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Dynamical and thermodynamical instabilities in the disordered RexW12x system
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The dynamical and thermodynamical stability of the bcc and fcc disordered RexW12x system is studied
within the density-functional theory. The configurational part of the free energy is obtained fromab initio
electron structure calculations together with the cluster expansion and the cluster variation formalism. Elec-
tronic excitations are accounted for through the temperature-dependent Fermi-Dirac distribution. The lattice
dynamics of Re and W is studied using the density-functional linear-response theory. The calculated dispersion
curves show that fcc Re is dynamically stable while bcc Re exhibits phonon instabilities in large parts of the
Brillouin zone, similar to previous results for fcc W. Interestingly, the phonon dispersion curves for fcc Re
show pronounced phonon anomalies characteristic of superconductors such as TaC and NbC. Due to the
instabilities in bcc Re and fcc W the vibrational entropy, and therefore the free energy, is undefined. In order
to predict the regions where the disordered RexW12x alloy is unstable we calculate the phonon dispersion
curves in the virtual crystal approximation. Then we apply a concentration-dependent nonlinear interpolation to
the force constants, which are calculated through a Born–von Ka´rmán fit to theab initio obtained dynamical
matrices. The vibrational free energy is calculated in the stable regions for the phases as a function of
concentration. The complete analysis gives a region where the bcc phase would become thermodynamically
unstable towards a phase decomposition into disordered bcc and fcc phases.@S0163-1829~99!11537-6#
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I. INTRODUCTION

Alloys of the group-VI metals Cr, Mo, and W with R
have been studied extensively in experiments.1–5 One reason
is that a small addition of Re to these elements simu
neously increases their strength and plasticity. This so-ca
rhenium effect has since then become a collective name
the numerous changes in the group-VI metal properties
to small additions of Re. Rhenium-molybdenum alloys in t
s phase and theA15 structure as well as the Re-W hcp allo
system have been studied because of their supercondu
properties.6–8

Tungsten has been suggested as armor material in pla
facing components in future fusion devices. This has
creased the interest in the Re-W system because the h
neutron irradiation from the fusion process transforms W
oms into Re. After many years of service the Re concen
tion in the bulk may be as high as 25%, which is close to
solubility limit of the bcc W-Re solid solution.9 However, in
the case of irradiation the Re atoms are created randoml
the bcc lattice, which means that higher Re concentrati
can be reached than what corresponds to the phase dia
of thermal equilibrium. It has been observed1 that the elastic
constantC8 in W decreases with Re alloying, which is a sig
of growing instability of the bcc crystal.

There is not much theoretical work on W-Re alloys.10,11

In particular, no attention has yet been given to the stab
of the bcc Re-W system when the Re concentration of
irradiated sample exceeds the solubility limit. We therefo
perform anab initio study of the dynamical and thermody
namical stability of bcc Re and the disordered bcc Re
system. The stable phase of pure Re has the hcp lattice s
ture. However, our main concern is the bcc phase, but
need a stable Re reference structure and choose fcc Re
fcc phase is also a candidate for the metastable phase
PRB 600163-1829/99/60~14!/9999~9!/$15.00
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served in undercooled Re.12 The study of the Re-W alloys
will also present an interesting example of how to deal w
the free energy in systems with thermodynamically sta
and metastable, as well as dynamically unstable, pha
There are advantages in choosing Re and W. The masse
almost equal, which greatly facilitates the calculation of t
phonon frequencies in the disordered case. Also, the re
ation effects are reduced due to the small size misma
which gives us a clearer picture of the other contributions
the free energy. The purpose of the paper is therefore t
fold: ~i! to performab initio electron structure calculation
on a particular system of importance in possible applicati
and for which there are no previous calculations, and~ii ! to
illustrate the effect of lattice instabilities in the phase d
gram of an alloy at finite temperatures.

This paper is organized as follows. In Sec. II, the form
ism of cluster expansion, the derivation of the free ener
and the details of our calculations are given. Section III p
sents the dynamical stability based on the phonon disper
curves for the ordered bcc and fcc phases and the therm
namical stability of the disordered bcc and fcc phases
summary is given in Sec. IV.

II. FORMALISM

A. Cluster expansion of the total energy

A well established method for treating substitution
~dis!order in anAxB12x alloy system is to map the alloy
problem to an Ising model, where the different ions are
signed to the sites of the Ising lattice. The mapping can
described by a site occupation operators i , which takes the
value21(11) if the lattice sitei is occupied by anA (B)
atom. Let the Ising lattice (L) haveN sites. Any configura-
tion can then be specified by aN-dimensional vectors
5(s1 ,...,sN). In the seminal paper of Sanchez, Ducaste
9999 ©1999 The American Physical Society
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and Gratias13 it was shown that any given function of th
configuration can be expanded in a set of functions that
pends on the configuration.

For each clustera[(p1 ,p2 ,...,pna
), containingna lat-

tice sites, we define a complete set of orthogonal clu
functionsFa as

Fa~sp1
,...,spna

!5sp1
sp2

¯spna
. ~1!

Every configuration-dependent property can now be
panded in this basis. For the total energy we get

E~s!5(
a

VaFa~s!, ~2!

whereVa are referred to as theeffective cluster interactions
~ECI’s!, and Eq.~2! is thecluster expansion~CE! of the total
energy. The expression in Eq.~2! is exact if we include all
2N terms. The work required to determine all ECI’s is of t
same order as determining the total energy of all 2N configu-
rations.

The usefulness of this theory resides in the fact that o
a small set of clusters is needed for the series to conv
reasonably well. One introduces a largest cluster,aM , be-
yond which interactions are ignored. In the structural inv
sion method14 ~SIM! the ECI’s are used as a set of fittin
parameters. The ECI’s are obtained by fitting the trunca
form of Eq. ~2! to a set ofab initio calculated energies fo
some ordered structures$f%. The linear dependence of th
total energy on the configuration is thus obtained from
rather small number of total-energy calculations which c
be performed by a state-of-the-art density functional meth

The expansion coefficients in Eq.~2! possess the symme
try of the underlying Ising latticeL.15 Thus, all clusters tha
are equivalent by some lattice symmetry operation h
equal ECI’s. Such a set of ECI’s is said to be in the sa
orbit, VL(a). It is necessary to take this into account wh
obtaining the ECI’s. Using the symmetry argument we c
rewrite Eq.~2! by grouping equivalent terms together as

«~s!5
E~s!

N
5 (

VL(a)

NECI

VamaF̂a~s!, ~3!

F̂a~s![
1

Na
(

bPVL(a)

Na

Fb~s!, ~4!

where thema is the number ofa clusters per lattice site
Using Eq. ~3! for the site energy in the SIM, we have t
minimize the following weighted variance:

w5(
$f%

Z

vfF«~f!2 (
VL(a)

NECI

maVaF̂a~f!G2

, ~5!

whereNECI is the number ofVa to be determined. In this
papervf51 is used, but other choices exist.16

B. The configurational part of the energy

The CE is an expansion of the configurational dep
dence, i.e., the energies used as input in the SIM sho
‘‘only’’ have this dependence. This is not the case for t
measured enthalpies of formation, because in addition t
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contain elastic contributions due to different equilibrium vo
umes. The enthalpy of formationDH(s) is defined as

DH~s!5DE~s,Vs!5min
V

DE~s,V!, ~6!

where

DE~s,V!5E~s,V!2xEA2~12x!EB . ~7!

E(s,V) is the energy of the compound,x the concentration
of constituentA and EA (EB) is the energy ofA ~B! at its
equilibrium volumeVA (VB). If one uses this set of energie
in the SIM, then the volume independence would propag
through the CE, leading to an alloy with vanishing bu
modulus. However, an approximate17 way of dealing with
the volume dependence in the CE is to use totally rela
energies, i.e., enthalpies of formationDH, and subtract a
single concentration-dependent termG, i.e.,

DH~s!5«~s!1G~x!. ~8!

The main contribution toG(x) is the energy needed t
change the volumes of the constituents into the equilibri
volume of the compound. This elastic energy is calculate17

from

G~x!5xE
x

1

~12y!
B

V S dV

dyD 2

dy1~12x!E
0

x

y
B

V S dV

dyD 2

dy,

~9!

where the bulk modulusB, and the equilibrium volumeV,
are both functions of the concentration. A simple way
approximate17 the elastic energy is to replace Eq.~9! with a
form that has the same properties~zero atx50 andx51,
and negative second derivative!, i.e.,

G~x!5Vx~12x!. ~10!

Theeffective elastic interactionV is defined by the condition
that the areas under the two curves are equal.

In systems were the constituents have significantly diff
ent volumes, relaxations will be important. A way to de
with this is to do amixed-spaceCE.18,19The long-range pair
interactions are handled in reciprocal space. It is well kno
that a finite CE fails in the long period limit. To reduce th
error in the long period limit the reference energy can
chosen as the constituent strain energy,DECS.18 Since the
system Re-W has rather small size mismatch, we will in t
paper use a real-space CE and use the elastic energyG in Eq.
~10! as the reference energy.

C. The free energy

In the Helmholtz free energyF5E2TS, there are severa
different contributions to the entropyS, arising from disor-
der in the atomic configuration, atomic vibrations, and el
tronic excitations. In the last term, there is an electro
phonon many-body contribution. However, that correcti
can be neglected whenT.uD/3, whereuD is the Debye
temperature.25

The configurational part of the entropy is treated with t
cluster variation method20 ~CVM!. As in the CE it is neces-
sary to introduce some approximation. The fundamental
proximation is the assumption that the statistical correlati
beyond a largest cluster are negligible. Then the configu
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PRB 60 10 001DYNAMICAL AND THERMODYNAMICAL INSTABILITIE S . . .
tional part of the entropy can be written in closed form
terms of the thermodynamical average of the cluster fu
tions, called multisite correlation functions. Having the co
figurational part of the entropy, we can construct the f
energyFCVM . This free-energy functional can be minimize
using standard techniques.

The vibrational entropy, and therefore the free energy
not defined for dynamically unstable systems. This probl
has a profound impact on thermodynamical calculations
structural free-energy differences.21–24 We will calculate the
phonon frequencies for Re and W in the bcc and fcc str
tures using the linear response theory. From these result
will estimate the region of dynamical stability for the Re-
system and calculate the vibrational contribution to the f
energy in that region. The expression for the vibrational f
energy per atom is25

Fvibr~T!53kBTE
0

`

g~n!lnS 2 sinh
hn

2kBTDdn. ~11!

The problem of calculatingFvibr is thus reduced to finding
the phonon density of states~DOS! g(n). To calculateg(n)
we have to obtain the dynamical matrices,D(q), for a large
number ofq points in the first Brillouin zone. For this we
employ the general Born–von Ka´rmán model.26 Assuming
that the interaction between the atoms is cut off beyon
distanceRmax we can express the dynamical matrices as

D~q!5 (
uRu,Rmax

e2 iq•RD~R!, ~12!

where D(R) are the real-space interatomic force-const
matrices. The usual approach is now to obtain the dynam
matrices from the calculated interatomic or interplanar fo
constants.27,28 Here we use the linear response technique
calculateD(q) for a small number~;30! of q points. These
matrices are then used in Eq.~12! to extract the real-spac
force-constants. When the real-space force-constant mat
are determined, Eq.~12! can be used to obtain theD(q) for
an arbitraryq. Hence we are able to calculaten(q) and then
g(n).

To the configurational and the vibrational part of the fr
energy we add the temperature-dependent part of the e
tronic free energy,

F~T!5FCVM~T!1Fvibr~T!1Fel~T!. ~13!

The electronic energyEel and entropySel are obtained from
the density of states,D(e,T), using the expressions for th
noninteracting electron gas,

Eel~T!5E
2`

`

eD~e,T! f de2E
2`

eF
eD~e,0!de, ~14!

Sel~T!52kBE
2`

`

@ f ~ ln f !1~12 f !ln~12 f !#D~e,T!de,

~15!

whereeF is the chemical potentialm, at zero temperature an
f is the Fermi-Dirac distribution function. When the dens
of states varies slowly withe near the Fermi level,D(e,T)
-
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can be taken outside the integral as a constantD(eF). We get
the Sommerfeld expressions25 for the electronic energy and
entropy and hence

F~T!5FCVM~T!1Fvibr~T!2
g

2
T2, ~16!

where

g5
p2

3
D~eF!kB

2 . ~17!

D. Electronic structure and linear response calculations

We used the local density approximation29 of the density-
functional theory.30 The calculations were performed using
plane-wave basis set and separable norm-conser
pseudopotentials31 for W and Re with the 5s, 5p, 6s, 6p,
and 5d states as valence states. These were generated i
multiple reference energy formalism of Vanderbilt.32 The
core radii were chosen to be 1.8 a.u. for both W and Re
the d pseudopotential was chosen as the local pseudopo
tial. This scheme allows a plane-wave energy cutoff ofEcut
540 Ry and the total energy convergence was better than
mRy/atom. We used the conjugate gradient method to ite
tively solve the Schro¨dinger equation33,34 and the modified
Broyden mixing scheme35 to achieve screening self
consistency. The Brillouin zone summations were carried
using the deVita and Gillan finite-temperature metho36

where the electronic occupation numbers are calculated f
the Fermi-Dirac distribution. The total-energy calculatio
were performed atT5290 K. The total energy at 0 K was
obtained from an extrapolation ofF(T) to T50 within the
Sommerfeld model. We chose a 16316316
Monkhorst-Pack37 grid yielding 145k points in the irreduc-
ible wedge of the Brillouin zone for the bcc and the f
structure.

The phonon frequencies were calculated using
density-functional linear response method38 for metallic
systems.39,40 This method is based on the variational pri
ciple of the density functional theory as developed by Gon
and Vigneron,41 which makes it possible to derive the se
consistent equations to all orders of the external perturbat
We obtained an explicit temperature dependence in the p
non frequencies by populating the electron states accor
to Fermi-Dirac statistics. The calculations were performed
T5570 K. Several phonon calculations were also perform
on a 20320320 mesh showing that the phonon frequenc
were well converged. A cubic spline was used to interpol
between the calculated phonon frequencies to obtain the
persion curves.

III. RESULTS

A. Total energy calculations

To test the reliability of the pseudopotentials we calc
lated the lattice constants, bulk moduli, and relative energ
for the pure elements in different structures. This was do
with the pseudopotentials as well as with a full-potent
technique~WIEN-95!.42 The agreement is very good and th
results are presented in Table I.



10 002 PRB 60KRISTIN PERSSON, MATHIAS EKMAN, AND GÖRAN GRIMVALL
TABLE I. Comparison between pseudopotential and linear-augmented plane-wave~LAPW! results. The
energy differences are calculated with the bcc energy as the reference energy.

a0 ~a.u.! B0 ~GPa! D ~mRy/atom!

Composition Structure PW LAPW PW LAPW PW LAPW

Re A1 7.280 7.330 398 404 218.3 223.7
Re A2 5.780 5.837 396 398 0 0
Re A3 5.159 5.195 401 405 223.4 228.3
W A1 7.480 7.527 305 312 37.4 35.6
W A2 5.903 5.943 337 335 0 0
W A3 5.285 5.318 305 308 42.8 41.6
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The total energy was then calculated for 10 bcc and 14
superstructures. For illustrative figures see Refs. 16 and
The results for the equilibrium lattice constants, bulk mod
and heats of formation are presented in Tables II and III.
structures were relaxed with respect to external and inte
coordinates. The change in total energy was rather smal
cept in three structures. Internal relaxations inZ2 decreased
the energy by 4.25 mRy/atom and inZ1 by 3.42 mRy/atom
for ReW3 and 1.46 mRy/atom for Re3W. The largestc/a
relaxations were found inZ1(ReW3) where the energy
dropped 0.54 mRy/atom. It is interesting to note that b
volumes and bulk moduli vary linearly with concentration
a very high accuracy in the Re-W system.

From the total energy calculations for the pure const
ents we also obtained the density of states. The coefficieg
in the electronic contribution to the free energy was cal
lated according to Eq.~17!. With the use of the calculate
equilibrium volumes and the bulk moduli the effective ela
tic interactionV was calculated for the bcc and fcc pha
through Eqs.~9! and ~10!. The results forD(eF) andV are
presented in Table IV. Subtracting the elastic energyVx(1
2x) from the heat of formation yielded the energy that w
used to obtain the volume-independent ECI’s. To obtain
best fit we calculated the standard deviation,Aw, in Eq. ~5!
for different sets of interactions for both phases. For the

TABLE II. Structure information for fcc superstructures whe
a0 is the lattice parameter,B0 is the bulk modulus, andD0H is the
heat of formation.

Composition Structure
a0

~a.u.!
B0

~GPa!
2D0H
~mRy!

Re A1 7.280 398 0.00
Re3W L12 7.324 378 3.58
Re3W D022 7.326 377 2.97
Re3W Z1 7.326 375 3.30
Re2W MoPt2 7.348 367 3.66
Re2W2 ‘‘40’’ 7.374 353 3.51
Re2W2 Z2 7.337 354 5.82
ReW L10 7.373 351 4.40
ReW L11 7.372 352 2.51
ReW2 MoPt2 7.415 336 4.36
ReW3 L12 7.424 332 2.85
ReW3 D022 7.426 332 2.71
ReW3 Z1 7.428 330 5.93
W A1 7.480 305 0.00
c
3.
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CE we needed, in addition to the empty and point inter
tions, pair interactions up to the fifth neighbor, three thre
body interactions, and three four-body interactions
achieve a standard deviation of 0.06 mRy/atom. A larg
error of 0.11 mRy/atom was found for Re3W in the D022
structure. The bcc CE included the empty and the point c
ters, pairs up to the third neighbor, one three-body clus
and one four-body cluster. This set gave the standard de
tion equal to 0.07 mRy/atom. The largest error~0.14 mRy/
atom! was for Re3W(D03).

B. Phonon dispersion curves

Phonon frequencies in hypothetical bcc or fcc Re have
been calculated before. The elastic constantsC8 andC44 for
fcc Re have been predicted44 to be positive, which indicates
that fcc Re is metastable. One of the main objectives of
paper is to map out the dynamical and thermodynamical
bility of bcc and fcc Re-W alloys. For this we need to es
mate the region of dynamical instability of Re in bcc W a
W in fcc Re. The stable phase of W has the bcc latt
structure but the fcc structure is dynamically unstable
phonon modes in a large part of the Brillouin zone.45 Figure
1 shows the calculated phonon dispersion curves for fcc
at equilibrium volume. We see that all phonon modes in
high-symmetry directions in fcc Re are stable. In particu
the long-wavelengthT[11̄0]@jj0# and T[001]@jj0# modes,
corresponding to the elastic constantsC8 and C44, respec-
tively, are stable in agreement with the predictions me

TABLE III. Structure information for bcc superstructures whe
a0 is the lattice parameter,B0 is the bulk modulus, andD0H is the
heat of formation.

Composition Structure
a0

~a.u.!
B0

~GPa!
2D0H

~mRy/atom!

Re A2 5.784 396 0.00
Re3W D03 5.812 380 1.78
Re3W L60 5.812 384 2.37
Re2W2 B11 5.842 365 2.83
Re2W2 B32 5.841 362 1.85
ReW B2 5.840 364 4.81
ReW A1 5.841 363 2.55
ReW3 D03 5.871 346 2.28
ReW3 L60 5.872 345 2.62
W A2 5.903 337 0.00
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tioned above. Three softening anomalies are exhibited~i!
The longitudinal@j00# mode shows a significant softenin
around j50.6. ~ii ! The L@jj0# mode decreases slightl
aroundj50.5. ~iii ! At the zone boundary in the@jjj# direc-
tion the longitudinal branch softens appreciably. The
anomalies are also found in NbC and TaC, two well-kno
superconductors.40,46 In NbC the anomalies have been e
plained by large electron-phonon matrix elements for
electron states at the Fermi level.40 Rhenium-molybdenum
alloys in the s phase and theA15 structure are also
superconductors,6,7 but to our knowledge there has been
study of superconductivity in fcc Re alloys. The similari
between the phonon anomalies found here and those in
and TaC suggests a common explanation.

Turning to Fig. 2 we study the phonon dispersion curv
of bcc Re, where2unu is plotted whenn2(q),0. Several
instabilities can be observed.~i! There is a pronounced di

around theL@ 2
3

2
3

2
3 # mode. This is a manifestation of an in

stability towards thev phase,47 which has also been found i
b-Zr.48 ~ii ! The entireT[11̄0]@jj0# branch is unstable. The

zone-boundary mode of this branch,T[11̄0]@
1
2

1
2 0#, has been

studied in several systems,49–52since it was conjectured tha
it gives a possible path for the martensitic bcc to hcp tra

formations. Further, it has been noted that theT[11̄0]@
1
4

1
4 0#

phonon mode provides a transition path from the bcc to
dhcp structure.45 The long-wavelength part of th

T[11̄0]@
1
2

1
2 0# mode corresponds to the elastic constantC8,

which is also negative. These three instabilities result i
completely unstableT[11̄0]@jj0# branch. We conclude tha
bcc Re is dynamically unstable for displacements towa

FIG. 1. Calculated phonon frequencies of fcc Re.

TABLE IV. Elastic and electronic information in terms of th
effective elastic interactionV and the density of states at the Ferm
level for the different phases.

D(eF) ~states/atom Ry!
Lattice V ~mRy/atom! Re W

fcc 8.19 10.4 15.5
bcc 4.64 14.2 5.3
hcp - 9.5 19.0
e
n

e

C

s

-

e

a

s

the hcp, dhcp, fcc, andv phases. The hcp phase is reach
by Burger’s path,53 the dhcp structure through th

T[11̄0]@
1
4

1
4 0# mode~combined with a shearing of the lattice!,

the fcc phase through Bain’s path, and finally thev phase

through theL@ 2
3

2
3

2
3 # mode.

C. Phonon density of states

According to the scheme in Sec. II C we calculated ev
phonon mode on a 1.83105 q mesh in the irreducible firs
Brillouin zone for fcc and bcc Re and W. The analysis w
performed with interactions extending to the ninth neighb
and seventh neighbor for the fcc and bcc structure, resp
tively. For the bcc structure only phonons from hig
symmetry directions were needed but in the fcc structure

off-symmetry calculation,q5@ 1
8

1
2

3
4 #, was performed to ob-

tain the ninth-neighbor fit. In both fcc Re and fcc W we us
forces extending to the eighth-neighbor shell. The W b
phase was well described with four neighbors but bcc
needed more long-range forces. A least-squares fit was
to solve for the 19~29! force-constant matrix elements fo
the bcc ~fcc! structure in 138~174! linear equations. The
model reproduces the dispersion curves for the pure ph
very well. Even the anomalies in fcc Re are described ac
rately. The average deviation in the high-symmetry dire
tions was less than 0.06 THz. From the frequencies we
culated the phonon density of states,g(n), for the fcc and
bcc phases, see Figs. 3 and 4. We normalizedg(n) as
*2`

` g(n)dn51. The bcc W phonon DOS compares we
with earlier results54 and we conclude that fcc Re is indeed
metastable phase because there are no unstable ph
modes anywhere in the Brillouin zone.

To obtain the phonon DOS for the fcc and bcc phases
a function of the concentration we apply the virtual crys
approximation55 ~VCA!. We calculate the phonon dispersio
curves for a set of different concentrations (x50.25, x
50.50, andx50.75) in the bcc and fcc structures. From t
dynamical matrices we calculate the force constants@Eq.
~12!# for the different concentrations in both structures.
other studies, the interatomic force constants have been
termined as a function of electron band filling for the tran
tion metals56 and the phonon dispersion curves for t

FIG. 2. Calculated phonon frequencies of bcc Re.
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Nb-Mo system successfully calculated as a function
concentration.57 Those works56–58show that phonon anoma
lies in transition metals are well described by band filli
only. We are interested in integrated quantities such as
vibrational free energy@Eq. ~11!# and the vibrational en-
tropy. It is well known that although correct long-rang
forces are required to model all the features of the pho
dispersion curves, the vibrational entropy converges fast
can be calculated correctly within about 1% with only for
constants from the first-neighbor shell.28 As described in Ref.
58, the force constants in the first-neighbor shells v
smoothly between two neighboring transition elemen
Therefore, we interpolate with a cubic spline between
force constants atx50, x50.25, x50.50, x50.75, andx
51, to obtain the phonon DOS and the vibrational free
ergy for any concentration. In this step we have also used
fact that the masses for W and Re are almost equal, w
greatly simplifies the calculation of the phonon DOS in t
disordered case. However, the free energy can be obtain
the high-temperature limit even if the atomic masses are
approximately equal. Since the free-energy difference
tween two competing phases of the same composition is

FIG. 3. Calculated phonon DOS of fcc Re, Re57W43, and W.

FIG. 4. Calculated phonon DOS of bcc Re, Re71W29, and W.
f
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dependent of the atomic masses at high temperature
would still be physically correct to interpolate in the forc
constant part of the dynamical matrix.25

In our model the omega phonon softens first in the b
structure and the elastic constantC8 softens first in fcc. For
the fcc phase we obtain the region of dynamical stabi
0.57<x<1 and for the bcc phase 0<x<0.71. The central
panels in Figs. 3 and 4 display the calculated phonon D
for the fcc and bcc phases on the verge of instabilityx
50.57 andx50.71, respectively. By studying the develo
ment of the DOS with concentration it is obvious that a p
of the intermediate-frequency region has become unst
but that the high-frequency part remains essentially un
tered.

Figure 5 shows the dispersion curves and the pho
DOS for bcc Re25W75, which could be interesting for future
neutron-scattering experiments. The dispersion curves
very similar to those of pure bcc W except for a regi
around theH point. There is also an incipient softening o
the omega phonon.

D. The free energy

As an example of how the various terms enter in the f
energy we considered our system atT51500 K. The con-
figurational free energy is minimized with respect to the m
tisite correlation functions, from which it is possible to ca
culate the short-range order. At this temperature there
almost no short-range order in the fcc and bcc disorde
phase andSconfig is given by 2kBx ln x2kB(12x)ln(12x).
The vibrational free energy is calculated from the phon
DOS for 0<x<0.71 in the bcc structure and for 0.57<x
<1 in the fcc structure, as described in Sec. II C. To add
electronic free energy we calculateg from Sec. II C as a
function of concentration,

g~x!5xgRe1~12x!gW . ~18!

The electronic free energies thus obtained fromD(eF) were
compared with electronic free energies calculated exa
with Eqs.~14! and~15! in the plane-wave code. We conclud
that the Sommerfeld approximation of the line

FIG. 5. Calculated phonon frequencies and phonon DOS of
Re25W75.
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T-dependent entropy works very well for our chosen te
peratureT51500 K and even for higher temperaturesT
<2000 K).

The phonon frequencies were calculated atT5570 K. We
also performed a number of calculations atT51500 K which
showed that the phonon frequencies in W and Re are alm
independent of the electronic temperature. Anharmonic
fects such as thermal expansion and phonon-phonon inte
tion are not included in the present calculation. Howev
thermal expansion is negligible in W~0.4% increase in lat-
tice parameter from 0 K to 1500 K!. Rhenium in the hcp
structure has a slightly larger linear expansion, 0.8% at 1
K, so we calculated the phonon dispersion curves for fcc
at the expanded volume and found only small changes in
phonon frequencies. The explicit anharmonic effects~i.e.,
beyond the frequency shifts due to thermal expansion! are
exceptionally large in bcc W close to the meltin
temperature.59 However, the average frequency vari
smoothly withT. At 1500 K, which is much less than th
melting temperatures of W~3695 K! and Re~3459 K!, we do
not expect the explicit anharmonicity to significantly affe
the free-energy difference considered here.

In Table V we show the different free-energy contrib
tions to the total free energy atT51500 K. Obviously, the
difference in the total free energy due to the electronic f
energy can be neglected compared to the difference deri
from the configurational and vibrational free energies. T
configurational and vibrational free energies are shown
functions of the Re concentration in the upper panel and
total free energy in the lower panel of Fig. 6. All quantiti
in the figure are calculated as

DFi~x!5Fi~x!2xFi
fcc~1!2~12x!Fi

bcc~0!, ~19!

where Fi
fcc(1) @Fi

bcc(0)# represents the configurational, v
brational, and total free energy for Re~W! in the fcc ~bcc!
structure. From the lower panel in Fig. 6 is it evident tha
pure phase separation is not energetically favorable for
concentration compared with the disordered phase. Howe
as can be seen in the upper panel, if the vibrational fr
energy contribution was excluded from the total free ener
a disordered bcc phase would not be energetically favor
in the concentration range 0.50<x<0.71 and the fcc phas
would hardly be disordered at all. We thus find that the
brational free-energy contribution significantly influences
thermodynamical properties of the system. Also shown
Fig. 6 is the total free energy for the most favorable of t
separated phases where all combinations of the disord
bcc and fcc phases at different concentrations are allow

TABLE V. The different contributions to the free energy atT
51500 K for bcc W, fcc Re, and for the Re-W system at the ins
bility limits.

Composition
~phase!

Fconfig

~Ry/atom!
Fvibr

~mRy/atom!
Fel

~mRy/atom!

Re~fcc! 2160.3 260.8 21.5
Re57W43~fcc! 2150.5 263.6 21.8
Re71W29~bcc! 2153.9 266.5 21.7
W~bcc! 2137.7 254.7 20.8
-
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This phase decomposition60 is thermodynamically stable
when the tangent construction yields a lower free ener
which in our case occurs for 0.53<x<0.87 where a com-
bined disordered bcc and fcc phase is energetically mos
vorable.

For concentrations slightly higher thanx50.54, there is
also another possible so-called spinodal decomposition in
bcc phase, where the disordered bcc phase separates int
different disordered bcc phases (x50.54 andx50.71). The
formation of the fcc phase requires the system to overcom
nucleation barrier, which means that the spinodal decom
sition will be important when the rate of its formation
faster than the kinetics of the nucleation and growth of
more stable bcc-fcc phase combination. Interestingly, if t
occurs the disordered bcc phase will transform into a co
position (x50.71) which is on the verge of dynamical inst
bility. As mentioned in Sec. I tungsten is one of the can
date materials for plasma facing components in fut
nuclear fusion devices and due to the heavy neutron irra
tion the Re content may increase from 0 to, say, 25 %. If
spinodal decomposition is favorable we note that an agg
gation of Re atoms would cause a local martensitic trans
mation which could have a microstructural effect on the m
terial.

It is interesting to compare the total free energy with
two major contributions displayed in the upper panel. T
decrease in vibrational free energy when approaching
instability will extend the stable single-phase region for bo
the disordered bcc and fcc phases. The thermodynamical
bility of the crystal is also enhanced just before the dyna
cal instability, as an effect of the rapidly decreasing vib
tional free energy. This is well illustrated in Ref. 61, whe
the temperature-pressure (T-P) phase diagram of Mg is cal
culated through a combination of analytic statistical metho
and molecular-dynamics simulation. Magnesium has the
lattice structure at lowP and the bcc structure at highP.
Below a critical pressurePc , the bcc phase is dynamicall
unstable. Just aboveP5Pc the phase diagram shows
slightly increased temperature range where the bcc pha
stable.

-

FIG. 6. The upper panel shows the relative configurational
vibrational free energiesDF for bcc and fcc phases as a function
the concentration. The relative total free energy is similarly p
sented in the lower panel. For the reference energies, see Eq.~21!.
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IV. SUMMARY

We have usedab initio total energy and linear respons
calculations to make a detailed description of the dynam
and thermodynamical stability of the disordered Re-W s
tem. From the dispersion curves for bcc Re we observe
it is dynamically unstable towards the hexagonal, the ome
and the fcc phases. The Re fcc structure is metastable an
phonon dispersion curves exhibit anomalies which can
connected with a strong electron-phonon interaction
therefore suggest superconducting properties. Additional
culations showed that the explicit temperature which en
in the Fermi-Dirac factors and the indirect temperature
pendence through thermal expansion introduced only sl
changes in the phonon frequencies in Re and W. The fo
constants and the phonon frequencies in the first Brillo
zone for Re and W in the bcc and fcc phases were obta
through a Born–von Ka´rmán analysis of the dynamical ma
trices. We present the phonon DOS for the dynamically
stable phases bcc Re and fcc W. For the alloy system
used the virtual crystal approximation to calculate the p
non frequencies. Employing a nonlinear model to the fo
constants as a function of the concentration we found
stable regions for the disordered bcc and fcc phase. For
stable alloys we were thus able to calculate the vibratio
free energy.
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In the thermodynamical analysis the different contrib
tions to the free energy have been calculated. We conc
that atT51500 K the electronic excitations can be neglec
compared to the vibrational and configurational effect on
free-energy differences. We also find that the vibratio
free-energy contribution significantly alters the total free e
ergy as a function of the composition and thus influences
thermodynamical as well as the dynamical analysis of
system greatly. Near the dynamical instability the rapid
decreasing vibrational free energy, which is manifested i
small bend in the total free energy, increases the thermo
namical stability of the~metastable! crystal. The phase de
composition for the bcc and fcc phases occurs for Re c
centrations, which agrees with the two-phase region in
Re-W phase diagram. A competing spinodal decomposi
is also observed which, if important, would cause a seco
order transformation.
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