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a b s t r a c t 

The density of states of electrons is a simple, yet highly-informative, summary of the electronic structure of a 
material. Here, some remarkable features of the electronic structure that are perceptible from the density of states 
are concisely reviewed, notably the analytical 𝐸 vs. 𝑘 dispersion relation near the band edges, effective mass, 
Van Hove singularities, and the effective dimensionality of the electrons, all of which have a strong influence 
on physical properties of materials. We emphasize that appropriate parameters in electronic structure calcula- 
tions are necessary to obtain even a sufficient-quality density of states exhibiting fine features of the electronic 
structure. 
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. Introduction 

The density of states (DOS) is perhaps the most important concept
or understanding physical properties of materials, because it provides
 simple way to characterize complex electronic structures. Key aspects
hat underlie electrical and optical properties of materials are visually
pparent from the DOS, including the band gap and effective masses of
arriers. For this reason, the concept of DOS is typically mentioned in un-
ergraduate Materials Science and Engineering [1] , Inorganic Chemistry
2] , and Physics [3,4] courses. The ability to compute a high-quality
OS that reflects the true electronic structure of a material greatly im-
roves the ability to interpret and tune various material properties. DOS
alculations are nowadays regularly performed thanks to the availabil-
ty and ease of Density Functional Theory (DFT) calculations; yet, it is
ot uncommon for the DOS to inaccurately portray key characteristics
f the electronic structure. 

In this mini-tutorial, we briefly review some salient features of the
lectronic structure that are perceptible in a high-quality density of
tates. These topics are sometimes understated in instructional manuals
or DFT calculations and even Chemistry or Materials Science courses,
ut they are nevertheless a direct consequence of elementary band
heory in solids. We review key characteristics of the dispersion rela-
ion, Van Hove singularities, and indicators of low-dimensional elec-
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ronic structures that are immediately discernible from a high-quality
OS. We discuss how appropriate computational settings and param-
ters are necessary to realize fine features of the electronic structure;
or example, using the tetrahedron method [5] drastically improves the
uality of the DOS compared to smearing methods. We note that al-
hough this method is widely recommended for accurate DOS calcu-
ations, it is not always used in practice perhaps because characteris-
ics of a high-quality DOS are not illustrated frequently. The examples
sed in this manuscript can be found in the Materials Project database
 https://materialsproject.org/ ) [6] under the following IDs: SrTiO 3 (mp-
229), PbS (mp-21276), CoSb 3 (mp-1317), and TiNiSn (mp-924130). 

. Band edge 

The structure of the density of states at the band edge gives foremost
nsight into the electronic and optical properties of materials. It is there-
ore instructive to recognize the expected shape of the band edge before
laborating on unconventional band shapes encountered occasionally in
aterials. 

An electron in a semiconductor can often be described by a kinetic

nergy 𝐸 = 

𝑝 2 

2 𝑚 ∗ , analogous to the classical picture where 𝑝 is the mo-
entum and 𝑚 

∗ is the effective mass of the electron. In quantum me-
hanics, the momentum of an electron is given by 𝑝 = ℏ𝑘 , where ℏ is
eff.snyder@northwestern.edu (G.J. Snyder) . 
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Fig. 1. (a) The energy band dispersion and the density of states for parabolic 
(green) and Kane (purple) bands. The parabolic conduction and valence bands 
correspond to the 𝑔( 𝐸) ∼

√
𝐸 energy dependence of the density of states, 

whereas the linear character of the Kane bands far from the band edges corre- 
spond to a 𝑔( 𝐸) ∼ 𝐸 

2 energy dependence. (b) The dispersion relation and density 
of states of a material with two separate parabolic bands. Each band contributes 
available electronic states 𝑔 1 ( 𝐸) ∼

√
𝐸 and 𝑔 2 ( 𝐸) ∼

√
𝐸 to the total density of 

states. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 2. The electronic structures of cubic perovskite SrTiO 3 , rock-salt PbS, and 
skutterudite CoSb 3 . (a) The Ti-t 2 g bands and their corresponding partial contri- 
butions to the density of states of SrTiO 3 are shown in red, blue, and yellow. The 
constant-energy Fermi surface of the blue Ti-t 2 g band (where the blue dashed 
line denotes the constant energy slice) appears as three intersecting cylinders 
rather than a sphere. The cylindrical geometry is characteristic of a 2D elec- 
tronic structure ( 𝐷 = 2 ), and the density of states of the parabolic band ( 𝑛 = 2 ) 
is therefore nearly energy independent 𝑔( 𝐸) ∼ 𝐸 

0 . (b) Van Hove singularities ap- 
pear as sharp peaks or abrupt changes of slope in the density of states. They arise 
in regions where the slope of 𝐸 vs. 𝑘 is zero, indicated by the red dashed lines. 
The inset shows the 𝑔( 𝐸) ∼

√
𝐸 trend expected at the band edges; however, the 

trend quickly changes curvature to 𝑔( 𝐸) ∼ 𝐸 

2 , as described by linear or Kane 
bands. (c) Multiple bands in CoSb 3 contribute additively towards the number of 
states, indicated by the abrupt change in the energy dependence of the density 
of states. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
he reduced Plancks constant and 𝑘 is the wave vector. The resulting 𝐸

s. 𝑘 is known as the dispersion relation, where 𝐸( 𝑘 ) = 

ℏ 2 𝑘 2 

2 𝑚 ∗ for an elec-
ron in a parabolic band. In a semiconductor, electrons typically behave
his way with an effective mass 𝑚 

∗ , which is usually within an order of
agnitude of the free electron mass. 

The very observation that the energy depends on 𝑘 2 implies the 
√
𝐸 

hape of the density of states. The analytical expression for the DOS of
n electron, traveling in three dimensions in a parabolic energy band,
s: 

( 𝐸) = 

(2 𝑚 

∗ 
DOS ) 

3∕2 

2 𝜋2 ℏ 3 

√|𝐸 − 𝐸 𝑏 | (1)

here 𝑚 

∗ 
DOS is known as the DOS effective mass (i.e., the effective mass

alculated from the DOS), 𝐸 𝑏 is the energy of the band edge, and 𝑔( 𝐸) is
n units of states/(eV Å3 ). The magnitude of the DOS near the band edge
s often used to estimate 𝑚 

∗ 
DOS , although it may be simpler to calculate

he related Seebeck mass from the Seebeck coefficient [7,8] . 
The 

√
𝐸 shape of the DOS in a conventional band leads to a sharp

rop of the DOS at the band edge as shown by the green curves in Fig. 1 a.
his sharp demarcation of the band edge is important for confirming the
agnitude of the band gap and location of the Fermi energy. The DOS

f SrTiO 3 ( Fig. 2 a), PbS (inset of Fig. 2 b), and CoSb 3 (inset of Fig. 2 c)
2 
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Fig. 3. Comparison of the density of states of TiNiSn calculated via the tetra- 
hedron method using a 21 × 21 × 21 k -point mesh (red) and the Gaussian smear- 
ing method with 3 × 3 × 3 (orange) and 21 × 21 × 21 (blue) k -point meshes. The 
smearing width is set to 0.05 eV for calculations using Gaussian smearing meth- 
ods. The inset magnifies the differences between the smearing methods at the 
band edge, a feature of the electronic structure necessary to interpret electrical 
transport measurements. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

s  

D  

F  

l

3

e  

f  

c  

p  

e
v  

g

𝑔  

C  

i
 

m  

l  

c  

f
𝐸  

s  

a  

t  

i  

t  

m
 

a  

p  

l  

i  

a  

b

 

t  

l  

𝐸  

i  

m  

m  

t  

s  

d  

v  

i

4

 

s  

e  

a  

c  

t
 

l  

e  

s  

t  

o  

a  

c  

b  

d  

n  

a  

t

5

 

m  

l  

r  

i  

v  

a
 

i  

c  

a  

a  

t  

o  

t

6

 

t  

o  

f  

a  

t  

c  

t

how the Fermi energy at the sharp band edge. A poorly represented
OS with smeared band edges, which gives rise to a nonzero DOS at the
ermi energy, can incorrectly make an insulator or semiconductor look
ike a metal (see inset of Fig. 3 ). 

. Unconventional electronic structure 

The density of states will sometimes deviate from the expected 
√
𝐸 

nergy dependence away from the band edge. Features such as the ef-
ective dimension and non-parabolic bands are then expected to be dis-
ernible from the energy dependence of the DOS. The number of occu-
ied electronic states 𝑁 depends on the dimension 𝐷 as 𝑁 ∼ 𝑘 𝐷 ; thus,
lectrons that are effectively constrained to 𝐷 dimensions with an 𝐸
s. 𝑘 dispersion relation 𝐸 ∼ 𝑘 𝑛 results in the DOS ( 𝑔( 𝐸) = 

𝑑𝑁 

𝑑𝐸 
= 

𝑑𝑁 

𝑑𝑘 

𝑑𝑘 

𝑑𝐸 
)

iven by 

( 𝐸) ∼ 𝐸 

(
𝐷 

𝑛 
−1 

)
(2)

onsequently, the form of the energy band dispersion and dimensional-
ty can be understood from the shape of the DOS and vice versa. 

A form of a non-parabolic energy band found occasionally in 3D
aterials is a Kane band, which is parabolic ( 𝑛 = 2 ) at the band edge but

inear ( 𝑛 = 1 ) away from the band edge [9,10] . As indicated by purple
urves in Fig. 1 a, as the band becomes more linear ( 𝐸 ∼ 𝑘 , 𝑛 = 1 ) away
rom the band edge, the DOS (in 3D) correspondingly follows a 𝑔( 𝐸) ∼
 

2 energy dependence. The electronic structure of the small band gap
emiconductor PbS has Kane bands as shown in Fig. 2 b, giving the DOS
 

√
𝐸 energy dependence at the band edge with a change in curvature

o an 𝐸 

2 energy dependence away from the band edge resulting in an
nflection point that does not occur in a parabolic band. Kane bands tend
o appropriately describe small band gap materials with low effective
ass such as InSb [11] and PbSe [12] . 

Some materials may also exhibit multiple bands, indicated by an
brupt change in the energy dependence of the DOS. If the bands ap-
ear as separate ellipsoidal constant-energy Fermi surfaces in the Bril-
ouin zone, then each band contributes additively to the total DOS, man-
festing as a faster increase in the DOS when the second band appears
long the energy axis ( Fig. 1 b). Such a multiband effect is exemplified
y CoSb 3 , as shown in Fig. 2 c. 
3 
Complex electronic structures are often parameterized by an effec-
ive mass 𝑚 

∗ , where 𝑚 

∗ changes with energy as measured by a Fermi
evel (or doping) dependence [8] . Changes in 𝑚 

∗ are expected when the
vs. 𝑘 dispersion relation deviates from a parabolic form [13,14] or

f multiple bands are present [15] . Therefore, a change in 𝑚 

∗ is the
ost direct indicator of a complex electronic structure [7,16] . Effective
ass 𝑚 

∗ is only expected to be a constant for a given doping, tempera-
ure, and measurement type (or definition) for 3D parabolic bands with
pecific electron scattering assumptions [8] . For example, the common

efinition of 𝑚 

∗ based on band curvature ( 𝑚 

∗ = ℏ 2 
(
𝑑 2 𝐸 
𝑑𝑘 2 

)−1 
) will give

ery different values from Eq. (1) for non-parabolic [17] or warped (not
sotropic) bands [18] . 

. Dimensionality and the Fermi surface 

Occasionally, electrons in a material are constrained to fewer dimen-
ions than the dimensionality of the crystal structure. In graphene for
xample, electrons are constrained to travel in two dimensions ( 𝐷 = 2 )
long bands that are linear ( 𝑛 = 1 ) [19] . By Eq. (2) , this dimensional
onstraint is reflected in the DOS by scaling linearly with 𝐸, as opposed
o the conventional 

√
𝐸 energy dependence in bulk 3D materials. 

Even in 3D materials, electrons can be effectively constrained to
ower dimensions by the electronic structure, giving them different prop-
rties [20,21] . This is seen by the geometry of the constant-energy Fermi
urface, which represents all wave vectors 𝑘 of a band that have a par-
icular electron energy. In SrTiO 3 for instance, the Fermi surface of one
f the Ti-t 2 g bands looks like three interpenetrating cylinders ( Fig. 2 a),
s opposed to a sphere for a typical 3D material [20,22] . The cylindri-
al constant-energy Fermi surface resembles that of a 2D system ( 𝐷 = 2 ),
ecause the Fermi surface depends on only two of the three wave vector
irections. Since the band has parabolic dispersion ( 𝑛 = 2 ), the DOS is
early a constant with energy ( 𝑔( 𝐸) ∼ 𝐸 

0 ) as predicted by Eq. (2) . Thus,
n unconventional DOS alone may indicate dimensional constraints to
he electronic structure. 

. Van hove singularities 

Sharp, abrupt peaks are quite common in the density of states of
any materials. Such peaks are usually due to a type of Van Hove singu-

arity [23] , which result from a vanishing slope in the 𝐸 vs. 𝑘 dispersion
elation. Several appear in the DOS of PbS, indicated by red dashed lines
n Fig. 2 b. For example, a sharp, asymmetric peak at ∼0.9 eV below the
alence band edge corresponds to a flattening of the 𝐸 vs. 𝑘 dispersion
t the W point. 

Van Hove singularities are typically responsible for distinct features
n the optical absorption spectra [24] . However, electronic structure cal-
ulations can show artificial peaks in a density of states plot that do not
rise from a Van Hove singularity, as seen in Fig. 3 . Often the peaks are
rtefacts due to the method of calculation intended for a purpose other
han the analysis described above. Thus, in order to observe the effects
f dimensionality, dispersion, and other important features in the DOS,
he method of calculating the DOS needs to be considered. 

. Calculating the density of states 

Advancements in first-principles techniques for studying the elec-
ronic structures of materials [25] have made calculations of the density
f states routine [6,26] ; yet, some that are published do not exhibit the
eatures described in this review. To calculate a sufficient-quality DOS,
ppropriate input parameters must be explicitly specified. For instance,
he linear-tetrahedron method for Brillouin zone integration with Blöchl
orrections [5] renders many salient features of the DOS with excep-
ional quality compared to smearing methods. 
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To illustrate, in the half-Heusler compound TiNiSn, the expected 
√
𝐸 

nergy dependence and the sharp drop at the valence band edge is clear
rom the tetrahedron method (see inset in Fig. 3 ), whereas the Gaus-
ian smearing method smoothens the valence band edge even for dense
 -point meshes. Using a coarse 𝑘 -point mesh may show spurious DOS
eaks that can be confused for Van Hove singularities. The true Van
ove peak at 0.7 eV below the valence band edge appears stark against

he surrounding smooth portions of the DOS calculated using the tetra-
edron method, whereas it looks similar to the spurious DOS peaks when
sing smearing methods. 

It is tempting to assume that these essential features of a DOS will
imply emerge from electronic structure calculations by considering
ore 𝑘 -points. However, stark features such as Van Hove singularities

nd the band edge shape remain obscure even at higher 𝑘 -point den-
ities using smearing methods [27] while they appear clearly with the
etrahedron method, making the latter preferred. Although many in the
ommunity already follow these recommendations, they are important
o re-emphasize as the user community of electronic structure methods
rows. 

. Conclusion 

The density of states reveals striking features of an electronic struc-
ure that are often overlooked. This mini-tutorial should serve as a guide
or interpreting the DOS of a real material. Not only can important ma-
erial parameters like band gap and DOS effective mass (which may be
erived from Seebeck coefficient measurements) be seen from a DOS,
ut new, unusual phenomena such as reduced dimensionality and un-
onventional band shapes can be identified from the shape of a DOS.
uch phenomena can also exist deeper in the band, revealing potentially
ovel behavior of complex materials. 

Smearing methods in electronic structure calculations can obscure
hese essential features and instead introduce artefacts that can be
isidentified. These shortcomings can be remedied simply by using the

etrahedron method when computing the DOS and looking for these es-
ential features of a DOS when assessing convergence of the calculation.
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