate library. Intervals are then ranked by their entropy
to determine the order in which these intervals are fit, with
high-information entropy intervals fit first. In situations in
which multiple intervals have the same entropy, the coincident
intervals are ordered from least shielded to most shielded, as is
a common strategy when analyzing spectra manually.

■ RESULTS AND DISCUSSION
Performance Benchmarking. To evaluate the perform-

ance of the HMCMC fitting portion of the workflow, we
conducted a series of benchmark tests. These benchmarks are
designed to evaluate the ability of the HMCMC procedure to
analyze the NMR spectra of reaction mixtures and autono-
mously identify the constituents. The value of our method is
that it is tolerant of errors in the chemical shifts of the
resonances in a spectrum of a crude reaction mixture, allowing
us to use calculated spectra in place of those derived from
experimental data. To test the impact of errors in the predicted
chemical shifts of the reaction components, we considered
three levels of NMR predictions with varying accuracy. The
first, a rule-based NMR prediction implemented in Chem-
Draw, is characterized by a standard deviation of roughly 0.4
ppm in the predicted chemical shifts.56 The standard deviation
of chemical shifts calculated by DFT using the functional and
basis sets described above was found to be roughly 0.1 ppm.
Finally, these approaches to chemical shift estimation are
compared against the use of known spectra from a chemical
library repository, which represents the best-case scenario of
having known NMR spectra. Because our method requires a
standard deviation parameter, we assign a chemical shift
standard deviation of 0.01 ppm for molecules with a known
spectrum. These three methods (ChemDraw, DFT, and library
sources of NMR spectra) were compared in three benchmark
tests: (1) fitting a complex spectrum containing n number of
compounds using a candidate list of n molecular structures (in
which n = 5 or 10); (2) the same procedure as (1) with the
addition of random noise to the baseline of the true spectrum;
and (3) fitting a complex spectrum containing 5 compounds
using a candidate list of 10 molecular structures, with and
without the addition of baseline noise.
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To generate candidate compounds for these benchmark
tests, a set of artificial NMR spectra was created, as illustrated
in Figure 3. Each artificial spectrum was created by summing a
series of component spectra, each of which was created by the
following procedure: Each component spectrum contained 10
resonances with isotropic shifts selected from a spectral range
of 0 to 10 ppm. In each component spectrum, each of the
resonances was assigned a random integer intensity between 0
and 3. Of the ten resonances in each component spectrum, 5
were randomly selected to be coupled, with a J-coupling value
of either 5 or 10 Hz. Each component spectrum was then
assigned a weight, which represents the concentration of the
compound in the mixture, by sampling from a Dirchlet
distribution with a length parameter equal to the number of
compounds in the spectrum. The spectra were then multiplied
by their respective weights and stacked into a single composite
spectrum, which mimics the experimental spectrum of a
reaction mixture.

The test set for each simulation method (ChemDraw, DFT,
and library) assessed the influence of error in the predicted
isotropic shifts of the resonances in the component spectra on
the ability to fit the component spectra to the composite
spectrum. To simulate a case in which the candidate
compounds are known but the predicted shifts have some
error, each component spectrum from the artificial data set was
copied, and the isotropic chemical shifts of each resonance
were jittered. A point was sampled from a Gaussian
distribution centered at 0 with a standard deviation dependent
on the method of testing (σ ≈ 0.4 ppm for ChemDraw, 0.1
ppm for the DFT method herein, and 0.01 ppm for spectra
reported in chemical libraries), and this point was added to the
base isotropic shift value to introduce artificial error. The
jittered component spectra were then fit to the composite
spectrum to identify the weights of each component spectrum,
despite the errors in the chemical shift. Each test was repeated
15 times, each time generating a new random set of spectra,
and the results were averaged. The results for benchmarks 1
and 2 are summarized in Table 1, and benchmark 3 is
summarized in Table 2.
Benchmark 1: Variable Ratios. With a sample size of 15

runs, the HMCMC procedure accurately predicted the relative
concentrations of the compounds in a composite spectrum.
The accuracy of the HMCMC assignment was proportional to
the accuracy of the method used to simulate the NMR spectra,
as evidenced by a monotonic decrease in MAE as the level of
the simulated average error in chemical shifts decreased.
Fitting the NMR spectra of 5 or 10 compounds to a simulated

composite spectrum with average errors in chemical shifts
consistent with predictions by ChemDraw (ca. 0.4 ppm) was
accomplished with an MAE in the predicted weights of each
component spectrum of 9 and 6%, respectively. The errors in
chemical shifts representative of predictions by DFT (ca. 0.1
ppm) resulted in HMCMC fitting with MAE values of 6 and
5% for 5 and 10 components, respectively. Finally, the errors in
chemical shifts representative of referencing known chemical
shifts (ca. 0.01 ppm) led to an MAE of 2% for both tests. All
methods are insensitive to the number of components in the
composite spectrum, indicating that the HMCMC procedure
can deconvolute even complex spectra with multiple over-
lapping peaks. In addition, the results suggest that NMR
predictions that are computationally cheaper but less precise
can be used in this context if the associated error in the
predicted concentrations is acceptable. Therefore, the
deconvolution of spectra with significant overlap or spectra
with similar line shapes should be conducted with high-
precision prediction methods, whereas the deconvolution of
spectra with peaks that are well-spaced and easily identified can
be conducted with less precise prediction methods.
Benchmark 2: Baseline Noise. In contrast to the artificial

spectra used in our first test case, spectra obtained
experimentally contain baseline noise due to both electronic
noise and minor impurities arising from the solvent, reagents,
substrates, or byproducts present in low concentrations. To
test the ability of our approach to analyze NMR spectra in the
presence of baseline noise, we conducted a benchmark test
with noise purposefully included. To do so, a vector of random
points was created such that the standard deviation of the
vector was 0.01 (approximately 1% of the highest intensity

Figure 3. General procedure for creating the set of true and estimated candidate compounds in the benchmark testing. To generate a “True” library
of spectra, each simulated compound is given a set of shifts and couplings which can be used to generate a spectrum. The simulated predictions for
each compound are generated by adding noise, Δ, to the shifts. The noise is sampled from a normal distribution, with the variance determined by
the level of theory used: Δ ∼ N(0,σTheory

2 ). The observed spectrum is generated by multiplying each library spectrum by a randomly sampled
weighting parameter Ci and adding the spectra together.

Table 1. Summary of Results for Benchmark Experiments 1
and 2a

benchmark N compounds
ChemDraw
(MAE/%)

DFT
(MAE/%)

library
(MAE/%)

1 5 9 6 2
10 6 5 2

2 5 7 5 2
10 6 5 2

aIn each benchmark, either 5 or 10 compounds are used to construct
the spectrum, and the same 5 or 10 compounds are present in the
candidate library. Benchmark 1 involves fitting the spectrum “as is”,
while the spectrum in benchmark 2 includes baseline Gaussian noise.
The MAE of the concentrations of the compounds is given for each
test.
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peak in the spectrum), and this vector was added to the
artificial spectrum used in Benchmark 1.

No significant difference was observed between Benchmark
1, which was conducted without baseline noise, and Bench-
mark 2, which included artificial baseline noise (Table 1).
When the level of random error in the chemical shifts is
consistent with the NMR spectra generated from ChemDraw,
the MAE in the concentration of each component in the
spectrum was 7 and 6% for spectra corresponding to 5 or 10
components, respectively. Using a level of random chemical
shift error that is consistent with the errors in NMR spectra
generated from DFT resulted in an MAE of 5% for both 5 and
10 components, and using a level of error consistent with
chemical shifts obtained from known compounds resulted in
an MAE of 2% for both 5 and 10 components. These results
indicate that the accuracy of our approach does not suffer from
the presence of baseline noise when predicting the weights of
component spectra, demonstrating the ability of our workflow
to deconvolute and analyze experimental spectra.
Benchmark 3: Missing Components. While it is important

for an analytical approach to identify the relative concen-
trations of components in a reaction mixture correctly, it must
also determine the identity of the components from a set of
potential species in the mixture. Thus, a final benchmark test
was designed to assess the ability of the HMCMC procedure
to determine the identity and relative concentrations of
compounds in the mixture corresponding to the composite
spectrum. For this benchmark, components predicted to
constitute less than 5% of the mixture were considered to be

absent. This test was performed both with and without
baseline noise added, as described in Benchmark 2.

For a sample size of 15 trials, following the procedure
described above for HMCMC fitting, increasing errors in
chemical shift once again led to a monotonic increase in MAE
in the predicted component concentrations, as seen in
Benchmark 1 (Table 2). The addition of baseline noise did
not result in a larger MAE, as seen in Benchmark 2. For the
tests with and without noise, chemical shift errors representa-
tive of predictions by ChemDraw (ca. 0.4 ppm) resulted in
classifying each compound as present or absent in the reaction
mixture with accuracies of 64 and 61%, and MAEs of 9 and
10%, respectively. Chemical shift errors representative of
predictions by DFT resulted in accuracies of 79 and 77%, and
MAEs of 5% for both tests. Chemical shift errors representative
of referencing known compounds found in a library of
chemical shifts led to accuracies of 97% and MAEs of 1% for
both tests. These results indicate that our approach can
identify the individual component spectra in a composite
spectrum even when more candidate structures are provided
than exist in the composite spectrum.

Inspection of the HMCMC analysis reveals that higher
accuracy can be reached by varying the cutoff value. In cases in
which the chemical shift error corresponds to that of literature-
reported spectra, wherein the predicted chemical shifts are
within ca. 0.01 ppm of the experimental chemical shifts, the
HMCMC method falsely classified reaction components as
absent when the true concentration was close to the cutoff
value. For example, when the cutoff value was set to 5%, a

Table 2. Summary of Benchmark Testing for Benchmark 3a

ChemDraw DFT library

conditions MAE/% accuracy / % MAE/% accuracy / % MAE/% accuracy / %

no noise 9 64 5 79 1 97
noise 10 61 5 77 1 97

aIn each test, 10 candidates are given in the library, of which only 5 are truly in the spectrum. One test is performed in which the spectrum is given
as is, and a second test is performed by adding baseline Gaussian noise to the spectrum. The MAE in the concentrations of each candidate and the
selection accuracy is given for each test.

Figure 4. Results of HMCMC deconvolution of the spectrum from the Wittig olefination. (a) Candidate library for the Wittig olefination reaction,
(b) initial DFT-generated spectra before HMCMC fitting, (c) final HMCMC fit report showing the predicted composition, and (d) final
deconvoluted spectra showing the HMCMC-fit spectra of the molecules determined to be in the experimental mixture. The experimental spectrum
was acquired at 500 MHz.
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compound with a true weight of 6% but a predicted weight of
4% was incorrectly classified as absent, despite the low absolute
error in the predicted concentration. In practice, one may
prevent this systematic error by adjusting the cutoff criteria to
be more appropriate for the level of chemical shift error in the
predicted component spectra. An alternative approach would
be to subtract the spectra of the compounds that were initially
confirmed to be present in the mixture and fit the remaining
candidates to the residual.
Experimental Testing. Having validated our HMCMC

workflow, we tested the automated analysis of experimental
data by analyzing several NMR spectra of crude reaction
mixtures. During benchmarking, a tacit assumption was made
that the position, intensity, and splitting pattern of the peaks in
each component spectrum were not correlated. In this case, the
probability of peak overlap is lower, and errors in predicted
chemical shift are well tolerated, as indicated by the similar
MAEs for simulated chemical shift errors between 0.01 and 0.4
ppm. However, the spectra of unique but structurally similar
compounds can have similar NMR parameters and splitting
patterns. To determine the applicability of our workflow to
experimental data, we tested it on crude experimental spectra
derived from real reaction mixtures. We considered the most
difficult test and most useful application of this technology to
be the analysis of reaction selectivity. The reactions presented
herein were chosen because they form a mixture of products
with similar structures and thus pose a difficult challenge for
analysis. These examples evaluate the performance of the
model in its intended applications, such as the analysis of the
selectivity of reactions that can form one or more constitu-
tional isomers.
Wittig Olefination. The first example we consider is a

reaction that forms a mixture of olefin isomers, as shown in
Figure 4. The Wittig olefination of benzaldehyde (1a) forms a
mixture of E (1b) and Z (1c) olefin isomers, resulting in a
simple candidate library of three compounds (two possible
products and one starting material). The NMR parameters for
all candidate compounds were calculated and calibrated as

described above to yield a set of predicted NMR spectra
(Figure 4b).

From the first iteration of the deconvolution procedure, all
compounds in the candidate library were predicted to be
present in the NMR spectrum in greater proportion than the
threshold value of 5%. The HMCMC fitting of these spectra
resulted in predicted relative concentrations that closely match
the true values (Figure 4c). The model predicted the
composition of the Wittig mixture with 100% classification
accuracy (i.e., classifying each potential product as present or
absent) and identified the concentrations of the present
compounds with an 8% MAE, demonstrating an excellent
ability to determine relative concentrations of reaction
components. The deconvoluted spectra are shown in Figure
4d. The deconvolution procedure accurately predicts the
relative ratios of components, despite the presence of
individual peaks that are poorly aligned with the experimental
spectrum, such as the peak near 8.7 ppm in compound 1c. The
chemical shift of this peak was poorly predicted by DFT and is
characterized by a wide distribution of HMCMC-predicted
chemical shifts. However, the chemical shifts of the other peaks
corresponding to this molecule were fit with high accuracy, and
so the overall fit of the spectrum is sufficient. Poor fitting may
be alleviated by using more accurate DFT modeling techniques
or by widening the bounds in the truncated Gaussian used to
estimate chemical shifts.

This example further highlights a key aspect of fitting spectra
via HMCMC: in regions where spectral peaks heavily overlap,
the chemical shift predictions become less precise. This
imprecision in the chemical shift fitting primarily results
from the broadening step. As described above, broadening the
spectrum increases the gradient information used by the fitting
algorithm. The broadening, however, widens the line shapes
and results in a loss of resolution in the sharp peaks and
splitting patterns, which reduces the sensitivity to precise
chemical shift positions. It is worth noting, however, that even
with this broadening step, the fitting process can provide
accurate predictions of relative concentrations, as long as the
chemical shifts are approximately in the correct positions.

Figure 5. Results of HMCMC deconvolution of the spectrum from the picoline borylation. (a) Candidate library for the arene borylation reaction,
(b) initial DFT-generated spectra before HMCMC fitting, (c) final HMCMC fit report showing the predicted composition, and (d) final
deconvoluted spectra showing the HMCMC-fit spectra of the molecules determined to be in the experimental mixture. The experimental spectrum
was acquired at 500 MHz.
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Arene Borylation. In the next example, we analyzed the
NMR spectra of the crude reaction mixture resulting from the
borylation of C−H bonds of aromatic compounds (Figure 5).
The borylation of picoline (2a) could occur at any of the arene
C−H bonds (2b−e) or at the benzylic C−H bond (2f).
Therefore, we presented the model with the 6 potential
borylation products, as shown in Figure 5a. NMR parameters
for all candidate compounds were calculated and calibrated as
described above to yield a set of predicted NMR spectra
(Figure 5b). Because the starting material is a known
compound, an NMR spectrum of the starting material was
obtained and fit using the MRsimulator, as described above, to
obtain a better initial trial spectrum.

Following the first iteration of the deconvolution procedure,
compounds 2b, 2e, and 2f were removed because their
predicted concentrations were all below the 5% concentration
cutoff. A final iteration of the deconvolution procedure was
performed with the remaining compounds 2a, 2c, and 2d to
improve the resulting fit. As shown in Figure 5c, the procedure,
once again, predicted the presence or absence of candidate
compounds with 100% accuracy and predicted the concen-
trations of each compound present with an MAE of 1%,
demonstrating the ability of our method to determine which
components are present in the spectrum of a crude reaction
and the relative concentrations of the components. The
deconvoluted spectra are shown in Figure 5d.
Borylation of Polyaromatic Compounds. We next

considered a significantly more difficult example: the
borylation of 2-phenylethylpyridine (3a, Figure 6). The
number of potential products from this reaction is larger,
and many of the resonances of the protons in these products
overlap. In addition, the experimental spectrum contains
unassigned, low-intensity signals that correspond to the
presence of impurities in the reactant. The borylation can
occur at any aromatic C−H bond of 2-phenyethylpyridine.
Borylation of secondary benzylic C−H bonds is unlikely;
therefore, products from reactions at those positions were not

considered. In total, the candidate library consisted of the 8
compounds shown in Figure 6a. To compensate for the
impurity peaks, a cutoff of 10% was used during the HMCMC
fitting. The NMR parameters for all candidate compounds
were calculated and calibrated as described above to yield a set
of predicted NMR spectra (Figure 6b). Because the starting
material was available, the NMR spectrum of the starting
material was acquired, and the chemical shifts and splitting
patterns of the peaks in the experimental spectrum were fit
using the MRsimulator, as described above, to obtain a better
initial trial spectrum.

The HMCMC procedure is a sampling method, and one of
the sampled variables is the chemical shift. Therefore, the
distribution of HMCMC-predicted chemical shifts is indicative
of how well the individual spectra fit to the experimental
spectra. For example, a successful fitting procedure will result
in a narrow distribution of chemical shifts, and an unsuccessful
procedure will result in a wide distribution of chemical shifts
with large standard deviations. Because the HMCMC
procedure fits a DFT-predicted spectrum to an experimentally
obtained spectrum, a large standard deviation indicates
inaccurate predictions of chemical shifts by DFT or highly
overlapping regions where peak assignment may be ambiguous.

After the first iteration of the deconvolution procedure,
compounds 3b, 3c, 3f, and 3h were removed from the set of
potential products because their predicted concentrations were
below the 10% cutoff. For each of the remaining compounds
(3a, 3d, 3e, and 3g), the majority of the predicted chemical
shifts deviated little from the true value (approx < 0.1 ppm).
However, some resonances were characterized by large
standard deviations in the HMCMC-predicted chemical shift.
A large standard deviation in the predicted chemical shifts
occurs when peaks in the trial spectrum cannot be fit to the
experimental spectrum, either because the compound does not
exist in the reaction mixture or because the initial trial shifts
were very poorly predicted by DFT. To address this issue, in
the second HMCMC iteration, the standard deviation of the

Figure 6. Results of HMCMC deconvolution of the spectrum from the 2-phenylethylpyridine borylation. (a) Candidate library for the multiarene
borylation reaction, (b) initial DFT-generated spectra before HMCMC fitting, (c) final HMCMC fit report showing the predicted composition,
and (d) final deconvoluted spectra showing the HMCMC-fit spectra of the molecules determined to be in the experimental mixture. The
experimental spectrum was acquired at 500 MHz.
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Gaussian distributions used for the chemical shifts was set to
three standard deviations of the DFT error (0.3 ppm), and the
HMCMC procedure was repeated. After this iteration,
compound 3g was determined to be absent, and only 3a, 3d,
and 3e remained. The standard deviations in the chemical shift
predictions for 3a, 3d, and 3e were small, and a final
application of the deconvolution procedure was performed to
improve the fit. As shown in Figure 6c, the procedure yielded a
prediction accuracy of 100% and an MAE of 9% in the
concentrations of components, demonstrating that our
approach can deconvolute the NMR spectra that contain
extensive overlapping of the resonances.
Oxidation of Heptane. Finally, we considered a complex

mixture simulating the nonselective oxidation of the C−H
bonds in heptane to form alcohol, ketone, aldehyde, and
carboxylic acid products. This example simulates an exper-
imentally obtained spectrum by mixing commercially available
compounds. This example poses a stringent test of the
procedure because the spectra of many of the compounds are
similar to each other. Thus, most of the peaks in the spectrum
of the mixture overlap.

To generate a list of candidate compounds for this simulated
reaction, we considered all probable products of the oxidation
of heptane (4a): compounds with a hydroxyl group at each
nondegenerate carbon atom, ketones at each nondegenerate
carbon, and aldehyde and carboxylic acid groups at the
terminal carbons (4b−j). In total, the candidate library
comprised 10 compounds. Three unique regions of the
spectrum were identified by considering their spectral
information, as described in the Methods above. These regions
were used sequentially to deconvolve the experimental
spectrum.

The first region of interest identified by the spectral
information content procedure was the region with a chemical
shift greater than 8 ppm. Analysis of this region revealed
whether heptanal or heptanoic acid (4c and 4j) was present in
the spectrum. In the first iteration of the HMCMC procedure,
both compounds 4c and 4j were excluded. Next, the
information-dense region of the spectrum between 3 and 4

ppm was analyzed. In the library of candidate spectra, all peaks
in this region corresponded to a methine proton α to a
hydroxyl group. Thus, the presence or absence of peaks in this
region revealed the presence or absence of 1-heptanol (4b), 2-
heptanol (4d), 3-heptanol (4f), and 4-heptanol (4h). In an
iteration of the HMCMC procedure, compounds 4f and 4h
were removed from the list of components. Analysis of the
region of the spectrum from 0 to 3 ppm left 4a, 4b, 4d, 4e, 4g,
and 4i in the candidate library. After an iteration of the
HMCMC procedure, none of the compounds were removed,
and as shown in Figure 7c, the procedure yielded a prediction
accuracy of 90%, and the relative concentrations were
determined to be [0.28, 0.11, 0.03, 0.15, 0.29, and 0.14].
These concentrations can be compared to the true
concentrations of [0.18, 0.04, 0.25, 0.10, 0.43, and 0.00], for
an MAE of 16%. Despite compound 4b falling below the 5%
cutoff criteria, its presence was established from analysis of the
midfield region (3−4 ppm), and it was retained in the library.

Analysis of the modest performance of the HMCMC
procedure when analyzing this spectrum shows that it was
difficult to fit accurately, and some peaks and concentrations
were assigned incorrectly. The likely reason for the imprecision
is the large extent of overlap between spectra and the lack of
functional groups that allow for unambiguous assignment. The
chemical shifts and splitting patterns of the methyl and
methylene protons of 4a−j are similar, creating a multimodal
optimization surface which is difficult to deconvolute. Indeed,
the deconvolution of this spectrum by experts is also
challenging.

To address this difficulty, future efforts can introduce
1H−13C HSQC or 13C spectra to provide additional
information that allows for more accurate deconvolution of
1H NMR spectra because the additional information from the
carbon spectrum will aid in excluding compounds, and the
signals in 13C NMR spectra overlap less than those in 1H NMR
spectra due to the greater dispersion of chemical shifts. This
approach can be coupled with expanding the standard
deviation for the initial distribution of chemical shifts used

Figure 7. Results of HMCMC deconvolution of the spectrum from the heptane oxidation simulation. (a) Candidate library containing compounds
4a−4j, (b) initial DFT-generated spectra before HMCMC fitting, (c) final HMCMC fit report showing the predicted composition, and (d) final
deconvoluted spectra showing the HMCMC-fit spectra of the molecules determined to be in the experimental mixture. The false positive prediction
is denoted as (FP). The experimental spectrum was acquired at 700 MHz.
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for the analysis of 1H NMR spectra. This expansion could lead
to better deconvolution. Importantly, the workflow described
herein can be applied to 13C NMR prediction with minor
modifications, enabling further method development.

■ CONCLUSIONS
In conclusion, we have developed an automated workflow for
the identification and quantification of novel chemical
compounds in a reaction mixture. We demonstrate that this
approach can be used to deconvolute and analyze exper-
imentally obtained crude NMR spectra that contain multiple
isomeric products. We present this workflow as a series of
modules so that practitioners can adapt it further to their
needs. The method can enable researchers to automate the
analysis of HTE campaigns that generate large numbers of
previously undescribed compounds. This contribution may
transform our ability to generate training data for machine
learning models and assist drug discovery campaigns during
diversity-oriented synthesis.
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