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Abstract—Efforts such as the Human Genome Project provided
a dramatic example of opening scientific datasets to the commu-
nity. Making high quality scientific data accessible through an
online database allows scientists around the world to multiply the
value of that data through scientific innovations. Similarly, the
goal of the Materials Project is to calculate physical properties of
all known inorganic materials and make this data freely available,
with the goal of accelerating to invention of better materials.
However, the complexity of scientific data, and the complexity of
the simulations needed to generate and analyze it, pose challenges
to current software ecosystem. In this paper, we describe the
approach we used in the Materials Project to overcome these
challenges and create and disseminate a high quality database
of materials properties computed by solving the basic laws of
physics. Our infrastructure requires a novel combination of high-
throughput approaches with broadly applicable and scalable
approaches to data storage and dissemination.

I. INTRODUCTION

Materials discovery and development is a key innovation

driver for new technologies and markets, and an essential part

of the drive to a renewable energy future. Yet, historically,

novel materials exploration has been slow and expensive,

taking on average 18 years from concept to commercializa-

tion. [8] To address this challenge, the US government has

created the US Materials Genome Initiative (MGI) [18], which

aims to “double the speed with which we discover, develop,

and manufacture new materials”.

The central component of the MGI approach is using our

ability to accurately model nature through computer simu-

lations at unprecedented scale. It is now well established,

through several demonstrated examples [11], that many ma-

terials properties can be predicted by computing accurate

approximate solutions to the basic laws of physics, and that

this virtual testing of materials can be used to design and

optimize materials in silico. By applying the power of many-
task computing [26] on increasingly powerful computational

platforms, materials designers, both theorists and experimen-

talists, can scan through thousands of possible new materials

across a wide range of chemistries.

The Materials Project (MP) [19], part of and in fact a

progenitor of the MGI, is providing a community accessible

datastore of high-throughput calculations that scientists can

leverage to quickly predict, screen, and optimize materials

for target properties. A major goal of MP is to populate this

community datastore with calculated properties of all known

inorganic materials.

The Materials Project (MP) has benefited from HPC re-

sources at NERSC and elsewhere, consuming roughly 8 mil-

lion CPU hours to date. Many-task computing workflows are

increasingly using HPC environments due to their need for

large computation and storage resources. HPC environments

present challenges for running both the datastores and the

associated calculation workflows because these environments

were originally designed to serve the needs of large MPI

applications that run for predictable times and do all I/O

to disk. Many-task workflows such as the Materials Project

have low parallelism with sometimes very unpredictable total

runtimes, and these workflows need to update a database with

their results.

Contributions. The two major contribution of this paper

are, first, to describe how our infrastructure uses a NoSQL

datastore for materials properties as a central component

that serves multiple roles: (a) managing the state of high-

throughput calculations (performed by our high-throughput

workflow engine), (b) storage and analytics for the calculation

results, and (c) a searchable back-end for data dissemination.

We have leveraged the flexibility and scalability of a NoSQL

“document store” [3], MongoDB, to achieve these three goals

within the same deployment. The second contribution is to

describe, from our experiences, the current challenges in

deploying any centralized datastore of this type within the

HPC ecosystem.

II. RELATED WORK

CatApp, developed by Hummelshoj et al. [13] is an ex-

ample of high-throughput materials design that provides a

web application to access activation energies of elementary

surface reactions and is part of a larger database of surface

reaction data being developed under the Quantum Materials

Informatics Project [25]. Curtarolo et al. [5] have developed
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the AFLOW (Automatic Flow) software framework for high-

throughput calculation of crystal structure properties of alloys,

intermetallics and inorganic compounds. The Materials Project

is much more user-centric and application-agnostic than these

efforts, i.e. the primary focus is not a researcher screening for

an application, but rather enabling the user to access to the

data in a way that lets them discover applications.

Other open databases built from surveys of nature include

the Human Genome Project (HGP), whose goals were to

identify, store, and disseminate all the approximately 20,000-

25,000 genes and 3 billion chemical base pairs in human DNA.

The Sloan Digital Sky Survey (SDSS) [28], over eight years of

operations, obtained deep, multi-color images covering more

than a quarter of the sky, mapping more than 930,000 galaxies

and more than 120,000 quasars. The Materials Project goals

are similar in breadth, but focus more heavily on computation

as a generator of data and on a community-owned library of

analysis tools.

Other examples of collaborative data-centric portals include

the Earth System Grid (ESG) [31], [9], which focuses on

climate and environmental science data sets, in particular for

the World Climate Research Programme’s Coupled Model In-

tercomparison Project. The Systems Biology Knowledgebase

(KBase) [16] is a collaborative effort designed to accelerate

our understanding of microbes, microbial communities, and

plants, by providing free and open access to data, models and

simulations. Both these projects differ from MP due to very

different requirements: the ESG has to enable exchange of

huge data sets, as opposed to MP’s finer-grained collaborative

data sharing; KBase must enable a cross-domain exploratory

process but does not concern itself like MP with ab-initio

calculations as a common exploratory base.

III. DESIGN AND IMPLEMENTATION

The current MP implementation is based on the high-

throughput framework developed by Jain et al. [14] and sub-

sequently extended by collaborators at the Lawrence Berkeley

Laboratory and National Energy Research Scientific Comput-

ing Center (NERSC). The framework has performed computa-

tions to screen over 80,000 inorganic compounds for a variety

of applications, including Li-ion and Na-ion batteries. [4],

[10], [12], [20], [22].

This computational infrastructure was created to discover

new, better, materials using high throughput ab initio compu-

tations. Currently the focus is on atomic scale calculations

of thermodynamic and electronic properties using density

functional theory, but the methodology is applicable to many

different length scales, properties, and methods.

An example of the investigations enabled by this infrastruc-

ture is the search for better lithium-ion battery materials, which

would make many common devices perform better and impact

the environment less. Two crucial properties for any battery are

its voltage and capacity. In Figure 1, we show potential battery

materials screened by the Materials Project as a function

of predicted voltage and capacity, noting the comparatively

narrow range of properties exhibited by known materials.

Several compounds displayed in Figure 1 could improve upon

the properties of known materials; further computations can

be used to screen promising candidates for other important

properties such as Li diffusivity (related to power delivered

by the cell) Without high-throughput computing, theorists and

experimentalists need to choose which compounds to compute

and synthesize based on a combination of extrapolation and

intuition that is far slower and may missing promising candi-

dates.

Fig. 1: Battery materials screened.

The current Materials Project implementation runs as a 24/7

production system with, as of this writing, over 2500 registered

users, many of whom are very active: for example, in the week

of August 20 - 27, 2012 the web interface logged 3315 distinct

queries returning a total of 12, 951, 099 records.
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Fig. 2: Materials Project architecture. The datastore serves

all four major functions, clockwise from upper-left: Parallel

computation, Data analytics, Data dissemination, and Data

validation and verification.

A. Architecture

The MP architecture, shown in Figure 2, is centered on a

flexible, scalable datastore. The computations are driven by the

workflow engine, which persists its state in the datastore. The

results of the computations are stored on the HPC resource,

then loaded into the datastore by midrange compute resources,

which also run validation and verification functions. The data
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is disseminated through a web server that implements both

a Web UI and Web API; collaborative tools allow users

to publicly annotate the data. Data analytics and scientific

applications are shared through an open-source Python library.

Most of these capabilities are available in some form in

other HTC systems, but our approach is unique in that all

these components coordinate through the datastore, which

simultaneously acts a message queue, analytics engine, and

web back-end DB.

The envisioned role of the Materials Project (MP) infrastruc-

ture in the scientific discovery process is shown in Figure 3.

The scientific user begins with ideas (a), which may stem

in part from data mining of the MP database. From these

ideas, the user creates an initial set of materials to submit

for computation. The materials are serialized into records in

the Materials Project Source (MPS) format (b).

The MPS records will be converted to a job for the MP

workflow (c), which will compute the desired physical proper-

ties on parallel resources. Up to this point, all inputs have been

generated by the core MP team, i.e. from the ICSD database,

or from personal interaction with other scientists. The vision,

however, is to open this process to a much broader base of

users.

The resulting data can be uploaded to a user-controlled area

called a sandbox (d), which is only visible to the creator and

selected collaborators. This capability is not yet developed, so

currently ther is only one “core” database. This core, vetted,

database is highly valuable and will continue alongside the

private user sandboxes.

The user will analyze the data (e), using the open analytics

platform pymatgen, to determine the stability and for synthesis

potential of the new materials. This will either result in novel

materials, or generate new ideas and restart the process. At

any point (e.g., after a publication or a patent filing), the user

can allow the data to become publicly disseminated through

the MP website (f) to the broader community. We note that

this capability will be a natural by-product of the Web UI for

the sandboxes.

The rest of this section will describe the design and im-

plementation of the enabling infrastructure components: the

datastore, the workflow, and the web APIs.
B. Datastore

This section describes how we used document-oriented

NoSQL datastore to act as back-end repository, execution

engine, and workflow manager. The datastore handles a wide

variety of data types, including execution state, outputs, and

views of the calculated material properties. We chose NoSQL

primarily for flexibility: unlike RDBMS products such as

MySQL and PostgreSQL, our datastore does not require that

we lay down a normalized schema between all these data

types at the beginning of the project. The data being stored is

continually evolving as we add new types of calculations and

collaborators onto the project over time. By choosing NoSQL,

MP can adapt quickly to these changes with small changes

in Python code instead of refactoring complex relational

schemata.

Compute 
properties

Stability 
and 

synthesis

Materials 
Project 
Source

ideas

User 
sandboxes

MP Workflow

(b)

(a)

(c)

(d)

(e)

pym
atgen

MP
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(f)

Fig. 3: Envisioned materials discovery workflow. User ideas

(a) for candidate materials (b) are submitted for computation

(c), stored in user sandboxes (d), analyzed (e), and eventually

released to the public (f).

TABLE I: Complexity and structure of selected collections

Collection Summary Structure
Battery
prototypes

Nodes: 14
Depth: 4
Mean depth: 3.6

Materials Project
Source (MPS)

Nodes: 94
Depth: 6
Mean depth: 4.8

Materials Nodes: 208
Depth: 10
Mean depth: 6.0

Tasks Nodes: 1077
Depth: 12
Mean depth: 7.4

While the VASP calculations are running, they generate

from a small input (the initial crystal) several MB of interme-

diate output data. This is parsed and reduced by the FireWorks

Analyzer discussed in §III-C3, so that the aggregate volume

of data stored in our database remains relatively small, in the

hundreds of GB. This data is, though, highly complex: we store

hundreds of fields describing calculations for over 30, 000 ma-

terials, 3, 000 bandstructures, 400 intercalation batteries, and

14, 000 conversion batteries. An overview of the complexity of

the document structures is illustrated as graphs in Table I. Both

the web interface and workflow components perform complex

ad-hoc queries over these structures.

Our datastore of choice is MongoDB. Among document-

oriented datastores, MongoDB is known for its powerful

but simple query language, ease of administration, and good

performance on read-heavy workloads where most of the data

can fit into memory. Its relative weakness for huge datasets
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and write-heavy workloads is a reasonable trade-off for MP.

A productivity benefit of MongoDB is that both the query

language and the native data model is JSON, which is the

standard data format for modern web applications and easily

represented and manipulated as native Python dicts.

The remainder of this section describes the organization of

the datastore to serve multiple overlapping roles. In MongoDB

terminology, we describe the different collections to hold

records of similar type, called documents.

1) Input data: The input data is our standard JSON rep-

resentation of a crystal and its metadata, called Materials

Project Source (MPS); it may come from a user or an

external data source. Our initial dataset was populated from

the crystal structures in the Inorganic Crystal Structure Data

(ICSD) database [1], a standard dataset in the field. Essential

information that must be stored and accessed is standard

physical characteristics (atomic masses, positions, etc.), and

metadata indicating the source of the crystal.

The input data are stored in the mps collection. Because

MongoDB and MPS are both JSON, import and export of the

data is trivial.

2) Execution state data: The datastore is also used as a

task queue, and so must be able to represent the state and

intermediate results for all tasks in the system. The workflow

engine needs to insert and remove tasks from this queue. Errors

and selected results are necessary for the logic of restarting

or modifying workflows. The connection between runnable

tasks and their results needs to be preserved at all times. The

representations used for the task data must adapt to changes

in both the workflow engine and the result data.

We store all the execution state in two database collections:

engines and tasks. The engines collection contains

jobs that are waiting to be run, running, and completed.

The jobs are modeled as black boxes of inputs, including

only those outputs needed for control logic. Jobs can be

selected using MongoDB queries on the inputs, which pro-

vides mechanism for matching types of jobs to types of

resources that resembles Condor classads [27], but which

can operate on the attributes of the input data directly.

For example, to select jobs for crystals containing both

lithium and oxygen atoms with less than 200 electrons,

we send the query: {elements:{$all:[’Li’,’O’],
nelectrons:{$lte:200}}

The tasks collection is used for completed tasks and all

the associated results. This collection contains much more

robust data about the output state and data produced by the

calculation. Different task documents can represent different

versions of VASP and other codes side by side.

3) Calculated property data.: There are several types of

calculated properties that must be stored, including materials,

phase diagrams, x-ray diffraction patterns, and bandstructures.

There needs to be a connection between the calculated prop-

erties, the execution that produced them, and the input data.

Each type of calculated properties is given its own collection

in the database. These include phase diagrams and diffraction

patterns. New properties can be added as new collections. The

canonical class of properties is stored in the materials
collection, which is a view of the properties needed by the

Web API and Web UI for each material. It turns out that the

definition of what makes a “material” is tricky: there may be

multiple results in tasks corresponding to the same MPS

input. We wish to present only one result to the user, so we

run a MapReduce operation on the tasks to group them by

the MPS identifier and pick a single “best” result. This process

of selection, grouping, and projection is performed in Python

code.

4) Summary: In this section we described our use of a

document store database, MongoDB, to flexibly handle varied

data.

One concern with schemaless databases is that changes in

the data layout may go undetected until run-time, where they

can introduce complex bugs. To address this, we have created

Python classes that abstract database operations, and use these

as an intermediate layer. The intermediate layer also provides

a defense against lock-in to MongoDB’s query language, as

it is capable of transforming input queries and updates for

another datastore.

C. Workflow

Scientific workflow tools are used to specify dependencies

and execute tightly coupled to many-task workflows on HPC

systems [7], [30]. Early in the project, we evaluated a number

of these tools to assess their applicability to our needs. We

identified a number of gaps and challenges:

• Programmability. The MP runs a C++ framework

(AFLOW) with Python scripts, and we wanted to leverage

this knowledge instead of learning details of tool-specific

graphical interfaces and/or DSL’s.

• Administration overhead. A database and web server

were already required to serve users. Running another

complex persistent service, as required by a majority of

these workflow tools, was unwanted overhead.

• Flexibility. Existing workflow tools have little support

for interacting with databases or reconfiguring running

workflows based on application results.

1) Workflow Description: We currently perform com-

putations with the Vienna Ab-initio Simulation Package

(VASP) [17], [29]. VASP computes an approximate solution to

the many-body Schrödinger equation using Density Functional

Theory (DFT). The primary result of this computation is a

determination of the charge density for a given compound, or

crystal. Many useful properties of materials formed from these

crystals can be derived directly from this result.

The DFT calculation performed by VASP is complex and

challenging to schedule. The core method is really a series

of algorithms, each of which is an iterative calculation with

several key parameters. There is no single set of parameters

or iterative algorithms that works best for all types of crystals,

and there is no guarantee that a given run will converge at all.

The runtime of a given calculation can be estimated based on

domain knowledge, but there is a high degree of uncertainty to
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this estimation. The absolute range of runtimes, at the current

parallelism allowed by VASP, ranges from minutes to days.
The VASP DFT calculations impose unique requirements

on the system that motivate our workflow design.
2) FireWorks: FireWorks is our custom workflow manager

and is implemented in Python. Python is a commonly used

language in this community and thus reduces the learning

curve for future users who might want to write and/or change

existing workflows.
A Firework represents one step in a workflow, and can

consist of several sub-components that are used to define both

typical job execution and exception handling. Each job, that

runs on the HPC system, is specified as a dictionary of runtime

parameters (Stage) that are later translated into input files on a

compute node by a component called the Assembler. The job

specification blueprint and subsequent translation to execution

state (i.e., input files) by the Assembler, is dependent on the

desired code to be executed. Because the job specifications

are Python dicts, they are easily stored and queried as JSON

documents in MongoDB.
In addition to job specification, each Firework also contains

components that allow for planned dynamic elements within

the workflow. A Fuse object is embedded within each Fire-

work and is capable of overriding input parameters prior to

execution, based on the output state of any parent jobs. The

parameters to override are specified as a Python dict that is

similar to Mongo atomic update syntax (e.g. $set, $unset, etc.).

This allows any modifications returned by the Fuse to be stored

within the FireWorks database for later analysis.
FireWorks has unique features to handle restarting failed

jobs, changing parameter sets based on job behavior, and

preventing duplicate job submission from multiple users, that

we discuss in the next section.
3) FireWorks Unique Features: The Materials Project

workflows helped us identify four unique requirements for

FireWorks:

• Re-runs. All workflow systems must deal with machine

failures. For MP, the difficulty in predicting resource

requirements means that jobs are also often killed due to

insufficient walltime and memory. This needs to be effi-

ciently detected and jobs restarted, with more resources.

• Detours. MP jobs will sometimes quit with an error

message. In these cases, the job must be resubmitted,

but with a few minor input parameters changed. The rest

of the workflow should be the same. There might be

several iterations of modifications before the job runs to

completion. If the problem is beyond automated repair,

the system needs to abort the entire workflow and mark

it for manual intervention.

• Duplicate detection. Calculations performed as part of

a workflow may have (practically) identical jobs. Since

duplicates exist for a large percentage of potential jobs,

the system needs to avoid re-running these jobs. Dupli-

cates may arise from two users simply submitting the

same thing, or from a job that was specified dynamically

during the running of a workflow.

• Iteration. Some calculations require iterative runs of the

same job, with incrementing input parameters, until a

condition is met. In general, the number of iterations

required is not known in advance. More sophisticated

search algorithms than simple linear increments (e.g.,
genetic algorithms) may be required.

We believe that these requirements are applicable to many

other iterative multi-step calculations, such as quantum Monte

Carlo and molecular dynamics.

The Fuse object handles delayed execution through condi-

tions (e.g., parent jobs have finished, the parent jobs have some

specific output value, a user has approved the workflow, etc.)

Because each Fuse is essentially an instance of a Python class,

the logic can be arbitrarily complex and specified directly in

the programming language.

In addition to the Fuse, dynamic workflows are also man-

aged by embedding an Analyzer object into the FireWork. The

Analyzer contains Python code that is run after job completion,

and can check jobs then schedule follow-up actions. For

example, to perform re-runs with jobs that have failed due to

insufficient walltime, the Analyzer can create a new Firework

that is a copy of the failed job but with a longer walltime.

To handle detours, the Analyzer can terminate a workflow, or

create an entirely new workflow based on the result of the job.

Duplicate jobs are detected via Binder objects, which

uniquely identify a job. In the case of VASP runs, a Binder may

contain a reference to a crystal structure ID and the type of

functional (e.g., GGA). FireWorks uses the uniqueness defined

by the Binder to replace the execution of duplicate jobs with a

pointer to the previous result. By defining appropriate Binders,

the FireWorks code allows workflows to be idempotent and be

submitted without regard to prior history of the project.

Although iteration of the VASP calculations could be

constructed from the Fuse, Analyzer, and Binder components,

the current implementation uses the previously mentioned

AFLOW framework for this inner loop.

In conclusion, FireWorks provides a highly dynamic system

for specifying, in Python code, complex rules for choosing

and running MP jobs. The time to load the full results of

codes is significant and discussed in §IV-C1. Aside from that,

system overheads are minimal. The queries to pull down inputs

and update the database with new job statuses execute in a

negligible fraction of the time to perform the calculations.

D. Data dissemination

The materials discovery process shown in Figure 3 de-

pends on a comprehensive and extensible system for data

dissemination. This section describes the Web user interface,

programmatic data access, and collaborative tools used in the

Materials Project. Our data dissemination component exem-

plifies the interfaces appropriate for wider data dissemination

from community databases.

1) Web user interface: Well-designed web interfaces are

important for creating productive and usable environments that

enable data-driven science.
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The Materials Project places a strong emphasis on user

experience and user interface design. We have built a rich,

interactive web portal focusing on the scientist as the end-

user. Our interface uses technologies like HTML5 and AJAX

to allow users to search and browse MP data and pan and zoom

real-time visualizations of bandstructures, diffraction patterns,

and other properties.
2) Programmatic data access: The web interface makes

it very easy for users to interact with the data but there

is also a need for programmatic interfaces to build higher-

level tools. To provide an open programmatic platform for

accessing Materials Project data, we provide a HTTP-based

API called the Materials API, which is a Web API that maps

HTTP URIs to data objects and functions. Results are returned

in JavaScript Object Notation (JSON) format [15] that can

easily be consumed by other software for processing and

analysis. The following example URI shows the simplicity of

the Materials API. The example in Figure 4 shows how to

retrieve the calculated energy of ferric oxide (Fe2O3).

https://www.materialsproject.org/rest/v1/materials/Fe2O3/vasp/energy

Preamble Version Application I.D. Datatype Property

Fig. 4: Materials API URI to get the energy of Fe2O3

3) Open analytics platform: pymatgen: One of the goals of

MP is to enable users to build a rich set of tools to analyze

materials data. Towards this end we provide an open-source

Python library called pymatgen [23], [24], which defines a

Python object model for materials data along with a well-tested

set of structure and thermodynamic analysis tools to act on the

data. The pymatgen library can import and export data from

a number of existing formats, including fetching data via the

Materials API. This provides a natural and powerful interface

for jointly analyzing local and remote data, and encourages

innovative uses and analyses of materials data.
We have already started to see new and novel uses of the

MP data via the Materials API and the pymatgen library, such

as screening for CO2 sorbents, calculation of x-ray spectra

for clusters of atoms, and performing Voronoi analysis to find

possible interstitial sites.

IV. DISCUSSION

We discuss here the distinct challenges that the Materials

Project and similar efforts face as they scale up to large parallel

environments. The discussion will be structured around the

four main components of the architecture shown in Figure 2:

parallel computation, data analytics, data validation and veri-

fication, and data dissemination.
Our experience highlights three future areas of research

and exploration that are required: (1) how to provision and

share (across projects) a set of resources to perform data

analytics and loading between the parallel compute cluster

and the database, (2) how to perform bi-directional sharing of

both good data and good code to operate on it, and (3) how

to automate and scale continuous validation and verification

functions on dynamic datastores.

A. Parallel computation

This section discussions challenges encountered with run-

ning our workflows in parallel HPC environments, correspond-

ing to the “Parallel computation” box in Figure 2.

1) Batch queue limitations: Most HPC systems allow only

a handful of queued jobs per user and batch queueing systems

like PBS are designed with this in mind. But for many of the

high throughput workloads like the Materials Project, there are

thousands of small jobs. In the MP, we worked with NERSC

to get advanced reservations that temporarily suspended these

limits. We also address these limits with task farming, where a

single job in the queue runs multiple VASP calculations; task

farming also smooths large wallclock variations (see §III-C).

2) State management: MPI processes typically read and

write their inputs and outputs that live on a shared file system

that is accessible to all the MPI tasks. In contrast, high

throughput computing might have a variety of different modes

of task state synchronization and managing input and output.

In our case, we use MongoDB as the central datastore for the

tasks. There are a number of challenges to running MongoDB

type datastores on HPC systems. First, most HPC systems

are configured such that the internal worker nodes are not

allowed to communicate outside the system. Thus, we had to

use a proxy to have our tasks communicate with the MongoDB

Server.

Recent systems used in HPC systems provide a Non-

Uniform Memory Access (NUMA) architecture. In this ar-

chitecture, each processor has local memory that provides

lower latency memory access. All memory is accessible from

all processors but at a potentially higher latency and lower

performance. Databases such as MongoDB, where a single

multi-threaded process uses most of the system’s memory, are

atypical workloads for these systems . Using the numactl
program, it is possible to interleave the allocated memory

with a minimal impact to performance. But this trend is

accelerating: power efficiencies of many simpler processors

are, as predicted [2], leading to 100’s and 1000’s of processors

per chip, each with their own local memory. This raises the

question of provisioning the right resources for databases for

many-task workloads at HPC centers.

B. Data analytics

This section discusses the challenges with performing data

analytics on the simulation data, corresponding to the “Data

analytics” box in Figure 2.

1) Scaling community involvement: The pymatgen Python

library powers computations within MP, and it is a powerful

and useful tool. The challenge going forward is to bring

additions and improvements to the codebase while keeping the

codebase “clean” in both the sense of quality algorithms and

good programming style. Requiring unit tests helps, but more

subtle issues of style and clarity are much harder to police.

From the perspective of the scientists, the problem is that

(a) it takes time and effort to go from something that works

to something that is stylistically correct, with no immediate

reward, and (b) Computer Science provides very little in the
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way of concrete guidelines, or tools. The social solution to this

problem is to use Github in the traditional way of accepting

patches, with the acceptance to the library being the “carrot”

that encourages better coding. But this raises the broader issue

that in an era in which scientists are increasingly expected to

program, there are not sufficient models for modern scientific

programming practices, e.g. using OO design in Python.

2) Scaling data analytics using Hadoop: MapReduce and

Hadoop have gained traction in the last few years for scalable

parallel analytics. There are several ways that MP can leverage

these capabilities while retaining the coherence of a single

datastore. First, MongoDB provides extensions that support

analysis using Hadoop, directly. However, to effectively use

MongoDB and Hadoop together, it is necessary to understand

the performance trade-offs. In earlier work [6], we show that

Hadoop can be several times faster than the built-in MongoDB

MapReduce framework.

For larger-scale analytics, this may not be a good solution

as MongoDB is significantly slower than HDFS as a backend

store for MapReduce jobs. In this case, efficiency can be

gained by pre-staging the MongoDB data to HDFS. This

would make sense, for example, for experimental image data

from light sources. Even when HDFS is being used directly,

MongoDB will continue to contain references to the data

that allow queries to be performed using the QueryEngine

abstraction layer described in §III-B4.

C. Data loading, validation, and verification

This section discusses the challenges with all the operations

required between when the data is generated and analyzed and

the dissemination of the data to the user, corresponding to the

“Data V&V” box in Figure 2.

1) Data loading: The process of loading output data from

the VASP simulation into the database is performed as a post-

processing step. This is necessary because the “worker” nodes

cannot connect out to the database server and, at any rate, this

would be a poor use of optimized parallel resources. Currently,

this is a manual operation that takes a significant time. We

are working with NERSC to transition to a more automated,

incremental loading capability that can run on utility resources.

This is one instance of a broader need, e.g., similar capabilities

could help other projects to automate their post-processing

steps, or help MP do backups and replication. We believe

that this points to the necessity for computing centers such as

NERSC to allocate manpower and system resources to a more

scalable model for serving this need, and we hope that what

we learn from automating the data loading and data mining in

MP will inform that model.

2) Validation and verification: Continuous validation and

verification (V&V) should be part of any infrastructure that

centers on a datastore. Our current approaches to validation

and verification of the database involve selected manual tests

of known compounds, and some automated consistency tests.

This is incomplete and has led to a number of last-minute

scrambles to fix a calculation bug before releasing a database.

A logical language in which to write the V&V of a database

is MapReduce, with the Map finding the items to compare

and the Reduce performing the comparisons. MongoDB’s

built-in MapReduce functionality is severely limited by im-

plementation within a single-threaded Javascript engine. MP

currently uses a simple custom MapReduce framework written

in Python. The Mongo/Hadoop connector has better perfor-

mance, as described in Section IV-B2. As for the data loading

problem discussed above, automated V&V would benefit from

a dedicated infrastructure that is connected directly to the

database.

D. Data sharing and dissemination

We discuss the challenges associated with security and

privacy and query performance as related to data sharing and

dissemination.

1) Security and Privacy: In creating a public data resource,

it is critical to protect the data and its users from misuse. Chal-

lenges include maintaining privacy of user data and preventing

malicious queries from crippling the system.

Rather than maintaining sensitive user login information, we

delegate authentication to trusted third party providers (like

Google or Yahoo). This also simplifies account management

process since anyone with an email address from a trusted

third party can sign up for an an account. Additionally, any

data generated by the user using the MP tools can be made

private or public.

Because all queries go through the QueryEngine abstraction

layer described in §III-B4, all queries are sanitized and cannot

access the database directly. We also implement checks to limit

the number of queries from a given user to prevent denial-of-

service or data scraping attacks. In the end we recognize that

security is an ongoing concern, and we work with our systems

administrators to follow best-practices across the board.

2) Query performance: Query performance is an important

practical consideration for a database that must serve users

across the world. Despite a growing number of users, the

database has performed well for interactive searches originat-

ing from the web UI. The distribution of query times, across

all collections, between April 24 to August 31, 2012 is shown

in the histogram in Figure 5.

A majority of the queries are on the order of a few hundred

milliseconds. The few outliers are still well within the range

of user expectations for response time on a web portal. The

scatterplot inset in Figure 5 shows a time-series of individual

query times for the last half of August 2012, which is the most

recent data as of this writing.

Our query performance has so far been good with only a

single MongoDB server. Future scalability can leverage the

sharding and replication capabilities built in to MongoDB [21].

This will allow us to maintain performance at scale as the

Materials Project data grows, as well as isolate the various

roles of the database to separate servers for performance

reasons.
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Fig. 5: Histogram of query performance from April 24 to

August 31, 2012. Inset: time-series of query performance in

August 2012.

V. CONCLUSION

In this paper, we described the Materials Project infrastruc-

ture that uses a NoSQL document store as the center of its

infrastructure for meeting the challenges of high-throughput

DFT calculations in HPC environments. This approach has

several advantages in terms of flexibility, productivity, and

scalability.

In addition, we identified several areas for future research

that could improve the HPC ecosystem needed for these stud-

ies. Addressing these areas could have a signficant impact on

progress for other scientific domains, as the Materials Project

is an examplar of a building wave of data-centric sciences.

We also highlight the importance of the data dissemination

thrust of such projects, e.g. the Materials API and pymatgen,

which has a large impact on the scientific community for using

shared data.

Future work in the Materials Project will address the

challenges associated with allowing users to define workflows

on their own protected datastores. This will enable broader

collaborative science by shortening the materials design cycle.
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