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A B S T R A C T

Amorphous materials are increasingly considered for electronic and energy applications. However, modeling
site-specific processes on amorphous materials is prohibitively expensive due to the large configuration space,
and the large simulation cell needed to properly capture material properties. In this work, we develop
a high-throughput workflow, powered by semiempirical methods in combination with Density Functional
Theory, to simulate amorphous surfaces and utilize statistical sampling methods to assess surface reaction
kinetics. We employ the Smooth Overlap of Atomic Positions (SOAP) to featurize surface species and apply
a Bayesian Gaussian Mixture clustering model to perform a site reduction analysis. Finally, we automate
the generation of input images for Improved-Tangent Nudged Elastic Band (IT-NEB) to simulate an etching
reaction on the reduced sites. The resulting etching barriers are found to follow experimental etching trends
for both amorphous silicon and amorphous carbon. Notably, our method reproduces etching barriers using a
significantly reduced amount of sites (6 sites) out of all potential sites on the amorphous material surfaces.
The successful site reduction method described in this study opens amorphous materials to high-throughput
explorations of interfacial chemistry and surface properties.
1. Introduction

An increasing number of high-value energy applications, such as
photovoltaics, batteries, transistors, phase change memory devices,
etc., employ functional, amorphous materials either as active or sup-
portive materials [1–5]. Notably, in the performance and/or processing
of amorphous materials, interfacial chemistry, and reactivity provide
an elusive yet key piece of information to understanding and evaluat-
ing material properties. However, while today’s accelerated materials
design paradigm increasingly leverages modeling and in-silico first-
principles screening of material properties, it has been less utilized to
evaluate materials’ suitability for manufacturing and processing [6].
Furthermore, non-crystalline materials have been less explored through
modeling, due to the dramatically increased structural complexity and
simulation time needed to properly capture amorphous material prop-
erties. Established methods to model the amorphous materials’ atomic
structure include methods that compute interactions between atoms,
such as Ab-initio Molecular Dynamics (AIMD) melt-quench simula-
tions [1,7]. These methods have also been modified to use parametrized
classical force fields, such as Tersoff potentials, which are material and
application specific [8]. Other methods include reversing experimental
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data, such as using Reverse Monte Carlo techniques on diffraction
or structural data [9]. Hybrid methods combine both experimental
and ab-initio methods [10,11]. An active area of research involves
using relatively small, periodic structure samples to train machine
learning (ML) models on force data for use in more complex molecular
dynamics simulations [12,13]. Similar methods based on Gaussian
process regression have also been developed by Bartok et al. [14].
These methods generally suffer the same fate: they are either material
specific, costly, or both. Moreover, modeling of interfacial or surface
reactions compounds the challenge due to the large chemical and
structural diversity of surface sites. In principle, an apriori intractable
number of local surface environments with potentially different reac-
tion kinetics need consideration. Previous work in this field includes
a notable contribution by Caro et al. which addresses this issue [15].
The work introduced a featurizer to transform and reduce a structure’s
bulk sites to a numerical vector, and then compared these vectors to
those of pre-selected chemical motifs, employing previous chemical
intuition specifically for amorphous carbon systems. Additionally, this
work was able to map the adsorption reactivity of surface sites by
reducing sites via clustering, motivating the need for more chemically
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generalized methods. Other notable contributions can be found in the
modeling of amorphous catalysts. Common commercial catalysts such
as mesoporous silica have been difficult to model within the paradigm
of density functional theory due to the synthesis-dependent structures,
the lack of long-range order, and the lack of experimental fidelity
given that a small number of sites can dominate the observed activ-
ity [16]. Previously, modeling these materials involved the creation
of statistically significant cluster models and the sampling of various
sites on these clusters. Indeed, reaction activation energies have been
shown to correlate with different local chemical configurations, further
motivating a method for choosing chemically different and important
sites [17].

In this work, we present a material agnostic software framework, ca-
pable of addressing general amorphous surface reactivity, and demon-
strate its usefulness on an example amorphous surface process: plasma
etching. Plasma etching, of high importance to semiconductor manu-
facturing, is commonly used in patterning where a proper etch rate
is critical to transistor processing and performance [18]. Dry etching
in particular is ubiquitous in the semiconductor manufacturing process
due to its flexibility in generating different etch profiles and tunable
material selectivity [19]. Plasma environments consist of ions, elec-
trons, and radicals of gas mixtures which promote a wide variety of
physical and chemical reactions [20], which are difficult to characterize
due to the dynamic evolution of the surface. For example, the plasma
gas may exhibit multiple species including catalysts [21], the etchant
may in some materials diffuse below the surface, attacking sublay-
ers [22] and in other materials, the surface may undergo reconstruction
and/or passivate or all the above simultaneously. Finally, the details of
the materials in terms of surface phases, dopants, and grain boundaries
can significantly affect the process as well [23]. As a result, the details
of reaction mechanisms associated with plasma processes have only
been elucidated for a few material/etchant combinations [24–27].

To advance first-principles modeling and screening into the realm
of amorphous material processing and manufacturing, we developed
a low-cost methodology to model 200–300 atom amorphous surfaces
consisting of any combination of the first 80 elements of the peri-
odic table. In our workflow, amorphous material surfaces are initially
generated using a liquid-quench molecular dynamics simulation [28]
within the approximations of Parametrized Model 6 (PM6) [29], then,
followed by a relaxation using Perdew–Burke–Ernzerhof (PBE) [30]
Density Functional Theory (DFT). To reduce the number of represen-
tative sites of study on the amorphous material surface, we performed
site analysis featurization using the Smooth Overlap of Atomic Positions
(SOAP) [31] combined with a Bayesian Gaussian Mixture clustering
model.

To test the robustness and utility of the structure surface gener-
ation and site reduction technique on plasma etching, we adopted a
simplified etching mechanism whereby an etch gas cleaves a bonded
surface site to form a volatile etch product. An automated method for
generating NEB inputs for systematic modeling of etching reaction ki-
netics is also provided. In addition, the model was generalized to other
combinations of etch products and amorphous materials and was able
to capture experimental trends with a systemic error across the com-
binations tested. In summary, the methodology presented in this study
effectively reduces computational cost without losing overall material
accuracy for calculated properties thereby allowing high-throughput
exploration of amorphous material surfaces. Furthermore, we note that
the developed workflows can be generally adopted and utilized for
modeling many site-specific reactions such as adsorption, desorption,
bond cleavage, etching, and deposition.

2. Methods

2.1. Data and software availability

The workflow presented here is developed as part of the atomate
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open-source software package [32]. The workflow makes use of the
FireWorks [33], pymatgen [34], sklearn [35] and matminer [36] soft-
ware packages which are freely available. Density Functional Theory
(DFT) calculations were performed with the CP2K simulation pack-
age [37]. The initial input structure for the MD simulation was gen-
erated using PACKMOL [38] with density inputs generated using MP-
Morph [28]. A graphical description of the workflow is presented in
Fig. 1.

2.2. Amorphous surface generation

All density functional theory electronic structure calculations were
performed using the CP2K atomistic simulation package [37]. The
complete workflow includes the generation of the surface amorphous
structure from the bulk structure including relaxation and volume
minimization. The computational parameters highlighted below are the
default parameters employed by the workflow.

To generate the bulk amorphous materials we implemented a liquid
quench process, similar to previously published methods [28]. Initial
structures were generated with PACKMOL [38] and heated at 3000 K,
with a 2 fs timestep for 700 steps, for a total of 1.4 ps. After 700 steps,
a new molecular dynamics simulation using the resulting structure
from the previous step was run at 2500 K. This was repeated until a
temperature of 500 K was reached. Molecular dynamics simulations
were performed in the NVT ensemble and using the Nosé thermostat
to control for the temperature [39,40]. The total simulation time was
8.4 ps for each material. The Parametrized Method 6 (PM6) was used to
solve for forces at every timestep [41] with an electronic convergence
criterion of 1 × 10−5 Hartree. The Orbital Transformation method was
utilized to speed up electronic convergence using the built-in Quickstep
module [42]. For PM6, a cutoff of 20 Å was used for both the Coulomb
and exchange parameters. We employed gamma point only Brillouin
zone integration, and periodic boundary condition. An auxiliary basis
set cutoff energy of 500 Hartree, and a reference grid cutoff of 80
Hartree was utilized.

Following the liquid-quench simulation, all subsequent Density
Functional Theory calculations employed the Perdew–Burke–Ernzerhof
[30] general gradient approximation functional. Calculations utilized
the Orbital Transformations method built in the Quickstep module of
CP2K [42]. In addition, all subsequent calculations employed Gaussian
plane wave with the short-ranged double-𝜁 valence plus polariza-
tion molecularly optimized basis sets (DZVP-MOLOPT-SR) and norm-
conserving Goedecker–Teter–Hutter (GTH) pseudopotentials assigned
to all atom types [43,44]. Atomic coordinates were optimized using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

A structure relaxation calculation was performed, keeping the vol-
ume of the original cell constant. An auxiliary basis set planewave
energy cutoff of 600 Hartree, with a reference grid cutoff of 80 Hartree
was used. An overall convergence criterion was set such that a max-
imum displacement of 3 × 10−3 Å and maximum force of 4.5 × 10−3

H/Å was obtained. A self-consistent electronic convergence criterion of
1 × 10−7 Hartree was utilized. To arrive at the final bulk structure, the
density which minimizes the overall energy of the system is identified
by homogeneously straining the lattice from 80% its current dimen-
sion to 120%, sampling 25 total different densities. Static tests are
performed at each new density. For these, an electronic convergence
criterion of 1 × 10−7 Hartree was utilized. The structure corresponding
to the lowest energy is then chosen. Next, six slab models are generated
by cutting the bulk at the end of each facade of the cell and adding 20 Å
of vacuum. The bottom 2 Å are kept frozen. The surface is allowed to
relax, generating a set of amorphous material slabs. For these, the same
convergence criterion from the post-PM6 DFT calculation is employed.
Further calculation details including CP2K input files can be found in
the Supplementary Information. The approach considered in this work
aims to produce structures with high-throughput, however, we note

that not all materials can be properly modeled by this method. We note
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Fig. 1. General workflow structure. The workflow consists of individual computing jobs (known as Fireworks, in filled boxes), each of which is a sequence of computing tasks
known as Firetasks, in white boxes). The workflow can be divided in four sections: the modeling of bulk amorphous materials, the generation of amorphous material structure,
he featurization and clustering of surface sites and finally the etching reaction modeling of these sites.
hat the high quench rate of 300 K/ps may not be appropriate for more
omplex multi-element amorphous materials. Additionally, the repre-
entation of forces from semi-empirical PM6, which was developed to
apture the formation energy of molecules, should be interpreted with
aution. Further, surfaces may need additional molecular dynamics
alculation to overcome local potential energy barriers, and the melt-
uench protocol might need to be tuned depending on the material
3

system being modeled. While the workflow does not by default pro-
vide an annealing step nor allow the surface to relax using molecular
dynamics simulations rather than DFT during the surface generation
process, we emphasize that a user could model any material using any
computational approaches desired for any material which may require
more stringent modeling, and pass the resulting structure onto the site
featurization and clustering portion of the workflow.
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Fig. 2. Pictorial representation of clustering mechanism for surface sites of an amorphous SiO2 surface generated using the methods described in this work. The sheet of colors
above represent similar chemical environments detected using the site identification and clustering mechanism described in this work.
To compare amorphous silicon etch rates against crystalline, we
generated a crystalline silicon (110) surface, starting from the bulk
crystalline Si structure in the Materials Project database [45]. The
surface was generated using Pymatgen’s slab generator feature [46],
selecting a (110) miller index. The slab was relaxed using a kpoint mesh
of 2 × 2 × 1, and the same convergence criterion was utilized as the
amorphous surface DFT calculations. No species were frozen. The slab
was approximately 14 Å in height, 11 Å in width, and with 20 Å of
vacuum, similar to the length specifications used for the a-Si surface.

2.3. Site identification & clustering

Amorphous surfaces exhibit a much broader range of surface sites
as compared to crystalline surfaces, which can become computationally
prohibitive to explore. In this work, we utilized two methods to reduce
the number of potential sites, while still retaining a representative
range of local site information. The workflow employs two surface site
detection methods: the Shrake–Rupley [47] rolling sphere algorithm,
which computes the solvent accessible surface area (SASA) of each
atom on the top half of the slab, and by height, finding surface sites
which are within 1.2 Å of the top-most site. For the SASA comput-
ing algorithm, the calculations were performed using the OpenSource
FreeSASA package [48]. Sites with SASA values above 15 Å2 were
utilized. While the workflow has two methods of identifying surface
sites, we employed the more simple, height-based site finding approach
due to the unusual bulkiness of an etching reaction and because our sur-
faces were relatively smooth. The Smooth Overlap of Atomic Positions
(SOAP) [36,49] was applied across all surface sites of all six surfaces.
SOAP effectively encodes the atomic environment of a particular atom
into a vector [31] and has previously been used to assess the ‘similarity’
of amorphous structure sites [15,50]. For a generic system, a cutoff
radius of 3 Å was chosen, along with 3 radial contributions considered,
a maximum angular contribution of 3, and Gaussians with a standard
deviation of 0.6 Å. The featurization vectors along with the site coordi-
nates and the slab to which the vectors belong were saved and passed
down through the remaining steps of the workflow for future analysis.
We note that the featurization can be customized to any algorithm
available in the Matminer package.

To reduce the number of sites for further study, sites were clustered
by similarity. By default, the workflow employs the Bayesian Gaussian
Mixture clustering technique. The number of bins chosen for this
method was set to three times the number of species present on the
material, however, the binning can be easily tailored. After sites were
clustered, sites closest to the center of each cluster by using the Maha-
lanobis distance [51] in SOAP space were chosen for further sampling.
Each site, and its associated cluster across all potential surfaces, were
passed down to the workflow for future statistical analysis. A pictorial
representation of a surface whose sites have been featurized and then
clustered using the methods described in this work is presented in
4

Fig. 2. In the supplementary information, we outline chemical motifs
extracted from the featurization and clustering of an a-C and a-SiO2
slab. For a-C, we found that generated clusters could be discerned
by the sites’ coordination environment, and for a-SiO2 we found that
clusters could be discerned by the concentration of Oxygen in the local
environment. This demonstrates the ability of this method to capture
chemical motifs.

2.4. Modeling etching reactions

To test and validate the workflow and methodology, we screened
etchants and compared etching barriers across material systems. Gen-
erally such calculations have excluded amorphous materials due to the
plethora of surface chemical sites and coordination environment. To
model the etching reaction, we assume that the rate determining step of
dry etching is the dissociation of a surface species, A, from the material,
using an etching agent X𝑛 and its formation into a volatile etching
product AX𝑛 :

𝐴𝑦𝐵𝑧(𝑠) +𝑋𝑛(𝑔) → 𝐴𝑦−1 surf. species𝐵𝑧(𝑠) + 𝐴𝑋𝑛(𝑔) (1)

This simple etching mechanism where the formed product desorbs
from the surface is expected to mirror the rate-limiting activation
energy for the overall process, thereby providing a good metric for
experimental etch rates in plasma conditions. We note that similar
heuristic, model etch barriers have been employed previously, resulting
in reasonable agreements with experimental etch rate trends [52–56].
However, we also emphasize that highly dynamic and/or unstable
surfaces, that are uncommonly reactive with the plasma species, are
unlikely to adhere to such model reactions, or may exhibit other
reaction rate limiting steps, and for such cases, we recommend that
efforts should be undertaken to model more realistic environments.

In the following, we demonstrate the methodology using a homo-
geneous composition volatile etch product (i.e. SiF4) but emphasize
that the workflow can accept heterogeneous composition volatile etch
products, ie. SiF3Cl, where F and Cl are etchant species present in
the plasma. Nudged Elastic Band (NEB) calculations were initiated by
automatically generating three input images for the calculation. For
a given site (A), and a given etch product (i.e. A-X4), where A is an
atom on the surface to be etched, and the plasma gas contains species
X and forms etch product AX4, one of the X atoms will be labeled as
the ‘‘etchant atom’’. This atom will be appended directly above the
‘A’ site, 8 Å above the surface, far enough to prevent any potential
interaction. The other three remaining atoms (from X4) for this etchant
will be attached to A. To attach the remaining atoms systematically,
a circle, 1.2 Å above the ‘‘A’’ site, and 1.4 Å in radius, is drawn.
This circle marks possible sites to symmetrically append the remaining
atoms which are needed to form a volatile etching product. At each
point on the circle, homogeneously sampled by 100 points, the distance
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Fig. 3. Schematic of input replicas for a single site of a slab etched by chlorine plasma, forming a Cl4 byproduct. In the first replica, 3 Cl atoms are positioned along a 1.4 Å
radius circle, placed 1.2 Å above the site. A Cl is placed 8 Å above the site. In the second replica, the ‘attacking’ Cl atom is brought 2 Å away from the etched site. Finally, in
the final input replica, the etched site and Cl atoms are moved 8 Å into the vacuum. The molecule is rearranged to match the input geometry while minimizing rotation.
to the closest surface atom is calculated. To minimize steric hindrance
when appending the remaining atoms, the set of points representing the
maximum average distance of any remaining atoms to be appended is
chosen. For the second image, the etchant atom is brought 2 Å away
from the ‘A’ site. Finally, in the final image, the ‘A’ site is lifted along
with all the ‘X’ atoms. The lifted set of molecules is rearranged to match
a relaxed etching product. The rearrangement is done using the Kabsch
algorithm [57] built into Pymatgen to minimize artificial rotations.
Fig. 3 demonstrates the pictorial representation of a set of input NEB
images for a slab site etched forming an Cl4 etch product.

NEB calculations were performed using the Improved Tangent-
Nudged Elastic Band method [58]. For these, the Brillouin zone was
sampled by the Gamma point only and the PBE functional was used
[30]. Orbital transformations as part of CP2K were allowed with a
self-consistent electronic convergence criterion of 1 × 10−6 Hartree,
allowing for an overall maximum displacement of 1 × 10−4 Å and
maximum force of 4.5 × 10−4 H/Å for convergence. Calculations were
run with 15 replicas, by allowing CP2K to linearly interpolate between
input images. We note that no rotations or transformations were ap-
plied to the volatile etch product, instead the endpoints of the NEBs
were allowed to relax. Most NEB calculations converged energetically
after approximately 300 steps, however, a limit of 500 steps was
imposed to control computational costs. Resulting curves for these dry
etching simulations were analyzed using the Minimum Distance Nearest
Neighbor class built in Pymatgen to detect the replica steps at which
the etching occurred [59]. A coordination number analysis was used
to extract etching barriers by detecting the commencement and end
of the etching reaction in the NEB, discarding any of the post- or
pre-etching replicas typically associated with minor surface rearrange-
ments (more information about the etching detection and coordination
number analysis can be found in the Supplementary Information).

3. Results & discussion

We benchmarked our methodology and workflow on trends in
surface reactivity and etching, for two systems: amorphous carbon and
silicon, motivated by their broad application areas. Amorphous carbon
(a-C) is a commonly studied material in plasma etching processes, due
to its increased selectivity over photoresist, its high transmittance, easy
deposition, and removability [60]. Amorphous silicon (a-Si) is popu-
larly used in the semiconductor industry, including for photovoltaics,
and as a transistor material. The selectivity of crystalline silicon (c-
Si) has been explored [61] using different etchants such as CHF , SF ,
5
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CF4 commonly resulting in SiF4 formation. Amorphous Si has also been
etched under chlorine-based plasma, and its etching rate is compared
to both crystalline and poly-crystalline silicon [23]. In the case of
amorphous carbon, we expect that etching with H2 plasma to form
CH4, would be faster than chlorine-based etching, as literature suggests
hydrogen etching is often used [56]. In addition, previous experiments
with chlorine plasma have found a-C to be rather etch-resistant [62].
Conversely, it has been found that chlorine-based etchants etch a-Si
faster than c-Si, while a fluorine etchant reacts with silicon faster than
a chlorine-based one [20,23]. In the following, we present and discuss
results for the etching of a-Si and c-Si forming etch products SiCl4 and
SiF4 as well as the etching of a-C forming etch products CH4 and CCl4.

3.1. Amorphous silicon and carbon structures

Initial amorphous structures were built using 200 atoms for amor-
phous silicon (a-Si), and amorphous carbon (a-C). While larger simula-
tion cells could have been employed, we chose these default parameters
to give reasonable results while not proving too expensive to compute.
For a-C, initial input densities were generated using MPMorph [28],
by averaging the densities for all crystalline materials in a given amor-
phous structure’s composition in the Materials Project database, leading
to 3.3 g cm−3. In the case of a-Si, an input density of 2.2 g cm−3 was
chosen. Comparing the a-C structure against published experimental
and molecular dynamics results, we found similar radial distribution
function (RDF) peak locations of 1.5, 2.5, and 3.7 Å [63]. Our 2nd and
3rd RDF peaks were found at lower intensities compared to experimen-
tal results, showing a decrease in mid-range order, nonetheless the peak
positions matched well. Using the Brunner Nearest Neighbor algorithm
built into Pymatgen we detected that around 85%–90% of our carbon
species were four-fold coordinated (sp3 C) [64]. We also note a bond
angle distribution of 75–150◦, centered at 110◦, similar to previously
reported results [65]. For a-Si, we calculated an RDF with peaks at 2.3
and 3.8 Å and bond angle distribution ranging from 50 to 150◦ centered
at 110◦. Again, these peak distance and bond angle distribution results
are similar to previous molecular dynamics simulations and experimen-
tal observations on a-Si [65]. Similarly, using the Brunner algorithm,
we calculated that only under 4% of the species in our simulated a-
Si structure were under-coordinated. The static density optimization
eventually resulted in an a-Si structure with a density of 2.2 g cm−3,
similar to other experimental observations. To further benchmark the
technique for amorphous bulk generation, amorphous SiO2, Al2O3 were
modeled. More details on the input set for structure generation and on
the result of the benchmark of the other materials tested can be found
in the Supplementary Information.
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Fig. 4. Comparison of etching reaction barrier of a-C, a-Si, and c-Si by different etchants. In this plot, the amorphous materials are presented by both a swarm and box plot. The
swarm section represents all of the tested amorphous surface sites for which an etching reaction was modeled. This information is similar to what is portrayed in the box plot.
The box plot’s top and most bottom whiskers are the 2% and 98% interval. The box itself is the first and third quartile. The bold line is the median value and the dashed line
is the mean. For all the analysis we compare the mean and the variance of these sets. For crystalline Silicon (c-Si), the average of 3 unique sites are taken and displayed as a
scatter plot.
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3.2. Etching reactions and comparison with experimental trends

Prior to any site reduction, etching reactions were modeled on all
distinct 15 surface sites of a-Si forming two volatile etch products, SiF4,
nd SiCl4. All but one site converged (a SiCl4 site). Three unique surface
ites were modeled in crystalline silicon. Etching barriers for both Si
nd C materials are shown in Fig. 4, including statistical error bars
cross representing the 2% and 98% percentile of the etch barriers,
oxes representing the first and third quartile, the mean as a dashed
ine, and the median as a bold line. As expected, sites showed a
istribution of etching barriers depending on their local environments.
rguably, mean barriers may not provide the most direct metric for
tching rates, as, for example, sites with low barriers may etch first
nd the structure may rearrange or be left with more resistant etch sites.
owever, a structure/etch product combination with lower-barrier sites

hould generally etch faster than one with many high-barrier sites.
hus, such a metric is useful for comparison across material and etchant
as composition. While etching sites between the crystalline and amor-
hous silicon varied, the overall trend across all 15 sites of a-Si and
hree sites of c-Si was such that, fluorine plasma forming SiF4 exhibited
lower average barrier on both materials than chlorine plasma forming
iCl4. Additionally, while c-Si showcased a higher etching barrier by
hlorine than a-Si, the trend was reversed for fluorine. It was found
hat the reaction barrier for c-Si was lower by fluorine etching than
hlorine. In the case of c-Si, the etching by fluorine species forming
iF4 product was found to be barrier-less, indeed the same barrier has
een previously reported for this combination [20]. The etch barriers
alculated for a-Si by SiCl4 ranged from 0 to 3.6 eV with a mean of
.77 eV, while in SiF4 the barrier ranged from 0 to 3.1 eV with a
ean of 0.35 eV. For the case of a-Si etched by SiF4, only 3 sites had

arriers greater than 0.5 eV, the other 11 sites were either barrier-less
r had insignificant etching barriers. Meanwhile, 8 sites for a-Si etched
y SiCl4 exhibited significant, above 0.5 eV barriers. In the case of
rystalline Si, the etching barrier by SiCl4 was 1.89 eV while it was
arrier-less by SiF4.

The reactivity of two etchants: hydrogen and chlorine plasma were
xplored on amorphous carbon, creating CH4 and CCl4 etching prod-
6

cts, respectively. Three CH4 forming sites, and two CCl4 forming sites s
id not converge. Input replica images for all surface sites of a-C were
et up similarly to the method described for a-Si. Both amorphous
arbon products, CH4 and CCl4, exhibited larger standard deviations
han their counterparts in a-Si. Amorphous carbon etching barriers by
H4 were described by a standard deviation of 2.12 eV as compared to
.78 eV for CCl4. The product CH4 exhibited a mean etching barrier
ate of 2.45 eV while CCl4 was noticeably higher at 3.96 eV. It is
ommon practice in etching of a-C to first hydrogenate the material,
nd notably, the model surface employed here was not hydrogenated.
ydrogenation could lower the barrier for both etchants, however,
ur reported mean etching barrier of 2 eV matches with reported
iterature etching barriers of 1.6–2.5 eV [56]. We also observe that
ense amorphous carbon is often used as a popular photoresist in
lasma etching and thus we would expect a-C to exhibit high etching
nergy barriers, as validated by our simulation results in comparisons
o a-Si [66]. The resulting etching barriers for a-C with the two etchants
an be found in Fig. 4.

While the etching barriers here are for individual sites, a weighted
verage of the energy barriers provides a useful metric to quickly
ompare etching barriers of the same etchant, on a different material,
orming similar neutral volatile etch products (for example SiCl4 vs.
Cl4) or comparing two etchants etching the same material (SiCl4
s. SiF4). While the etch rates derived from these barriers are not
dditive, the trends captured by the weighted average of these barri-
rs are in agreement with experimental observations rendering these
ethods useful in determining selectivity trends based on chemical

tching mechanisms and helpful in determining appropriate etching
ases based on the materials to be etched. Additionally, we emphasize
hat while the modeled NEB involved multiple sequential reactions: (i)
he adsorption of multiple initial plasma atoms, (ii) the adsorption of
he attacking atom, and (iii) the removal of a surface site, typically the
dsorption reactions were found to be exothermic and barrier-less while
he desorption of the site atom exhibited a non-negligible transition
nergy. Hence, in the cases examined here, we found the desorption
o be the rate limiting step of the etching process. Improvements
o the approximations employed here include an advanced sampling

cheme as well as statistical ensemble methods to ensure the entire
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Fig. 5. For the graph above, a SOAP model with cutoff radius of 3 Å for a-Si and 2 Å for a-C, maximum radial contribution 3, maximum angular contribution of 2 and a
Gaussian width of 0.4 was chosen. The model was applied to a-C and a-Si surfaces separately to obtain site-feature vectors. Once features were obtained, Bayesian Gaussian
Mixture models were generated 500 times using each of these features to group the sites into labels. For each Gaussian Mixture model, the two closest sites to the cluster center
using Mahalanobis distance were chosen, and the proper weighted average based on number of cluster samples was taken. The SOAP & 3-cluster Gaussian Mixture model, with
each cluster sampled twice, led to narrow energy distributions of potential barrier energy prediction for etching by these etchants of these materials. The errors are 70, −310, 70,
and −30 meV respectively. For each of these material/volatile etch product combination the model performs better than no model (the red vertical line demonstrates the range
of modeled barriers if 6 sites on the surface had been chosen at random). The yellow circle represents the true barrier, or the average of all sites on the surface.
range of etching sites and barriers are accounted for. A useful appli-
cation of these methods is to quickly screen etching gases/materials
for selectivity and improved etch rates finding the best combination
computationally at the start of process development, shrinking devel-
opment time, and optimizing costs. Further analysis, such as performing
importance learning sampling [67,68], can always be performed by
users separately.

3.3. Benchmarking of model

The simulation results from the etching of the fifteen sites on
the a-Si generated surface, forming SiCl4 product were analyzed by
featurization and clustering of the surface sites, as described in the Site
Identification & Clustering section. We specifically chose the a-Si/SiCl4
surface/volatile etch product combination due to the completeness of
the data (all but one site tested on this surface finished to convergence)
and because not as many sites were barrier-less (in comparison to a-
Si/SiF4). The result of the SOAP featurization and Bayesian Gaussian
Mixture clustering model (SOAP & GM) was compared to using no
model. The potential distribution of predicted energy barriers if six sites
were chosen at random and averaged to calculate an overall etching
barrier (no model) was benchmarked against picking the two closest
points to the cluster centers in three different clusters from the SOAP
& GM model. Because a Bayesian Gaussian Mixture model is not always
unique in its cluster creation, the model was simulated 500 times and
each result was recorded. Comparing the results between the two cases,
we found a clear trend: applying the SOAP & GM model provided
a much narrower distribution of predicted etching energy barriers.
Furthermore, using the model to reduce all fifteen sites on the surface
to calculating only six sites, gave a narrow error of 70-meV from the
overall etching barrier across all the sites, with 75% of the prediction
falling within a narrow energy bandwidth of 20-meV. In comparison,
a site-specific distribution of etching barriers (e.g. no model) provided
an energy bandwidth of 3800 meV, with 75% of the prediction within
an error bound of 1600 meV. Thus, utilizing the model to describe
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and cluster the sites and their environments decreased the error over
twentyfold.

We evaluate the versatility of the workflow by comparing the
number of clusters, as well as the clustering algorithm, between a
Gaussian Mixture model, a Bayesian Gaussian Mixture model, and a
KMeans model. Five hundred simulations were performed for each
clustering algorithm, and the two closest points to each cluster cen-
ter were chosen and the results compared to having no model. For
metrics of comparison, we chose the model’s predicted bandwidth of
the etching barriers and the mean of the predicted barriers relative
to the mean of all etching barriers on the surface (‘‘true barrier’’).
The number of clusters was varied while using a Bayesian Gaussian
Mixture clustering algorithm. It was found that while increasing from
three to four clusters improved the mean error, the resulting bandwidth
of predicted etching barriers increased as well. In addition, further
increasing the cluster number did not improve the mean error or the
bandwidth. In terms of the clustering algorithm, the Bayesian Gaussian
Mixture model performed the best: it had the least deviation from the
true barrier and the smallest bandwidth of predicted etching barriers.
In addition, a Bayesian Gaussian Mixture model with different types of
covariances: full, diagonal, and spherical, was tested. The full Bayesian
Gaussian Mixture also performed the best. Detailed comparison of the
resulting barrier bandwidth and the error from the true barrier of the
covariance types tested for the Bayesian Gaussian Mixture model, as
well as from variations of the clustering model, including the Bayesian
Gaussian Mixture, Gaussian Mixture, and KMeans model can be found
in the SI.

Different parameters of SOAP including the cutoff radius, the high-
est radial contribution, the highest angular contribution considered,
and the width of the radial basis function were also tested. A small
cut-off radius on the order of typical bond length was found to work
the best across all simulations. Similarly, a small number of radial
and angular contributions performed better. Finally, a Gaussian width
of 0.5–0.7 performed best. Detailed comparison of the resulting en-
ergy bandwidth of the etching barriers and errors upon variation of
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the SOAP parameters can be found in the SI. While the size of the
dataset limited the tuning of the SOAP hyperparameters, nonetheless
the model’s performance is indicative of the smoothness of the SOAP
algorithm. In Fig. 5 the optimal SOAP parameters found along with
the Bayesian Gaussian Mixture 3-cluster model were generalized across
all material/volatile etch product combinations calculated. For each
combination, the resulting model performed better than no model. The
errors were narrow at 70, −310, 70, and −30 meV for a-Si/SiCl4, a-
Si/SiF4, a-C/CCl4, a-C/CH4 respectively. In addition, in each case, the
resulting modeled etch-barrier distribution was over tenfold narrower
than the etch-barrier distribution with no model.

We emphasize that the workflow easily allows switching the site
featurizer to any other relevant Matminer Base Featurizer class. For
demonstration purposes, SOAP was compared to other radial basis-
based featurizers, including the Generalized Gradient Distribution
Function (GRDF), Angular Fourier Series (AFS) [69], and AGNI Finger-
print [70]. The cutoff parameter was also tuned for both the GRDF and
AFS featurizers. While other featurizers could perform better than SOAP
on a-Si, etched by SiCl4, with some tuning of the hyperparameters,
these featurizers were not as generalizable to other material/volatile
etch product combinations. Within the set of tested featurizers, SOAP
proved to be the most generalizable across material composition and
volatile etch product tested. More detailed information on how these
featurizers, and their tuned hyper-parameters affected the resulting
energy barrier distribution and error can be found in the SI.

4. Conclusions

We developed a methodology to reduce potential sites to study on
amorphous material surfaces. The approach relies on featurizing sur-
face sites using the Smooth Overlap of Atomic Positions and clustering
them using a Bayesian Gaussian Mixture model. We applied this method
to dry plasma etching, an important process for the semiconductor
industry. Using this method, we demonstrated that we were able to
reduce the fifteen surface sites for a-Si and 22 surface sites for a-C down
to 6 calculations to achieve an etching barrier prediction with rea-
sonable error. The methodology developed to analyze surface sites on
amorphous surfaces can be used for any simple, site-specific computa-
tional study, specifically accelerating in-silico prediction of amorphous
surface properties and reactivities, previously a costly computational
feat to achieve.
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