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A B S T R A C T

Fluoroethylene carbonate (FEC) has been proposed as an effective electrolyte additive that enhances the stability
and elasticity of the solid electrolyte interphase (SEI) of emerging Si and Li metal anodes. However, uncertainties
still remain on the exact mechanism through which FEC alters the electrolyte decomposition and SEI formation
process. Herein, the influence of FEC on LiPF6/ethylene carbonate (EC) electrolytes for Si anodes is investigated
through classical molecular dynamics, Fourier-transform infrared spectroscopy, and quantum chemical calcu-
lations. Albeit a minority species, FEC is found to significantly modify the solvation structure and reduction
behavior of the electrolyte while being innocuous to transport properties. Even with limited 10% of FEC, the Li+

solvation structure exhibits a notably higher contact-ion pair ratio (14%) than the parent EC electrolyte (6%).
Moreover, FEC itself, as a new fluorine-containing species, appears in 1/5 of the Li+ solvation shells. The Li+-
coordinated FEC is found to reduce prior to EC and uncoordinated FEC which will passivate the anode surface at
an early onset (ca. 0.3 V higher than EC) by forming LiF. The critical role of FEC in tailoring the Li+ solvation
structure and as-formed protective SEI composition provides mechanistic insight that will aid in the rational
design of novel electrolytes.

1. Introduction

To realize next-generation energy storage systems, there is a
pressing need for functional, optimized electrolytes with excellent bulk
stability and conductivity while exhibiting a suitable range of passi-
vating reactions towards the chosen anode material [1,2]. Mounting
evidence points to rational design of the bulk electrolyte solvation
structure [3], including both majority as well as minority species, as a
vehicle towards tailoring specific interfacial reactivity and reduction
potentials of electrolyte components, which in turn contribute to the
formation of a functional solid electrolyte interphase (SEI) layer.

An optimal SEI layer passivates the anode surface against further
side reactions while facilitating Li-ion transport [4,5]. Extensive pre-
vious work shows that a complicated cascade of reduction reactions
occurs during the first cycle, and that the initially formed SEI

containing inorganic species, e.g. LiF and Li2CO3 [6,7], as well as or-
ganic ones, e.g. lithium ethylene dicarbonates (LEDC) [8,9], further
evolves through a variety of aging processes [10–13] (hydrolysis, re-
action between Li salt and intermediate decomposition products, and
thermal decomposition, etc.) as well as continuous electrolyte reduction
[14,15]. The sequence of reactions and their aging depend both on the
specific components and concentration, including additives and im-
purities, of the bulk electrolyte, and upon the specific anode material
and its surface chemistry and structure. Hence, in principle, every
anode material requires a differently tailored electrolyte, to achieve
maximal compatibility—both electrochemically as well as mechani-
cally.

One of the most promising anode materials for future high energy
density Li-ion batteries (LIBs) is Si, due to its high theoretical specific
capacity (exceeding 4200 mAh g−1) and low cost [16]. However,
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conventional LIB electrolytes, such as lithium hexafluorophosphate
(LiPF6) in cyclic ethylene carbonate (EC) and linear dimethyl carbonate
(DMC) and/or diethyl carbonate (DEC) [17,18,119], form a non-pas-
sivating Si SEI that is unable to mitigate the cracking due to Si's large
volume expansion and contraction during cycling. To improve the Si
SEI performance, several approaches [19] have been explored, e.g.,
nanostructuring [20,21], use of binders with tailored functionalities
[22–24], as well as modified salts and electrolyte additives [25,26],
fluoroethylene carbonate (FEC) has recently been proposed as an ef-
fective electrolyte additive that significantly enhances the stability and
elasticity of the as-formed SEI film [27,28]. In the presence of FEC,
which degrades at a higher reduction potential than both EC and DEC, a
denser, more uniform and conformal SEI is formed on the silicon
electrode [19]. This SEI layer has been found to ameliorate the emer-
gence of large cracks and suppress further decomposition of EC/DMC,
leading to enhanced electrochemical performance and improved cou-
lombic efficiency [19]. To understand the composition and morphology
of the Si SEI formed with FEC, extensive experiments using scanning
transmission electron microscopy (STEM) [29], electron energy loss
spectroscopy (EELS) [29], Fourier-transform infrared spectroscopy
(FTIR) [25,30], X-ray photoelectron spectroscopy (XPS) [16,31],
atomic force microscopy (AFM) [32,33], hard X-ray photoelectron
spectroscopy (HAXPES) [19,34], nuclear magnetic resonance (NMR)
[16,35], differential electrochemical mass spectrometry (DEMS) [36],
and time-of-flight secondary ion mass spectrometry (ToF-SIMS) [37],
etc., have been undertaken. Lucht [25] and co-workers recommended a
10% FEC inclusion based on a combination of low impedance and high
capacity retention due to the formation of an SEI which contains both a
flexible polymer and high lithium salt content (LiF and Li2CO3). Sub-
sequent studies found that, compared with a standard EC/DMC elec-
trolyte, the use of 10% FEC additive modifies the organic SEI compo-
nents derived from LEDC and soluble linear oligomers to soluble and
insoluble crosslinked poly(ethylene oxide)-based polymers (such as li-
thium poly(vinylene carbonate)), which could better passivate the
anode surface and resist volume expansion [16,35,38]. Meanwhile, FEC
incurs increased formation of LiF, less formation of Li2CO3 and organic
carbonate species resulting in an overall lower interfacial impedance of
the Si anode [39]. The presence of fluoride species further leads to the
etching of the native oxide surface layer, improving the surface region
Li conductivity and lowering the interfacial resistance [4,29]. More-
over, there is evidence that FEC influences the LiPF6 decomposition
reaction and may suppress further salt degradation after the initial
cycles [19].

Numerous studies have endeavored to understand the reaction
pathway and SEI formation mechanism through experiments [40] and
multiscale computational simulations [41]. For example, experimental
efforts have utilized Lithium Naphthalide (LiNap) as a one-electron
reduction reagent [42,43] to analyze the resulting solid precipitates and
gas evolution. Through this technique, FEC was found to decompose
into a range of products including HCO2Li, Li2C2O4, Li2CO3, and
polymerized vinylene carbonate (VC), which supports a decomposition
mechanism where FEC reduces to form VC and LiF, followed by sub-
sequent VC reduction. Other complementary approaches include theo-
retical modeling the electrolyte [44], Si anode [45], and their inter-
phase [46,47]. Quantum chemical calculations confirm that
defluorination reactions significantly increase the reduction potential of
FEC [48]. Leung and Balbuena et al. have pioneered the ab-initio mo-
lecular dynamics (AIMD) simulation of EC and FEC on the surface of Si
as well as lithiated Si (LiSi4, LiSi2, LiSi and Li13Si4) [49–52] including
the native oxide layer [45,53], and proposed a series of possible de-
composition mechanisms leading to LiF formation and polymerization.
FEC is found to exhibit more diverse reaction pathways than the two-
electron reduction of unsubstituted ethylene carbonate [54–56]. Both
one- and two-electron reactions are feasible for the FEC reduction and
result in a fluoride radical which in both cases contribute to the for-
mation of LiF [52]. Also, it was found that radical species are

responsible for the electron transfer that allows SEI layer growth once
its thickness has evolved beyond the electron tunneling regime
[46,57,58]. While several studies have focused on the reduction me-
chanisms of single FEC [59] and simplified solvation/interface models
[52,60], a thorough examination of the influence of FEC on the solva-
tion structure of the electrolyte [61], and hence the reduction potentials
of the associated majority as well as minority species whose populations
are altered by FEC, has to our knowledge not been undertaken. For
example, it has been widely assumed that FEC, exhibiting a lower donor
number than EC, remains largely uncoordinated as an additive in LIB
electrolyte formulations [62,63]. However, even as a minority species,
FEC may strongly influence the reduction potential and decomposition
mechanism of associated electrolyte components, and hence alter the
onset as well as reaction sequence of the bulk electrolyte. One of the
goals of this contribution is to investigate how FEC influences the sol-
vation structure, which further determines the reduction reactions and
the subsequent SEI formation process.

In the present work, we report classical molecular dynamics (MD)
simulations coupled with first-principles quantum mechanics to de-
scribe the detailed solvation structure and reactivity of LiPF6 in EC/
FEC, as a function of FEC as well as salt concentration. The solvation
structure, self-diffusion coefficient and other macroscopic properties of
the EC/LiPF6 electrolyte with or without FEC additive are obtained, and
the reduction potentials of the majority as well as minority species are
calculated. Spin density analysis was used to further elucidate the re-
duction behavior of the solvate complexes obtained from the MD si-
mulation, and hence the role of FEC in the SEI formation reaction.
Corresponding experimental FTIR measurements are used for validation
and as a direct determination of the coordination number in compar-
ison with the calculated solvation structure. The aim of our work is to
provide a deeper understanding of the subtle influence of the FEC ad-
ditive on the bulk electrolyte and its constituents to aid in future ra-
tional design of functional electrolytes for Si anodes.

2. Calculation methods

2.1. Classical molecular dynamics (MD)

MD simulations were performed using the Large Scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) [64] code for elec-
trolytes of 1.0/1.2 M LiPF6 in EC or EC with 5/10mol% FEC. Although
cyclic solvents are often used together with linear solvent ingredients
such as DEC or DMC to modify viscosity, it was found that when EC
contributes more than 50% by weight of the electrolyte, EC becomes, to
good approximation, the exclusive “inner member” of the Li+ solvation
sheath [65]. Hence, only EC (and FEC) molecules are considered here to
simplify the model. 1500 solvent molecules were used as bulk elec-
trolytes. The number of salt molecules was adjusted via several test runs
for 1 atm and 298 K equilibrium conditions to achieve the 1.0 M and
1.2M concentrations. Specifically, the final number of salt molecules
were 104 and 126 with equilibrated box volume of 177.5 nm3 and
180.2 nm3, respectively. The molecules were initially packed randomly
in a cubic box of size 54× 54×54 Å3 periodic in the XYZ direction
using PACKMOL [66] (Figure S1, available in the supplementary ma-
terial). The initial configuration was minimized by conjugated-gradient
energy minimization scheme employing a convergence criterion of
1.0× 10−4. While the thermodynamic melting point for EC with 1M
LiPF6 is approximately 298 K [67], the kinetic liquid range limit may be
lower [68], which allows a room temperature liquid state simulation.
The systems were equilibrated for 2ns in the isothermal-isobaric en-
semble (constant NPT) using the Parrinello–Rahman barostat to main-
tain a pressure of 1 bar and a temperature of 298 K with a time constant
of 1ps. An annealing process was conducted to further guarantee that
all systems are melted and to avoid local configuration confinement. All
systems were heated from 298 K to 400 K for 1ns, and maintained at
400 K for 1 ns, and subsequently annealed from 400 to 298 K in 1 ns.
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Finally, the production runs of 5 ns were conducted in the canonical
ensemble (NVT) under Nose-Hoover thermostats with a time constant
of 1 ps at 298 K. The simulation time was long enough to sample ade-
quately the Fickian (diffusive) regime of all systems, which was justified
by a 55 ns long run (Figure S2).

A non-polarizable force field model was employed, which is defined
by the following potential functions:
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The bonded interactions (bonds, angles, dihedrals, and impropers)
were modeled as harmonic functions and the nonbonded included van
der Waals interactions and Coulombic forces. The bonded and non-
bonded parameters for EC and FEC were obtained from the Optimized
Potentials for Liquid Simulations All Atom (OPLS-AA) force fields
[69,70], the PF6− anion from Lopes et al. [71], and the lithium cations
from Jensen et al. [72] The partial atomic charges for all molecules
were derived by first optimizing the geometry using Becke's three-
parameter exchange function combined with the Lee–Yang–Parr cor-
relation functional (B3LYP) [73] at the aug-cc-pvdz theory level using
the Gaussian 16 [74] package and then fitting the electrostatic potential
surface using the RESP method [75,76]. Long-range electrostatic in-
teractions were handled by the particle-particle particle-mesh (PPPM)
solver with a grid spacing of 0.1 nm. A cutoff distance of 1.5 nm was
used for electrostatic and 12–6 Lennard-Jones interactions. Moreover,
each Li ion in the system is surrounded by at least one PF6− in the first
solvation shell or second solvation shell according to the trajectories
(Figure S3). Hence, if we ignore the negligible amount of aggregates
(AGG), all Li ions can be categorized into the contact ion pair (CIP) and
solvation separated ion pair (SSIP). A Boltzmann factor was used to
estimate the CIP formation free energy from the population difference
of the CIP and SSIP structures.

= −G k T
p CIP
p SSIP

Δ ln
( )
( )f CIP B

(7)

where p is the population for each species, ΔfGCIP is their relative free
energy, kB is the Boltzmann constant and T is the temperature. For NVT
run under equilibrated pressure, the Helmholtz free energy (A) is ap-
proximately equal to the Gibbs free energy (G).

To further examine the influence of FEC on the bulk electrolyte,
transport properties are characterized by the self-diffusion constant (D)
and the transference number (tLi+). The self-diffusion coefficients for
Li+, PF6−, EC, and FEC were extracted from the MD simulation by
analysis of the mean square displacement (MSD) over time using the
Stokes−Einstein relation [77]. The slope of the linear regime in the
MSD was obtained for each simulation duration of 1 ns and averaged
over 5 ns of the production runs to obtain:
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Based on the self-diffusion constants, the Li+ ionic transference

number tLi+, was calculated from ratios of D according to Ref. [78]:
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2.2. Quantum chemical calculations

Geometries of solvate complex were optimized from the initial
structures observed in MD simulations to obtain their theoretical IR
vibrations using Gaussian 16 at the B3LYP/6–31++G(d) level of
theory [79]. The calculated IR data was then accumulated according to
the composition ratio from the MD simulations to obtain the total
spectra of each electrolyte. The adiabatic reduction potentials for the
representative solvation structures were calculated using the following
function [80].

= − − + −
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where Greduced and Ginital are the free energies of the reduced and initial
complexes at 298.15 K in gas-phase at 298.15 K, respectively; ΔGsolv

o

are the corresponding free energies of solvation, and F is the Faraday
constant. The zero-point energy (ZPE) corrections were considered in
the calculation while the basis set superposition error (BSSE) energy
was neglected [81]. The solvent effects in the free energy calculation of
each complex were considered using both an explicit cluster model and
an implicit polarizable continuum model (PCM) [82]. The inclusion of
empirical dispersion correction [83] resulted in very slight changes in
reduction potentials ≤ 0.05 V (Table S1), and therefore was not in-
cluded. A standard-state correction [84] was also considered to account
for the four reduction reactions with free EC or PF6− generation, which
resulted in the addition of a correction constant (RTln(24.47/M), where
R is the gas constant, T is temperature, 24.47 is the molar volume in
liter for ideal gas under 1 atm and 298.15 K, M=1 for PF6−, M=0.07
for EC) to ΔGsolv

o. A dielectric constant of 90 was adopted for the EC
solvent as well as the EC/FEC mixture [85]. Geometries were allowed to
relax after the electron transfer. Subtraction of 1.4 V accounts for the
conversion from the absolute electrochemical scale to the commonly
used Li/Li+ potential scale in order to compare predicted values with
experimental data using the same reference electrode. An additional
factor of ca. 0.1 V for graphite intercalation or 0.3–0.4 V for Si anode Li
insertion should be subtracted if the reference electrode is changed to
these specific systems. The spin density calculation of the reduced state
structures was conducted using natural bond orbital (NBO) theory. The
dipole moment calculation was conducted at the B3LYP/6–311+
+G(d,p) level of theory.

3. Experimental methods

3.1. Fourier-transform infrared spectroscopy (FTIR)

The FTIR spectra for 1.0M LiPF6 in EC and 1.0M LiPF6 in EC with
10wt% FEC were collected with a FTIR spectrometer (Bruker, ALPHA)
using a diamond attenuated total reflection (ATR) accessory. Two pure
solutions (EC and EC w/10wt% FEC) were also tested as a comparison.
Spectra were collected in the region from 4000 to 650 cm−1 with 128
scans and 2 cm−1 resolution in an argon-filled glovebox with O2 and
H2O < 0.1 ppm. Ethylene carbonate (EC, anhydrous, ≥ 99%), lithium
hexafluorophosphate (LiPF6, battery grade) and fluoroethylene carbo-
nate (FEC, 99%) were purchased from BASF. All spectra were normal-
ized via stretching band of –CH2 at 3000 cm−1. This analysis is based
upon the assumption that the infrared intensities of the uncoordinated
and coordinated structures are equivalent after normalization (no
scaling of the bands).
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4. Results and discussion

4.1. Solvation structure

A sequential simulation for 1.0/1.2 M LiPF6 in EC with 0/5/10%
FEC was conducted to investigate the influence of FEC on the solvation
structure of the LiPF6/EC electrolyte. The population proportion of
solvent molecule and anion in the first solvation shell of Li+ is clearly
altered after adding FEC, which is confirmed by the radial distribution
function, g(r), and the corresponding integrals, N(r), of Li-X (X=O
(EC), F(PF6−), Li, P(PF6−) for EC and X=O(EC), F(PF6−), O(FEC), P
(PF6−), F(FEC) for EC w/FEC) pairs as shown in Fig. 1, Figure S4, and
Table S1. The dominant peak of the Li–F pair at ca. 8 Å shown in Fig. 1a
suggests that for 1.0M LiPF6 in EC, most of the LiPF6 salt forms solvent
separated ion pairs (SSIP), while the contact ion pairs (CIP) present as
minority species (Fig. 2b). In addition, a trace amount (less than 1%) of
aggregate solvates (AGG) were also observed during the simulation. By
integrating the g(r) to 3.0 Å, the total coordination number (CN) for Li
ion is obtained as shown in Fig. 2a. Interestingly, while most of the first
solvation shell is occupied by EC solvent molecules (5.84 out of 5.90)
with a most probable distance of 2.08 Å to Li+, the Li+ solvation
sheaths also present an average of 0.06 PF6− anions, most of which
form monodentate structures coordinated through a fluorine. The si-
mulation produced a longer distance of 2.11 Å for the Li–F pair, illus-
trating that EC molecules take closer positions in solute complexes. The
AGG species are rare, indicating an almost negligible number of Li ions
that coordinate with more than one PF6− anion. Hence, the corre-
sponding CIP ratio is estimated as 6%, with a SSIP ratio of 94%, which
agrees qualitatively with previous MD simulations [86], and is in
agreement with common assumptions that LiPF6 is a weakly co-
ordinating salt compared to LiBF4 and well dissociated in EC solutions
[87].

Upon addition of 10% FEC into the LiPF6/EC electrolyte, the sol-
vation structure is evidently altered in several ways, primarily due to
the weakened donor ability of FEC. Besides the similar solvation

structures as shown in Fig. 2b, other solute complex structures con-
taining FEC were also observed in the snapshots of the MD simulation
(Fig. 2c). Intriguingly, it is the carbonyl O in FEC that binds with the Li
ion rather than F, which means that the composition difference of the
solvent molecule does not radically alter the binding behavior as
compared with the parent EC molecule [63]. However, the average CN
for Li–O(EC) pair decreases from 5.84 to 5.51, allowing for an average
Li–O(FEC) pair contribution of 0.19 to the first solvation shell. A
maximum in g(r) of 2.12 Å was observed for the Li–O(FEC) pair, sug-
gesting a weaker interaction between Li-FEC as compared to Li-EC.
Notably, the CIP ratio doubles from 6% to 14%, which significantly
changes the statistics of the SEI formation reaction precursors, in-
dicating a prominent role of FEC, even as a minority species. Similar to
the EC electrolyte, the simulation with FEC additive results in a same Li-
EC distance. Yet, the Li-FEC distance is slightly farther away (2.12 Å) as
compared to the Li-EC counterparts, which results in a ‘looser’ struc-
turing of the first solvation shell. EC electrolytes are known to promote
salt dissociation due to its high dipole moment (5.64 Debye, calcu-
lated), as well as a high donor number. In contrast, FEC exhibits a lower
dipole moment (4.97 Debye, calculated) which results in less dis-
sociation of LiPF6 and weakened donor ability (i.e. smaller CN of Li+-
solvent). This was further illustrated by inspecting the different charge
population on the carbonyl oxygen of each molecule. Natural bond
orbital analysis results in a charge on OEC of−0.66, while the charge on
OFEC is −0.62, indicating the weaker donor ability of FEC as compared
to EC. If we compare all six simulated compositions listed in Fig. 2a, it is
obvious that a higher LiPF6 concentration gives a higher CIP ratio. More
importantly, when FEC is added to the system, a non-negligible per-
centage of the solute complexes are modified with fluorine-containing
FEC that occupy the first solvation shell. The tendency for CIP forma-
tion can be represented by the free energy ΔfGCIP which is obtained
through the CIP population, assuming a Boltzmann distribution of
electrolyte species. Table 1 summarizes the results which show that
higher salt concentration as well as inclusion of FEC reduces the energy
cost of contact ion pairing. Previous first-principles calculations

Fig. 1. Calculated radial distribution functions, g(r), and the corresponding integrals, N(r), of Li–O(EC), Li–F(PF6−), Li–Li, Li–P(PF6−) pairs of (a) (b) 1.0M LiPF6 in
EC, and Li–O(EC), Li–F(PF6−), Li–P(PF6−), Li–O(FEC), Li–F(FEC) pairs of (c) (d) 1.0M LiPF6 in EC with 10%mol FEC additive.
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reported a ΔfGCIP of 2.6 kcal mol−1 for the Li+−(PC)4 to
Li+−PF6−(PC)3 conversion [88], which is approximately 1 kcal mol−1

higher than that of 1.0M LiPF6/EC obtained here from the CIP popu-
lation. We speculate that the inclusion of explicit solvation effects be-
yond the first solvation shell as well as polarization effects not included
in the current simulations may contribute to the difference between the
two methodologies. In particular, the inclusion of 10% of FEC further
reduces the solvating strength of the composite electrolyte, and allow
for more CIPs, i.e. for PF6− to directly contact/interact with Li+. The
coordination number for the Li-FEC pair increases to 0.2, which means
that about 20% of the solvate structures on average now contain at least
one FEC. We argue that this content change of the solute complex
significantly changes the reduction potentials of the electrolyte con-
stituents, which will be addressed further in the following sections. We
also note that, with a higher temperature, the total coordination
number of Li+ is lower [89]. Therefore, a test of the electrolyte system
under a sequential temperature of 330 K, 350 K, 400 K were performed
to validate the results (Table S2). It was found that, with higher tem-
perature, the CN for Li+-EC decreases from 5.84 (298 K) to 5.23
(400 K), and the population of Li+-PF6− CIPs increases from 6%
(298 K) to 25% (400 K). This may be explained by the increase in
random thermal motion of solvent molecules resulting in a decrease of
the dielectric constant and weakened EC-Li (dipole-charge) interac-
tions. Thus, the Li-PF6− (charge-charge) interaction would be gradually
favored with elevated T.

4.2. Transport properties

Based on the mean square displacement (MSD) of each component
during the simulation (Figure S5), the self-diffusion coefficients and
transference numbers were calculated and plotted along with the re-
ference experimental results [90] in Fig. 3. Both 1.0 M and 1.2M si-
mulation results indicate that the diffusion coefficients of all compo-
nents within the EC electrolyte and EC/FEC mixture exhibit similar
values (Fig. 3a). The trends for the three components EC, PF6− and Li+

are in good agreement with the simulation results [89] obtained by a
generalized AMBER force field (GAFF) [91] as well as the trend from
NMR results by Hayamizu et al. [90] such that solvent diffusivities are
2–5× larger than ion diffusivities. While all the simulations predict
slower computed dynamics than the experimental results, the differ-
ence is within one order of magnitude (10−10–10−11 m2 s−1), illus-
trating that the classical MD simulation is adequately accurate to re-
produce or predict the dynamical property trends of this system. It is
noteworthy that, when FEC is added into the system, there is no sig-
nificant variation of transport properties. EC and FEC exhibit almost the
same diffusion coefficients within the numerical uncertainties and we
surmise that the intermolecular interaction behaviors of EC and FEC are
similar due to the common cyclic carbonyl structures with only one
substituent. Hence, adding FEC does not directly affect the transport
property of the electrolyte. On the other hand, FEC inclusion implicitly
promotes the formation of CIPs while still remaining a minority species
in the electrolyte. According to the Nernst–Einstein relation [92], an 8%
CIP ratio increase from EC electrolyte to EC with 10% FEC will lead to

Fig. 2. (a)The calculated total coordination
number for Li+ in 1.0M LiPF6 in EC with 0/
5/10% FEC and 1.2M LiPF6 in EC with 0/5/
10% FEC with specifying the contributions
from EC, FEC and PF6−. The representative
solvation structures taken from MD simu-
lation snapshots of (b) 1.0M LiPF6 in EC
and (c) 1.0M LiPF6 in EC with 10% FEC.
The carbon, hydrogen, oxygen, fluorine,
phosphorus, and lithium elements are re-
presented by grey, white, red, green, blue,
and purple, respectively.

Table 1
The calculated coordination number of Li-X pairs, total coordination number, CIP ratio and corresponding contact ion pair (CIP) formation free energy GΔf CIP of
1.0M LiPF6 in EC with 0/5/10% FEC and 1.2M LiPF6 in EC with 0/5/10% FEC.

Electrolyte Coordination number CIP ratio GΔf CIP (kcal mol−1)

O(EC) O(FEC) P(PF6−) F(PF6−) Total

1.0M EC 5.84 – 0.06 0.07 5.90 6% 1.63
1.0M EC w/5%FEC 5.69 0.12 0.09 0.09 5.90 9% 1.37
1.0M EC w/10%FEC 5.51 0.19 0.14 0.17 5.85 14% 1.07
1.2M EC 5.71 – 0.12 0.20 5.84 12% 1.18
1.2M EC w/5%FEC 5.58 0.12 0.18 0.20 5.87 18% 0.90
1.2M EC w/10%FEC 5.41 0.23 0.18 0.23 5.82 18% 0.90
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approximately the same percentage (8%) decrease in Li+ ionic con-
ductivity. In contrast, the salt concentration clearly affects the ionic
diffusivity, decreasing by an average of ca. 30% from 1.0 to 1.2 M, in
agreement with previous studies [86]. As for the transference number,
all the six electrolyte systems give similar results and coincide well with
the NMR experimental value of 0.35 [90]. Hence, both the self-diffusion
coefficient and the transference number results demonstrate a weak
dependence of transport properties on the FEC additive up to 10%,
elucidating that FEC modifies the solvation structure without greatly
affecting the ion transport ability.

4.3. FTIR measurements

In order to verify the theoretical simulation results, we conducted
FTIR measurements for a range of EC and EC/FEC electrolytes [93]. The
peaks from the FTIR spectrum are deliberately deconvoluted to quan-
titatively estimate the population proportion of each electrolyte species.
In parallel, we performed quantum chemical calculations to obtain the
theoretical IR vibrational information for each solvation structure ob-
served in the MD simulations. The calculated spectral profiles are fur-
ther linearly combined using the population ratios obtained from MD
simulations which result in predicted theoretical IR spectra. In general,
there are four major characteristic peaks [94] that are shifted after the
inclusion of FEC (Figure S6): (1) the C=O stretching band at
1760–1800 cm−1, (2) the C=O breathing band at 710–730 cm−1, (3)
the P–F stretching band at 840–880 cm−1, as well as (4) the ring
breathing band at 890–910 cm−1. The C=O breathing vibrational band
at 710–730 cm−1 can be used to distinguish the responses from dif-
ferent C=O binding states. Experimental peaks (Fig. 4a and 4b) were
designated as coordinated and uncoordinated based on the calculations
as well as reference data [94], which provide detailed information of
the solvation structure. First, we note that the experimental results are
in good agreement with the calculated spectra (Fig. 4c and d, and S7),
and identical peaks are found in the spectra from both methods, despite
small deviations in the absolute frequency values. For the EC electrolyte
(Fig. 4a), two peaks at 728 cm−1 and 715 cm−1 were identified as co-
ordinated EC and uncoordinated EC, both accompanied by a small C–H
deformation peak at 706 cm−1 [95]. By analyzing the measured peak
area integrals, it was found that 38.1% of EC molecules are coordinated
with Li+, which corresponds to a CN of 5.13 for Li-EC. While the cal-
culated CN (5.84) from MD simulations is slightly higher than the ex-
perimental result, notably, both approaches indicate a CN over 5 for the
EC electrolyte system. When 10% of FEC is included, an additional peak
arises at 738 cm−1, corresponding to the coordinated FEC. Meanwhile,
a free FEC breathing band at 729 cm−1 overlaps with the coordinated
EC vibration band (Fig. 4b), which makes it challenging to deconvolute
the peaks and obtain the exact percentage of the coordinated EC and
uncoordinated FEC. By comparing the peaks of the uncoordinated EC,
we estimate an increase in uncoordinated EC area by 6.6% as compared
to the 1M LiPF6 in EC system, further supporting the decrease in CN of
Li+-EC with respect to the EC electrolyte. Additionally, the CN of FEC

to Li+ is directly calculated as 0.21 from the green area, which corre-
sponds well with our previous calculation results (0.19) from the MD
simulations.

In addition to the CN of solvents, the tendency for contact ion
pairing was probed by analyzing the P–F bond stretching band. As
shown in Fig. 5, the peak at 838–840 cm−1 is identified as the response
from uncoordinated PF6−, while the two peaks at 878 cm−1 and
834 cm−1 arise through Li+-coordinated PF6−. In the EC electrolyte
(Fig. 5a), coordinated PF6− contributes 6.4%, showing an excellent
agreement with our simulated 6% CIP ratio. With the inclusion of FEC
in the EC electrolyte (Fig. 5b), an FEC ring deformation vibration band
appears at 862 cm−1, which complicates the integral area calculation.
By comparing the area change of the uncoordinated peak (Figure S8),
we estimate that approximately 15% of the total PF6− ions coordinate
with Li+ after adding FEC. In summary, both experimental and simu-
lation results suggest that the CIP ratio, ca. 15% and 14% respectively,
is increased under the influence of FEC additive.

The C=O bond stretching at 1790–1810 cm−1 is considered char-
acteristic of the binding state of the carbonyl group [94]. However, an
overtone peak of the ring breathing band appears at the same position
in the same area (Figure S9) [95–97]. While the C=O stretching vi-
bration is here calculated to be a single band at 1808 cm−1 by first-
principles, experimentally, it overlaps with the Fermi resonance of an
overtone of the ring in-plane breathing band (893 cm−1). When solvent
molecules coordinate to Li+, both these peaks are shifted, preventing
further meaningful interpretation. As for the ring breathing band at
893 cm−1, a sharp, blue-shifted signal at 904 cm−1 appears upon co-
ordination (Figure S10). The intensity of the shifted ring breathing band
is significantly increased as compared to the original peak and hence
prevents qualitative analysis. Consequently, due to these complexities,
the C=O bond stretching and the ring breathing bands are disqualified
for quantitatively analysis of the solvation structure. In summary, the
FTIR experiments and the MD simulations provide consistent solvation
structure information. Both approaches demonstrate that the LiPF6/EC
electrolyte with or without FEC results in a Li+ CN of 5–6. We note that
while carbonate-based electrolytes are traditionally believed to exhibit
majority species corresponding to tetrahedrally coordinated carbonyl
oxygen atoms around Li+ [89,98,99], the coordination number and
solvation structure in these solvents systems are still under debate [99].
Recent results have reported a CN of 5–6 from two-dimensional infrared
spectroscopy [100], 13C NMR [88,101], 17O NMR [102], and MD si-
mulation [86], in agreement with the results in this contribution. In
contrast, several previous AIMD simulations [103–105] suggest tetra-
hedral Li+-solvent coordination in the first coordination shell. How-
ever, we note that the typical simulation time in AIMD simulation (< 1
ns) is less than the residence time of a typical lithium-anion/solvent
pair [106,107] and hence it may not capture the equilibrium state. In
addition, Borodin et al. [106] also reported a coordination number of 4
for 1M LiPF6/EC using a polarizable force fields model. However, a
very high contact ion pair ratio of 80% was also observed in the si-
mulation, contrasting the perception of LiPF6 as a weakly coordinating

Fig. 3. (a) Self-diffusion coefficients computed
from MD simulations at 298 K as compared with
NMR experiments (1.0M LiPF6 in EC) from
Hayamizu et al. [90] (b) Transference numbers
for Li+ and PF6− from MD simulations and NMR
experiments from Hayamizu et al. [90] The
error bars represent the standard deviation of
the data collected every 1 ns during the 5 ns
production runs.
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salt [87].
Furthermore, our results conclusively suggest that adding FEC in-

creases the CIP ratio while also adding another fluorine-containing
species into the first solvation shell, without significantly impacting the
transport properties of either Li+ and PF6− ions. This minority FEC
coordination with Li+ is important, as the Li+ solvate complex serves as
a key precursor for electrode surface reduction reactions. The inclusion
of FEC in the first solvation shell, even as a minority species, increases
the reduction potential of FEC, due to its close proximity of Li+, as
compared to a freely solvated FEC. Hence, to further investigate the
critical influence of FEC on the SEI formation process, through the
solvation structure of the electrolyte, we performed first-principles
calculations of the reduction potential of the solvate structures obtained
from the MD simulations and analyzed their preliminary reduction
products.

4.4. Reduction potentials

The reduction potentials of free EC and FEC, their corresponding
Li+(solvent) complexes, and Li+−PF6− (solvent) complexes were in-
vestigated at the B3LYP/6–31 + g(d) level of theory (Table 2). To ef-
fectively compare with experimental results, the calculated potential
values were convoluted with an arbitrary 0.1 V width concave trian-
gular wave, and plotted together with the experimental differential
capacity (dQ/dV) versus potential (V) profile (Fig. 6) [108]. The

reduction products after geometry optimization were further scruti-
nized through spin density analysis to elucidate the reduction reaction
process (Fig. 7). The free EC molecule exhibits a calculated reduction
potential of 0.21 V, with most of the extra electron residing on the
O=CO(O) moiety which consequently deforms out of plane. According
to Natural Bond Orbital (NBO) analysis, the C atom hybridization state
changes from sp2.0 to sp2.6 to accommodate the extra e−. The co-
ordinated EC exhibits an increased reduction potential of 0.44 V–0.59 V
(within 0.15 V), as compared with the uncoordinated molecule, which
contributes to a broadening of the reduction peaks in the differential
capacity plot. The obtained reduction potential is in good agreement
with the previously obtained value of 0.53 V by G4MP2 [59]. Fur-
thermore, the electron density of the reduced coordinated EC resides in
the same region (e.g., on the O=CO(O)) as compared to the un-
coordinated reduced EC. (Fig. 7c, h, i, k, and l). We find weak to little
dependence of the reduction potential on the number of explicitly co-
ordinating solvents [59,109], e.g., the calculated corresponding re-
duction potentials are 0.50 V and 0.59 V for 5- and 6- fold structures
(Fig. 7k, and l), respectively. However, when Li+ is in direct co-
ordination with FEC, the predicted FEC reduction potential is obtained
as 0.81 V–0. 91 V, which is about 0.3 V higher than uncoordinated FEC.
The calculated reduction potentials are in good agreement with the
previous G4MP2 calculations (0.90 V) and measured values (1.0 V)
[110]. If we compare the reduction behavior of EC-containing species
and FEC-containing species, even the uncoordinated FEC exhibits an

Fig. 4. Measured FTIR spectra of the C=O breathing band of (a) pure EC and 1.0M LiPF6 in EC, and (b) EC with 10% FEC and 1.0M LiPF6 in EC with 10% FEC. (c–d)
The corresponding calculated IR spectra in comparison with the experimental results. Red, cyan, purple, green, grey and dark grey lines correspond to uncoordinated
EC, EC coordinated with Li+, uncoordinated FEC, FEC coordinated with Li+, C–H deformation, and total spectrum, respectively. Scatter points denote the original
FTIR data points.

T. Hou, et al. Nano Energy 64 (2019) 103881

7



equal or higher reduction potential than all investigated EC species,
indicating a preferential reduction for FEC vs EC—for both minority as
well as majority species. While the optimized FEC reduction products
(Fig. 7b, d, j, and m) exhibit the same electron distributions as its EC
counterparts, the stronger exothermic nature of the FEC reduction in-
dicates that these FEC-derivative species are sufficiently metastable to
decay through reactions other than the C–O bond ring-opening of EC
[27]. This major mechanistic difference between the non-fluorinated
and fluorinated carbonates allows for the recombination of fragments
and intramolecular electron migration, facilitating the subsequent
polymerization and LiF formation [27]. Previous DFT calculations have
shown that the additional F fragments from FEC decomposition exhibit
a “glue effect” by strongly binding to Li atoms of multiple organic
species and connecting them [63], leading to a more compact and
stable SEI. The formation of Li+-coordinated FEC species is especially
important because in their absence, there is no early onset FEC reduc-
tion. Indeed, uncoordinated FEC is predicted to reduce at a similar

potential as Li + coordinated EC, which, as the majority solvent, will
then dominate the SEI formation process. We also note that, as Li+-
coordinated FEC minority species are decomposing at higher potentials,
the bulk equilibrium will shift to maintain the population, hence sup-
plying the reaction.

The reduction of the Li+−PF6− contact ion pair results in direct LiF
formation. Upon geometry optimization, the PF6− structure is dyna-
mically unstable, and the P–F bond spontaneously breaks to form PF5−

and LiF (Fig. 7e). However, the Li+−PF6− ion pair decomposition is
expected to yield high reaction barrier at potential larger than 0.5 V
[111]. When explicit solvent molecules are considered in the contact
ion pair model, the reduction of the complex results in solvent reduc-
tion, elucidating that the decomposition of solvent molecules are pre-
ferred over that of the ion-paired PF6− (Fig. 7f, g, and n), with similar
reduction potential as SSIP structures. Thus, FEC will be reduced before

Fig. 5. Measured FTIR spectra of the P–F bond
stretching band of (a) 1.0M LiPF6 in EC, and (b)
1.0M LiPF6 in EC with 10% FEC. (c) The cor-
responding calculated IR spectra for 1.0M LiPF6
in EC in comparison with the experimental re-
sults. Yellow, green, blue, and dark grey lines
correspond to uncoordinated PF6−, coordinated
PF6−, FEC ring deformation, and total spectrum,
respectively. Scatter points denote the original
FTIR data points.

Table 2
The reduction potential vs Li+/Li(s) (i.e. subtract 1.4 V) of individual solvent
molecules and solvate complexes, in Volt, where corr. denotes values after the
aforementioned standard-state correction.

Structures Reduction potential

EC + e− → EC− 0.21 V
FEC + e− → FEC− 0.59 V
Li+−EC + e− → Li+−(EC)− 0.54 V
Li+−FEC + e− → Li+−(FEC)− 0.90 V
Li+−(EC)4 + e− → Li+−(EC)3(EC)− 0.49 V
Li+−(EC)3(FEC) + e− → Li+−(EC)2(FEC)(EC)− 0.55 V
Li+−(EC)3(FEC) + e− → Li+−(EC)3(FEC)− 0.91 V
Li+−(EC)5 + e− → Li+−(EC)3(EC)− + EC 0.50 V (corr.)
Li+−(EC)6 + e− → Li+−(EC)3(EC)− + 2EC 0.59 V (corr.)
Li+−(EC)5(FEC) + e− → Li+−(EC)3(FEC)− + 2EC 0.81 V (corr.)
Li+−PF6− + e− → Li+−F− + PF5− spontaneous bond

breaking
Li+−PF6−(EC) + e− → Li+−PF6−(EC) − 0.59 V
Li+−PF6−(FEC) + e− → Li+−PF6−(FEC) − 0.90 V
Li+−PF6−(EC)5 + e− →

Li+−(EC)3(EC)− + PF6− + EC
0.44 V (corr.)

Fig. 6. The calculated anticipated (solid line) and experimental (dash dotted
line) differential capacity plots (dQ/dV vs. V) during the formation step of EC
and FEC electrolyte. The computed profile is obtained by convoluting the cal-
culated reduction potentials with a 0.1 V width concave triangular wave, the
experimental one is reproduced from Xia et al. [108] by removing the back-
ground.
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other species considered here. The reduction of PF6− is not expected to
occur except at very high overpotentials, possibly at the final stage of
SEI formation [111]. Therefore, we suggest that FEC is the major con-
tributor to the formation of the SEI LiF as compared to PF6−. It is also
speculated that the decomposition of PF6− is related to H2O con-
tamination rather than electrochemical reactions [52]. The degradation
mechanism for LiPF6 was suggested to be [112]:

LiPF6 ↔ LiF + PF5

PF5 + H2O → POF3 + 2 HF

ROCO2Li, Li2CO3 + HF → LiF + ROCO2H, H2CO3

On one hand, a higher CIP ratio in the presence of FEC would fa-
cilitate the formation of LiF. Increased amount of Li+−PF6− ion pairs
would promote PF5 formation and pronounced hydrolysis, and the as-
formed HF would subsequently react with the SEI carbonate species,
which are initial reduction products, to form LiF [113]. Even if the trace
amount of water is ignored, FEC is prone to defluorination in the pre-
sence of a Lewis acid like PF5, and subsequently generates F species
[114]. Consequently, a greater amount of inorganic components in SEI,
introduced by the sacrificial anion decomposition [115,116] or FEC
defluorination, is believed to result in improved Li+ cation transport.
However, excessive HF formation under elevated temperatures may
also cause SEI destruction [114], such that the operating temperature of
the FEC-containing electrolyte should be controlled to avoid detri-
mental effect. On the other hand, an early onset of FEC reduction allows

for rapid passivation at a higher potential than EC which may limit
PF6− reduction/decomposition. Therefore, the influence of FEC on
PF6− decomposition is non-trivial to deconvolute. Future experimental
and computational research, e.g. isotopic labelling, is recommended.

In summary, despite limited FEC concentration, we find that its
presence significantly influences the properties of the electrolyte via
three main mechanisms: (i) the Li+-coordinated FEC exhibits higher
reduction potential than corresponding coordinated EC species and
uncoordinated FEC, and hence contributes to an early onset of anode
SEI formation and passivation, and (ii) the preferred reduction of FEC
introduces a higher ratio of LiF to the SEI as compared to the EC
equivalent electrolyte, and lastly (iii) a higher CIP ratio may possibly
lead to increased LiF formation. The exothermic nature of the FEC re-
duction also supports the reported reaction pathway of defluorination
and subsequent polymerization. Therefore, the origin of the excellent
performance of FEC containing electrolyte may be attributed to the
higher reduction potential to enable early passivation [117], sub-
stituents that promotes inorganic product formation [118], and me-
tastable intermediates to facilitate alternative reaction pathways (such
as polymerization) [27,35].

5. Conclusions

The influence of FEC on LiPF6/EC electrolytes is investigated
through classical MD simulations, FTIR experiments and first-principles
calculations. The calculated solvation structure corroborates well with

Fig. 7. Geometries and spin density analysis of reduced solvent molecules (a) EC, (b) FEC, and solvate complexes (c) Li+−EC, (d) Li+−FEC, (e) Li+−PF6−, (f)
Li+−PF6−(EC), (g) Li+−PF6−(FEC), (h) Li+−(EC)4, (i) Li+−(EC)3(FEC) (EC reduction), (j) Li+−(EC)3(FEC) (FEC reduction), (k) Li+−(EC)5, (l) Li+−(EC)6, (m)
Li+−(EC)5(FEC) (FEC reduction), and (n) Li+−PF6−(EC)5.
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the liquid structure information inferred by experiments. While select
previous work advocate Li+ coordination numbers closer to 4, both
theoretical and experimental results presented here support a Li+ sol-
vent coordination number of 5–6 for 1.0/1.2 M LiPF6/EC electrolytes,
with or without FEC. However, reduction potentials are found to ex-
hibit only weak dependence on the explicit number of coordinating
solvents, such that 4-fold as well as 6-fold structures show similar va-
lues. Furthermore, while it is widely assumed that electrolyte additives
remain largely uncoordinated in LIB electrolytes, we find that FEC, as a
minority species, significantly modifies the solvation structure and re-
duction behavior of the electrolyte while being innocuous to the
transport properties of the electrolyte. Even limited 5–10% addition of
FEC results in a notably higher CIP ratio (14%, 1.0M EC w/10% FEC) as
compared to the parent EC electrolyte (6%, 1.0M EC). FEC itself, as a
fluorine-containing species, appears in the solvate complex, in 19% of
the Li+ first solvation shells (1.0M EC w/10%FEC). We find that the
Li+-coordinated FEC is preferentially reduced at higher reduction po-
tentials (about 0.3 V higher than corresponding EC clusters and un-
coordinated FEC), which provides early onset SEI formation and pas-
sivation of the anode surface. Meanwhile, the as-formed reduction
products of FEC include a higher ratio of LiF as compared to the EC
equivalent electrolyte, and a higher CIP ratio due to FEC addition may
further benefit LiF formation, leading to enhanced electrochemical
performance. By elucidating the solvation structure of the FEC additive
in LiPF6/EC, and its effect on the reduction potentials of the composite
electrolyte, we hope to improve our understanding of the SEI-formation
and its subtle dependence on the detailed intermolecular interactions
and resulting solvation structure of the electrolyte.
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