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THEBIGGERPICTURE A bottleneck in efficiently connecting newmaterials discoveries to established liter-
ature has arisen due to a massive increase in publications. Four different language models are trained to
automatically collect important information from materials science articles. We compare a simple model
(BiLSTM) with materials science knowledge to three variants of a more complex model: one with general
knowledge (BERT), onewith general scientific knowledge (SciBERT), and onewithmaterials science knowl-
edge (MatBERT). We find that MatBERT performs the best overall. This implies that language models with
greater extents of materials science knowledge will perform better on materials science-related tasks. The
simpler model even consistently outperforms BERT. Furthermore, the performance gaps grow when the
models are given fewer examples of information extraction to learn from. MatBERT’s higher-quality results
should accelerate the collection of information from materials science literature.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
A bottleneck in efficiently connecting newmaterials discoveries to established literature has arisen due to an
increase in publications. This problemmay be addressed by using named entity recognition (NER) to extract
structured summary-level data from unstructured materials science text. We compare the performance of
four NER models on three materials science datasets. The four models include a bidirectional long short-
term memory (BiLSTM) and three transformer models (BERT, SciBERT, and MatBERT) with increasing de-
grees of domain-specific materials science pre-training. MatBERT improves over the other two BERTBASE-
based models by 1%�12%, implying that domain-specific pre-training provides measurable advantages.
Despite relative architectural simplicity, the BiLSTM model consistently outperforms BERT, perhaps due
to its domain-specific pre-trained word embeddings. Furthermore, MatBERT and SciBERT models outper-
form the original BERTmodel to a greater extent in the small data limit. MatBERT’s higher-quality predictions
should accelerate the extraction of structured data from materials science literature.
INTRODUCTION

Recently, the number of publications in the field of materials sci-

ence has grown exponentially.1 As a result, it has become
This is an open access article und
increasingly difficult for researchers to follow research progress

as it emerges, even within relatively restricted sub-domains. The

size of the materials science literature means that even relatively

simple questions, such as which material candidates have
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previously been studied for a particular application, can be diffi-

cult or impossible to comprehensively answer. This has created

a need for new, more efficient ways to engage with the literature

and extract the relevant information therein.

Natural language processing (NLP), the analysis of unstruc-

tured text using computers, provides a natural candidate for

such an alternative approach. NLP has successfully been

applied to a number of materials science applications and is

the topic of several recent investigations in materials infor-

matics.2–5 Additionally, work has been done to develop meta-

learning strategies for NER.6–8 Recently, the advent of trans-

former ML architectures such as BERT9 have revolutionized

NLP; leading benchmarks such as GLUE10 are now dominated

by models utilizing attention-based encoder-decoder architec-

tures called transformers11 and perform comparably to humans

on some tasks. Transformer models have ushered in a new NLP

paradigmwhere large and general NLPmodels are ‘‘pre-trained’’

on semi-supervised tasks before being fine-tuned for down-

stream tasks.9,12–17 The pre-training approach allows for task-

specific models to be trained using relatively few hand-anno-

tated examples; this is a useful feature for practical applications

of NLP bottlenecked by annotation such as scientific tasks that

contain technical text and esoteric vocabulary.

Although a single pre-trainedmodelmay addressmultiple NLP

tasks (e.g., question answering, named entity recognition, next

sentence prediction), the success of models with domain-spe-

cific pre-training such as BioBERT,18 CaseHOLD,19 and

FinBERT20 begs the question: can transformer models be further

improved with even more domain-specific pre-training? We hy-

pothesize that the measurable advantages previously shown

with domain-specific pre-training—for example, of SciBERT

over BERT21—can again be extended to models specific to nar-

rower scientific disciplines such as materials science. Improved

domain-specific model performance implies improved ability for

automated knowledge extraction from even the most complex

and vexing (from the perspective of NLP models) scientific do-

mains. Exploring this problem in-depth presents an opportunity

for the collation and synthesis of massive numbers of highly

complex scientific publications into otherwise inaccessible

structured databases and models for knowledge generation.

In this work, we apply transformermodels to the task of named

entity recognition (NER)22 to extract and label important scienti-

fic entities relevant to materials chemistry from unstructured

text. A well-trained NER model will be capable of automatically

mapping the unstructured text of materials science publications

to a queryable database of key terms. Historically, NER has been

used to extract information such as names and locations from

various articles, though recently it has been employed in the

chemical, medical, and materials sciences as well.1–4,23–39 For

material science, this may include terms that refer to materials

and their geometries, properties, syntheses, methods of charac-

terization, and downstream applications. Strongly related work

in text mining and language modeling has also been employed

in the same fields.5,40–60 BERT has additionally found use in

biology, medicine, and materials science.18,61,62

Specific to the field of materials science, there have been sig-

nificant efforts to apply NER to the extraction of materials syn-

thesis recipes, including using BERT.2,28,29,57,62 In the past,

these have employed a combination of the aforementioned
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work in the chemical sciences to extract inorganic material en-

tities with syntax trees and lookup tables to extract properties

and processing conditions. The recently developed trans-

former-based models have been shown to offer significant per-

formance improvements on NLP tasks.9 This provides an excel-

lent opportunity to evaluate the performance of these new

models on NER tasks specific to materials science.

In this work, we apply four different NER models to three

different materials science datasets and analyze their perfor-

mance. The simplest model considered is a bidirectional long

short-term memory (BiLSTM) recurrent neural network. The

other three models, variants of the popular transformer-based

BERTBASE neural network structure,9 have identical model struc-

tures but use pre-training corpora of varying domain specificity.

The considered datasets consist of one general-purpose mate-

rials science dataset (referred to as the solid-state dataset) and

two topic-specific datasets that respectively focus on doping

and gold nanoparticle synthesis. We use the results of NER on

these materials science datasets to relate the domain specificity

of the pre-training corpus to measurable performance differ-

ences in extracting named entities.

Datasets
Here we consider three different NER datasets, chosen to repre-

sent a diversity of text sources and problems relevant to mate-

rials science; a set of solid-state materials science abstracts

with entities of broad interest,28 a set of abstracts with inorganic

doping information, and a set of methods/results sections rele-

vant to gold nanoparticle synthesis. Each of these is described

in detail below. The solid-state dataset is publicly available,63

though only the DOIs and annotated entities are available for

the other two.64

Solid-state dataset

The solid-state dataset discussed in this work consists of 800

annotated abstracts from solid-state materials publications

collected using Elsevier’s Scopus/ScienceDirect65 and

Springer-Nature66 APIs as well as web scraping for journals pub-

lished by the Royal Society of Chemistry67 and the Electrochem-

ical Society.68 Abstracts are considered relevant if they mention

at least one inorganic material and at least one synthesis or char-

acterization method for inorganic materials. The entity labels are

chosen to represent a broad domain of materials science knowl-

edge with eight different labeled entity types: inorganic materials

(MAT), symmetry/phase labels (SPL), sample descriptors (DSC),

material properties (PRO), material applications (APL), synthesis

methods (SMT), and characterization methods (CMT). Details of

the collection and pre-processing of these abstracts and

detailed definitions of the labels are available in Weston et al.28

A condensed example is shown in Figure 1.69 This dataset is

intended to provide a ‘‘catch-all’’ of relevant information without

focusing on any specific facet of solid-state materials. Due to the

broad definitions of the entities, the solid-state dataset generally

contains more entities per paragraph than the other datasets.

Additionally, an inter-annotator agreement of 87:4% was evalu-

ated utilizing 25 annotations from a second annotator.28

Doping dataset

The properties of dopedmaterials used for applications requiring

semiconductors are determined by critical pieces of information

such as the base material (BASEMAT), the doping agent



Figure 1. Solid-state annotation example

An example of the solid-state annotation scheme

condensed from an example abstract in the solid-

state dataset.
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(DOPANT), and quantities associated with the doped material

such as the doping density or the charge carrier density

(DOPMODQ). The intention of this dataset is to capture the infor-

mation relevant to the doping of amaterial and any other relevant

quantitative measurements. Abstracts that specifically contain

information about doping, i.e., those containing regular expres-

sions matching ‘‘dop*’’ (such as ‘‘dopant,’’ ‘‘doped,’’ and ‘‘co-

doping’’) or ‘‘n-type’’ or ‘‘p-type,’’ were queried from the Mat-

scholar database of materials science abstracts.70 A set of 500

abstracts was randomly sampled from the queried set, from

which 455 abstracts were identified by human annotators as

relevant to inorganic materials science and were annotated by

three annotators.

A condensed example is shown in Figure 2.71 As opposed to

the solid-state and gold nanoparticle dataset, tokens were anno-

tated one sentence at a time (one sample = one sentence). Sen-

tences were annotated only when they contain specific and

direct information about the doping of solid-state materials,

e.g., ‘‘X was doped with Y,’’ ‘‘X:Y,’’ or ‘‘Y doping.’’ Sentences

describing byproducts or targeted properties (e.g., magnetiza-

tion) without direct reference to a dopant or a host material

(e.g., ‘‘The layered TiO2 phase did not incorporate the dopant

specie and had an anatase structure with measured lattice pa-

rameters of a = 3:61�A, c = 9:45�A.’’) were not annotated.

Gold nanoparticle dataset

Gold nanoparticles (AuNPs) are usedwidely in biomedicine (e.g.,

in vitro diagnostics), semiconductor technology, and cos-

metics.72–76 Despite the strong reliance of AuNP properties on

size and shape,77,78 only recently have synthesis methods

been able to control AuNP morphology, particularly anisotropic

nanorods. This dataset aims to capture AuNP morphologies

and descriptions from relevant sections of the full text of AuNP

synthesis literature. A single annotator annotated a set of 85

characterization paragraphs from 73 articles on AuNP synthesis.

A condensed example is shown in Figure 3.79 The entities for

this model include general shape-based morphological informa-
tion for the synthesized AuNPs, including

noun-based morphological entities (MOR)

and adjective-based, descriptive entities

(DESs). Entities like ‘‘particle’’ or ‘‘AuNP’’

were annotated as MOR entities, so at

least some target could be identified with

which to attribute size information in the

future since many nanoparticle articles

only refer to the particles as the less

descriptive ‘‘nanoparticle’’ or ‘‘NP.’’ Note

that other aspects such as the dimensions

of particles were not included due to very

low levels of support for such labels in

the original data. This is similar to past

work on information extraction from nano-

material synthesis literature.57 Further-
more, limiting the number of labels will tend to provide better per-

formance, particularly for smaller datasets.

Methods
Four different models are trained and evaluated on each dataset,

including a BiLSTM and three variations of networks using the

bidirectional encoder representations from transformers (more

specifically, BERT) structure. The three BERT networks consid-

ered include BERTBASE (uncased), SciBERT (uncased),21 and a

pre-trained model introduced with this work, MatBERT (un-

cased). Each model, when given an abstract for a materials sci-

ence publication in the form of a sequence of tokens, learns to

classify each token into pre-defined categories. The token cate-

gories correspond to combinations of token position and entity

type, i.e., B� MAT, for the beginning token of a material entity.

In this way, the NER models described here can be understood

as sequence-to-sequence models (Seq2Seq) that transform a

sequence of words into a sequence of labels. Unless otherwise

specified, for each experiment, 80% of the data was used for

training, 10% for validation, and 10% for testing. Sixteen

different seeds (integer powers of two from 0 to 15) were used

to determine the order of the training data as well as the model

weight initialization.

Tokenizers

TheMaterials Tokenizer was usedwith the BiLSTMmodel.28 First,

the tokenization step is carried out using ChemDataExtractor with

additional pre-processing to split tokens that are either composed

of a number and a unit or an element and a valence state.80 Pro-

cessing the tokens then consists of filtering numbers to

become < nUm > since they are often not tokenized correctly

with ChemDataExtractor, normalizing simple chemical formulas

so the order of the elements is standardized, lowercasing tokens

with only the first letter capitalized that are not elements or chem-

ical formulas, and removing accents.

BERT models, however, use the WordPiece subword tokeni-

zation algorithm, which is very similar to byte-pair encoding
Patterns 3, 100488, April 8, 2022 3



Figure 2. Doping annotation example

An example of the doping annotation scheme

condensed from an example abstract in the doping

dataset. Note that sentence-level annotation was

conducted for doping annotations.
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(BPE).81,82 BPE relies on a pre-tokenizer that splits the training

data into words. After determining the unique words in the

training data and their frequencies, BPE constructs a base vo-

cabulary consisting of all symbols that occur in the words and

is trained to learn merging rules, so two symbols from the base

vocabulary can be combined to form a new symbol until the vo-

cabulary has grown to the desired size. The learned merging

rules can then be applied to new words as long as they are

composed of symbols from the base vocabulary. In contrast to

BPE, WordPiece learns symbol pairs that maximize the likeli-

hood of the training data rather than the most frequent sym-

bol pairs.

Tagging schemes

This work uses the IOBES tagging scheme.83 With this scheme,

any token that does not correspond to an entity (or part of an en-

tity) is labeled with O, denoting an ‘‘outside’’ classification. Sin-

gle-token entities will be labeled S� X where the S� prefix de-

notes a ‘‘single’’ token entity, and the X is the entity type. For

multi-token entities, the prefix B� is used to denote the ‘‘begin-

ning’’ token, E� for the ‘‘end’’ token, and I� for the tokens ‘‘in-

side’’ the span of the beginning and end tokens. The IOBES

tagging scheme has been shown to provide higher F-scores

than other similar tagging schemes while retaining the ability to

identify consecutive entities.84

Conditional random field

For all of the models considered, a conditional random field

(CRF) is utilized for decoding sequences in addition to calcu-

lating the training and validation loss, taking the classification

layer output logits as inputs.85–88 As opposed to a classification

layer that outputs logits to predict labels without the consider-

ation of neighboring labels, a CRF layer is capable of taking

context from these neighboring labels into account whenmaking

predictions. Invalid transitions as defined by the tagging scheme

(such as I� X being followed by B� X) are initialized to incur

large loss penalties.

BiLSTM model

The BiLSTM network is an example of a gated recurrent neural

network in which the connections between the nodes in the

LSTM layers compose a directed graph along a temporal

sequence, in this case, a sequence of words. This allows the

network to track arbitrarily long-term dependencies in the input

sequence, demonstrating temporal dynamic behavior. The bidi-
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rectional implementation allows for the

LSTM layers to consider both the forward

and backward directions of the sequence.

Multi-head attention is also used to allow

the network to attend to different parts of

the sequence differently, i.e., responding

to longer-term versus shorter-term depen-

dencies.11 These dependency-sensitive

representations of the tokens in the
sequence can then be used for the downstream classification

task via a classification layer. In this work, the word embeddings

are initialized using pre-trained Mat2Vec embeddings with a vo-

cabulary size of 529;688.89 During training, additional word fea-

tures are learned using character-level convolutions. These fea-

tures are then concatenated with the pre-trained Mat2Vec

embeddings before being fed into the LSTM layers. The char-

acter-level convolutions can aid in improving embeddings for

infrequent or even out-of-vocabulary words and have been

shown to be useful on relatively small benchmark datasets.90

Table 1 summarizes the parameters used to construct the

BiLSTM model. The only change in comparison to the BiLSTM

model used in past work is the use of convolutional layers

instead of BiLSTM layers for the character fields.28 For training

the BiLSTM model with CRF output and loss, the pre-trained

Mat2Vec embeddings were held constant by convention. The

RangerLARS optimizer (also known as Over9000),91 a combina-

tion of a rectified adaptive moment estimation (RAdam)92 and

Lookahead93 to produce the Ranger optimizer94 alongside

least-angle regression (LARS),95 was used for all experiments.

A learning rate schedule called ‘‘flat and anneal’’ was utilized,

which consists of a constant learning rate for 72% of the training

epochs followed by cosine annealing to decay the learning rate

to 0.91 An initial learning rate of 4310�2 was used alongside

gradient clipping with amaximum norm of 1.0 to prevent explod-

ing gradients. The trainingwas conducted for 64 epochs, and the

embeddings were held frozen throughout training.

BERT models

The three BERT models we investigate share the same

BERTBASE network structure as well as the same tokenizer algo-

rithm with a maximum vocabulary size of 30;552 tokens. Input

sequences are limited to a maximum of 512 tokens. Refer to

the original BERT paper for details on its architecture.9

Table 2 summarizes the parameters used to construct the

BERTBASE model. The three BERT models considered in this

work differ only in pre-training, which is largely determined by

the corpora on which they are trained. Before training the actual

BERT model parameters can take place, the WordPiece token-

izer must be trained on the corpora in order to establish the vo-

cabulary of the model. After the tokenizer is trained, the corre-

sponding BERT model is pre-trained on the same corpora.

This consists of two tasks: masked language modeling (MLM)



Figure 3. Gold nanoparticle annotation

example

An example of the gold nanoparticle annotation

scheme condensed from an example paragraph in

the gold nanoparticle dataset.
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and next sentence prediction (NSP).9 TheMLM task requires that

the BERT model predicts missing words in input sequences

where 15% of the words are masked. The NSP task requires

that given two sequences, the BERT model predicts the likeli-

hood that one follows the other. It has been shown that pre-

training on different corpora can lead to different perfor-

mances.21 This is of particular interest in technical fields where

commonly used words and phrases may not be well-repre-

sented or even carry the same meaning in other contexts.

The original BERT model was trained on the BooksCorpus

(800 million tokens) and English Wikipedia (2.5 billion tokens).9

By contrast, SciBERT was trained on 1.14 million scientific pa-

pers from Semantic Scholar (3.1 billion tokens) across a variety

of fields.21 SciBERTwas shown to outperformBERT on scientific

tasks as a result.

Building on this, we present MatBERT as a BERT model

trained using scientific papers specifically from the field of mate-

rials science. For training MatBERT, we randomly sampled two

million papers, or around 61 million paragraphs, from a corpus

mostly consisting of peer-reviewed materials science journal ar-

ticles.2 To optimize MatBERT models for materials science ter-

minologies, two WordPiece tokenizers (cased and uncased)

were trained using these paragraphs with no additional pre-pro-

cessing. Following BERT practices, the vocabulary sizes for the

tokenizers are both 30,522. After tokenization, paragraphs with

fewer than 20 or more than 510 tokens were removed, leaving

a pre-training corpus consisting of around 50 million paragraphs

(8.8 billion tokens). The two variants were trained using only the

MLM task. An AdamW optimizer was used with a weight decay

of 0.01 and the learning rate of 5,10�5 decayed linearly to zero

during five training epochs. A batch size of 192 paragraphs per

gradient update step was used. The convergence of the MLM

loss versus training steps can be found in the supplemental infor-

mation. Eachmodel was trained on eight NVIDIA V100GPUs and

took about 1 month to complete. The pre-training code and pre-

trained MatBERT model weights are publicly available.96,97 In

this work, the uncased version is used for all BERT variants.

For training of the BERT models (MatBERT, SciBERT, and

BERT) with CRF output and loss, the pre-trained model param-

eters were fine-tuned. The model structures as well as the

BERT pre-trained parameters were provided by the ‘‘trans-

formers’’ library.98 The SciBERT pre-trained parameters

compatible with this library were acquired using the SciBERT Al-
lenAI repository.21 All experiments were

performed using the PyTorch library.99

The LAMB optimizer was used for all ex-

periments.100 Different initial learning rates

for the BERT embeddings, BERT en-

coders, and the classification layers (the

linear and CRF layers) were employed to

reach optimum results. They were respec-
tively chosen as 1,10�4, 2,10�3, and 1,10�2. For the first epoch,

only the classification layers are trained, after which the BERT

layers are fine-tuned alongside the classification layers for four

epochs. For the learning rate schedule, all learning rates are sub-

jected to exponential decay to 10% of the initial value at the final

epoch, starting at the end of the second epoch. Gradient clipping

with amaximum norm of 1.0 was employed to prevent exploding

gradients. For the BERT models (MatBERT, SciBERT, and

BERT), the WordPiece tokenizer will often split up words into

multiple subtokens. For label predictions, only the embedding

of the first subtoken of each word is used for classification.

This is consistent with conventional usage.9 The code used for

training the BERT models on the NER tasks is publicly

available.101

RESULTS

In this section, model performances on the aforementioned da-

tasets are reported along with model performance as a function

of dataset size. An input sample consists of an entire paragraph

from the dataset. The model classification performances are

judged according to their achieved precision, recall, and F1-

scores using the ‘‘micro’’ averaging scheme to accurately reflect

the class imbalances in the datasets. In all experiments, the set

of parameters at the end of an epoch that results in the best vali-

dation F1-score are evaluated on the test set. In all experiments,

training was carried out for 64 epochs for the BiLSTMmodel and

five epochs for the BERT, SciBERT, and MatBERT models. We

reiterate that the only difference between the BERT models

considered here is the choice of pre-training corpus.

In Figure 4, the performances of the models on the considered

datasets are shown. Each point on the scatterplot depicts the

95% CI (assuming a normal distribution) across 16 seeds for

the chosen metric, model, and dataset. The precision is the ratio

of correctly predicted entities to all predicted entities, and the

recall is the ratio of correctly predicted entities to all true entities.

The F1-score is the harmonic mean of the precision and recall.

In Figure 4A, it is shown that the MatBERT and SciBERT

models perform better than the BERT and BiLSTM models

(within statistical error as shown by the CIs) on the solid-state

set as determined by the F1-score. For precision, recall, and

F1-score, the MatBERT model performs slightly better than the

SciBERT model. Interestingly, although the BERT and BiLSTM
Patterns 3, 100488, April 8, 2022 5



Table 1. BiLSTM parameters: A table of parameters for the BiLSTM model

Word Embedding Character Embedding LSTM Multi-head Attention

dimension 200 dimension 38 layers 2 heads 16

dropout 0.5 dropout 0.5 hidden dimension 64 dropout 0.25

dropout 0.1
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models achieve very similar F1-scores, there is actually a trade-

off between the precision and recall with the models, as the

BiLSTM model achieves higher precision, whereas the BERT

model achieves higher recall. This means that the BiLSTMmodel

is less susceptible to predicting false positives, while the BERT

model is less susceptible to predicting false negatives. The pre-

cision and recall are much closer in value for the BERT model

than for the BiLSTM model.

Furthermore, in Figure 4B, the samemetrics for the doping da-

taset are shown. Once again, theMatBERT andSciBERTmodels

perform better than the BERT and BiLSTM models. Additionally,

the MatBERT model once again demonstrates better perfor-

mance than the SciBERT model for precision, recall, and F1-

score. Compared to the BERT model, the BiLSTM model

achieves slightly higher precision (0:71±0:03 versus 0:70±

0:02). The respective performances are nearly identical for the

recall (0:68±0:03) and F1-score (0:69±0:02). However, the CIs

are slightly higher with the BiLSTM model.

Finally, in Figure 4C, the same metrics are once again shown

for the gold nanoparticle dataset. The MatBERT model again

achieves a higher F1-score than the other models, but for this

dataset, the BiLSTM model and the SciBERT model achieve a

similar F1-score with the BERT model trailing behind. For the

recall, it can be seen that the BERT model performs significantly

worse than the other models, with theMatBERTmodel achieving

the best performance followed by the BiLSTM model and then

the SciBERT model in turn. For the precision, all of the models

perform similarly, with the BERT model actually achieving the

best performance, followed by the MatBERT model and then

the SciBERT model with the BiLSTM model trailing.

Figure 5 shows a heatmap of the entity-wise average F1-scores

attained for eachmodel across the datasets. The highest score for

each entity is in bold.MatBERT claims the best performance for all

entities except for one, DSC, where it only slightly lags behind

SciBERT. SciBERT then claims the second-best performance for

the rest of the entities aside from DES, which the BiLSTM instead

claims. Between the BiLSTM and the original BERT, the BiLSTM

generally performs better across the entities, only performing

much worse compared to BERT for DOPMODQ, slightly trailing

behind BERT for the APL, PRO, SMT, and DOPANT entities and
Table 2. BERTBASE parameters: A table of parameters for the

BERTBASE model

Hidden Layers 12 Embeddings

attention heads 12 hidden dimension 768

dropout 0.1 intermediate

dimension

3,072

activation function GELU positions 512

layer normalization e = 13 10�2 token types 2
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performing much better for the solid-state SPL, doping

BASEMAT, DES, and MOR entities. Of particular interest is the

verypoor score of zeroobtainedbyBERTon theDESentity,which

was caused by the failure to predict any entities. Since SciBERT

also scored poorly on the DES entity (0.29), with the BiLSTM

(0.53) and MatBERT (0.67) models significantly outperforming

BERT and SciBERT, this would suggest that the domain-specific

pre-training is important to DES entity recognition performance.

Generally, the models tend to consistently perform better or

worse on the same entities. All of the models tended to perform

the poorest on the doping BASEMAT, DOPMODQ, and DES en-

tities and the best on the DSC and MAT entities. There are some

exceptions, however, with BERT performing relatively poorly on

the SPL and MOR entities despite very good performances from

the other models. The model performances on the DES entity

vary far more than on the other entities, with very large perfor-

mance gaps between the models.

To study the effect of the number of training examples on

model performance, we plot learning curves for each model on

each dataset in Figure 6. Curating and annotating even modestly

sized datasets can entail considerable effort from domain ex-

perts in physics, chemistry, and materials science due to the

highly technical nature of many publications in those fields.

This is in contrast to canonical NER tasks such as CoNLL-

2003102 (a NER set used in the original BERT publication9) that

aim to identify less technical entities such as organizations, peo-

ple, or places. Thus, models that can perform well on small

training datasets will be of interest to domain experts looking

to create structured technical datasets from text using NER.

In Figure 6, we observe MatBERT and SciBERT exhibiting

large performance improvements over BERT at low numbers of

training samples, in particular with fewer than 200 samples for

the solid-state dataset and with fewer than 50 samples with

the gold nanoparticle dataset. The BiLSTM model exhibits the

best performance as the training set size approaches zero, but

asymptotically approaches a lower limit than the SciBERT and

MatBERT models as the number of training points increases.

On the solid-state dataset, the larger number of annotated ex-

amples allows for BERT to close the gap in F1-score, so the

CIs are overlapping at 400 samples and are indistinguishable

at 600 samples. As opposed to the SciBERT and MatBERT

models, however, BERT does not exceed the BiLSTM perfor-

mance at any of the training sample intervals for any task. This

is not to imply that BERT is approaching the same limit as the

BiLSTM; rather, we expect that as the number of training sam-

ples is further increased, the general BERT model will exceed

or reach the BiLSTM due to its much more complex architecture

as seen with the solid-state dataset (though this is less clear for

the two smaller datasets). Determining whether adding more

NER training data for any one task will outweigh the effects of

domain-specific pre-training—that is, whether the general



Figure 4. NER model precisions, recalls, and F1-scores

Scatterplot summaries of the precisions, recalls, and F1-scores achieved by

BiLSTM, BERT, SciBERT, and MatBERTmodel predictions with respect to the

true labels on the solid-state dataset (A), doping dataset (B), and gold nanopar-

ticle dataset (C).

Figure 5. NER model entity score heatmap

A heatmap of entity-wise average F1-scores with the best score for each entity

in bold.
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BERTmodel will overlap SciBERT or MatBERT—requires further

investigation with larger numbers of annotated technical text

samples. Generally, we observe that more specific pre-training

results in increased performance (by substantial margins, e.g.,

� 0:05 micro F1-score improvement of MatBERT over general

BERT at 320 solid-state training samples) for BERT-derived

models at every training set size, particularly at small training

set sizes.

Another contributing factor to the difference in performance is

class support (the number of labels in the testing dataset for a

given class). Figure 7 illustrates the disparity among entities’

F1-score by class support for each of the three datasets. As ex-

pected, classes with higher support generally have higher F1-

scores, and classes with low support stratify according to the

level of pre-training. We would intuitively expect MatBERT to

perform much better on rarely mentioned entities than BERT

given its higher exposure to materials-related text during pre-

training. This can be readily seen with the DES entity and

DOPMODQ entity, in which model performances likely suffer

from very low support (respectively � 10 and � 20). For the

DES entity, which has the lowest support, themodels pre-trained

on materials-related text perform significantly better than those

trained on general scientific text or just general text. However,
the large degree of stratification among BERTmodels for entities

with higher support is of note. Particularly for the PROentity (e.g.,

‘‘Voight-Reuss-Hill average bulk moduli’’) with a relatively large

level of support (� 700 samples), MatBERT and SciBERT both

make a substantial � 0:03 and 0.04 F1-score improvement

over BERT. This improvement may imply that highly specialized

entities, such as materials science properties that do not appear

frequently in general corpora but appear frequently in domain-

specific corpora, benefit the most from more specialized pre-

training evenwhen there are relativelymany samples for fine-tun-

ing. For entities that are more commonly mentioned in general

text corpora, such asMOR (e.g., ‘‘particles,’’ ‘‘rods,’’ ‘‘spheres’’),

DOPMODQ (e.g., ‘‘3%’’), and DSC (e.g., ‘‘crystalline,’’ ‘‘amor-

phous,’’ ‘‘powder’’), the level of pre-training appears less impor-

tant at every level of support.

DISCUSSION

Whether domain-specific pre-training is needed for large trans-

former models remains an open question in the field of NLP.

Although large models trained on massive general-purpose

corpora are complex enough to allow for fine-tuning for various

downstream tasks (question/answer, NSP, NER) as opposed

to expensive from-scratch retraining, our results show evidence

that domain-specific pre-training can measurably improve F1-

score performance in the domain of materials science. The over-

all best performance of MatBERT across the three materials sci-

ence datasets corroborates a growing body of evidence that

domain-specific pre-training is not only a trivial improvement

over generally pre-trained models but is indeed worth the effort

of retraining large models like BERT. For instance, BioBERT18

demonstrated as much as 2:8% F1-score improvement over
Patterns 3, 100488, April 8, 2022 7



Figure 7. NER model entity scores as a function of support

Entity score stratified by label count (support) for each of the datasets. Support

varies from model to model due to tokenizer differences that result in different

truncationsof the input, possiblycuttingoff someentities. TheBiLSTMmodel im-

poses no token restriction, while the BERT models are restricted to 512 tokens,

with the rest being truncated. Furthermore, different BERT tokenizers can result

in a different token count, changing the truncation from model to model.

Figure 6. NER model learning curves

Learning curves for fine-tuning NER models on the solid-state dataset (A),

doping dataset (B), and gold nanoparticle dataset (C). The micro-averaged F1-

score on the test set (which is always the same 10% of the total data) is de-

picted. The smallest training set size was chosen as 10% of the total data and

is incremented by 5% up to 80%.
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BERT in the biomedical domain; similarly, both CaseHOLD19

(legal corpora) and FinBERT20 (financial corpora) yield improve-

ments over base BERT in their respective domains’ downstream

tasks. The word distribution shift from a general-purpose corpus

to an exclusively technical corpus is large enough to encourage

full retraining of large transformer models.

Our results now introduce the question: How specialized should

a pre-trainingcorpusbe so that it is both highlyperformantwithin a

domain of knowledge and general enough to address a variety of

NER problems within that domain? Although MatBERT improves

on BiLSTM, SciBERT, and BERT for all but the smallest training

set sizes, theMatBERTmodel we introduce is limited by the distri-

bution of pre-training data. As detailed in methods, pre-training

data were taken from a general material science corpus.2 Howev-

er, as shown by the most frequent title keywords in Figure 8, this

corpus is designed tobebiased toward trendingmaterials science

topics describing experimental syntheses. For example, para-

graphs from full texts tend to favor popular compounds (such as

oxides, energy materials, and magnetic materials) or synthesis
8 Patterns 3, 100488, April 8, 2022
techniques (such as conventional solid-state or hydrothermal syn-

thesis). The MatBERT pre-training corpus, therefore, puts less

weight on computational papers containingdensity functional the-

ory results, theoretical but yet-to-be-synthesized stoichiometries,

and unusual but important phase labels. Thus, MatBERT may be

improved by expanding the pre-training corpus beyond the set

compiled in Kononova et al.2 The goal in selecting a pre-training

corpus should be to strike a balance between the specificity

needed tocapture particular facetsofmaterials science and trans-

ferability between disparate fields within materials science.

Exploring othermethods to sample thematerials science literature

for the purposes of model training is one possible avenue for

future work.

Conclusions
As seen in the presented results and ensuing discussion, the

MatBERT model achieves the best overall performance out of

the considered models. The 1%�4% F1-score improvement

over SciBERT demonstrates that domain-specific pre-training

provides a measurable advantage for NER in materials science.

Furthermore, SciBERT improving upon BERT by 3%�9%
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Most frequent keywords appearing in the titles of the pre-training corpus of the MatBERT model.
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F1-score reinforces the importance of scientific pre-training in

general for materials science text. Interestingly, it was even found

that a comparatively simple BiLSTM model enhanced with em-

beddings pre-trained on materials science text provides better

overall performance than the original BERT model. This suggests

that pre-training on a domain-specific corpus can be more im-

pactful on performance than employing modern large trans-

former-based models. Learning curves additionally show that in

the low data limit, the BiLSTM outperforms the BERT models,

albeit still with poor overall performance due to the lack of data.

For larger datasets, though, MatBERT provides a definitive

improvement in NER predictions that can be expected to accel-

erate the construction of structured materials science datasets.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact
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Materials availability
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Data and code availability

The pre-trained MatBERT model as well as the trained MatBERT NER models

are publicly at https://figshare.com/articles/software/MatBERT-NER_models/

15087276.97 The code used to pre-train MatBERT is publicly available at

https://github.com/lbnlp/MatBERT.96 The code used to train MatBERT NER

is publicly available at https://github.com/CederGroupHub/MatBERT_

NER.101 The DOIs of the articles used for the new datasets alongside the

associated extracted entities are publicly available at NER Datasets: https://
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