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ABSTRACT:Coordination numbers and geometries form a
theoretical framework for understanding and predicting materials
properties. Algorithms to determine coordination numbers
automatically are increasingly used for machine learning (ML)
and automatic structural analysis. In this work, we introduce
MaterialsCoord, a benchmark suite containing 56 experimentally
derived crystal structures (spanning elements, binaries, and ternary
compounds) and their corresponding coordination environments
as described in the research literature. We also describe CrystalNN,
a novel algorithm for determining near neighbors. We compare
CrystalNN against seven existing near-neighbor algorithms on the
MaterialsCoord benchmark,� nding CrystalNN to perform
similarly to several well-established algorithms. For each algorithm,
we also assess computational demand and sensitivity toward small perturbations that mimic thermal motion. Finally, we investigate
the similarity between bonding algorithms when applied to the Materials Project database. We expect that this work will aid the
development of coordination prediction algorithms as well as improve structural descriptors for ML and other applications.

1. INTRODUCTION

Coordination numbers and geometries (e.g., tetrahedral,
octahedral, and trigonal planar) play a fundamental role in
describing materials and dictating their properties. Some well-
known examples throughout materials science include (i) the
local coordination of a site can predict the type of orbital
interactions and crystal� eld splitting; (ii) the feasibility of
hypothetical zeolites for catalysis, gas separation, or ion-
exchange1 is frequently assessed by the distortion of the
tetrahedral SiO4 building blocks;2,3 (iii) in battery materials,
di� usion path topologies can be classi� ed using the
coordination geometries of the di� using ions;4,5 and (iv) the
relative arrangement of octahedral Pb-halide motifs signi� -
cantly in� uences the electronic properties of hybrid organic�
inorganic halide perovskites.6

The primary challenge is to determine which atoms in the
crystal are connected or bonded to one another and which are
not. Although the de� nition of what constitutes a bonding
interaction can be debated, in practice, assigning neighbors and
thus coordination numbers for most crystals is typically
intuitive for an expert in the� eld. However, manually assigning
coordination numbers on a larger scale, say for tens of
thousands of atoms, is impractical and therefore requires an
automated approach. Machine learning (ML) of materials
properties, where descriptions of the coordination environ-
ments of atoms can be important, is increasingly becoming an

essential tool in the materials discovery process7� 9 and has
been enabled by the large amounts of data provided by
materials databases.10� 12 Coordination numbers have been
used to predict formation enthalpies,13 examine magnetic
materials,14 and as the basis of crystal graphs in convolutional
graph-based neural networks.15,16 Automated coordination
number determination has also allowed researchers to reassess
conventional rules about the crystal structures of materials.17

Accordingly, an ongoing challenge in materials science has
been the development of reliable methods for determining the
coordination numbers of atoms in crystal structures.

Various coordination number de� nitions have already been
proposed. These de� nitions are typically based on interatomic
distances or geometric principles. The former includes those
proposed by Brunner,18 O’Kee� e and Brese,19 and Hoppe.20

Brunner suggested a cut-o� system, in which coordination is
determined by considering the largest reciprocal gap in
interatomic distances. Hoppe developed a coordination
number de� nition based on structure, whereas O’Kee� e and
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Brese proposed that near-neighbor atoms be determined by
sums of bond valences. O’Kee� e also developed another
approach using geometric principles in which atoms that share
a Voronoi polyhedral face are considered coordinated to each
other.21 More recent coordination number predictions are
often modi� ed versions of these de� nitions. For instance, the
valence-ionic radius estimator (VIRE) approach22 takes
oxidation state estimations along with coordination number
estimations from Voronoi tessellations23 to predict coordina-
tion environments. Despite the plethora of available methods, a
rigorous framework for evaluating the performance of
coordination algorithms does not, to our knowledge, exist.
Consequently, a universal tried-and-tested approach for
determining atomic coordination has not been established.

In this work, we introduce a benchmarking framework,
MaterialsCoord, to compare near-neighbor� nding algorithms
using a diverse data set composed of experimentally
determined structures from the Inorganic Crystal Structure
Database (ICSD).24 The MaterialsCoord data set relies on
literature descriptions of coordination environments in these
structures to assign coordination numbers. We evaluate a new
approach, crystal-near-neighbor (CrystalNN), which uses
Voronoi decomposition and solid angle weights to determine
coordination environments. We compare CrystalNN against
existing near-neighbor algorithms using the MaterialsCoord
benchmark. Algorithms are evaluated on the basis of (i) ability
to reproduce literature descriptions of coordination numbers
across a diverse range of structures, (ii) sensitivity toward small
perturbations introduced to each crystal structure, and (iii) the
time taken to perform the analysis. We quantify the similarity
between bonding algorithms using Jaccard distance plots
applied to the Materials Project database.10 Software
implementations for all near-neighbor� nding algorithms are
available in the pymatgen library.22

2. METHODS
2.1. Near-Neighbor Finding Algorithms. We� rst describe the

near-neighbor� nding methods evaluated in this work, all of which are
implemented in the local_env module of the pymatgen library.22 The
pymatgen class for each implementation is given in parentheses and is
used as an identi� er throughout this work. Algorithms are split into
two groups: the� rst � ve algorithms discussed are distance-based
approaches and the rest are based on or involve Voronoi
decomposition. We use the abbreviation CN to denote coordination
number (i.e., the number of“near neighbors” expected to participate
in some kind of bonding interaction) and NN to denote“near-
neighbor” � nding algorithm. For consistency, we use the default value
of each tolerance parameter,� , for each algorithm provided in
pymatgen.22 In Sections S1 and S2 of theSupporting Information, we
also introduce and benchmark the ToposPro AutoCN algorithm and
the modi� ed Voronoi approach outlined by Isayevet al.25 We note
that ToposPro is a proprietary method that cannot be easily
automated and only runs on the Windows operating system. We
have thus run a manual analysis over the benchmark set for reference,
but do not� nd it suitable for automated analyses. We� nd its overall
score to be competitive with the best algorithms studied in this work
(overall score of 9.7, see Section S1 of theSupporting Information).

One important comment about the near neighbor methods
discussed in this work is that in many cases, the coordination is not
reciprocal by default, that is, if site A is coordinated to site B, it is not
guaranteed that site B will be coordinated to site A. Thus, in practice,
we consider A and B to be neighbors if either condition holds, that is,
either A has B as a neighbor or B has A as a neighbor. Further
information on the symmetry of bonding behavior for various
algorithms is provided in Section S3 and Figure S4 of theSupporting
Information. Furthermore, we note that all algorithms discussed in

this work assign coordination that does not alter the original
symmetry of the structure.

2.2. Minimum Distance Method. The simplest algorithm
evaluated in this work (MinimumDistanceNN) determines the
coordination of a site,i, based on the distance,di

min, to the closest
nearest neighbor site. Other neighboring sites are considered bonded
neighbors if they fall within a cut-o� , di

cut, de� ned as

d d(1 )i i
cut min�= + (1)

where� is a (relative) tolerance parameter. This tolerance parameter
was previously optimized by Zimmermannet al.26 for detecting
various coordination motifs in a database of 1025 test structures; we
use the suggested value of 0.1 for this parameter.

2.3. Emulation of Jmol’s autoBond Algorithm. In Jmol,27 a
free, open-source software for visualizing molecules, bonds can be
automatically detected using the autoBond algorithm. In this work, we
use an emulation of Jmol’s algorithm (JmolNN) implemented in
pymatgen.22 Atoms are considered bonded if the distance between
them,dij, is such that

d r rij i j �� + + (2)

whereri is the elemental radius of the atom at sitei, rj is the elemental
radius of the atom at sitej, and� is a tolerance parameter� xed at 0.45
Å. A list of the elemental radii used is detailed elsewhere28 and is
included as part of pymatgen.22 We note that this algorithm does not
take into account oxidation states.

2.4. Brunner’s Largest Reciprocal Gap Method. Three
versions of Brunner’s method18 (BrunnerNN_reciprocal, Brun-
nerNN_real, and BrunnerNN_relative) are implemented in pymat-
gen.22 Brunner’s method of largest reciprocal gap (BrunnerNN_re-
ciprocal), however, predicts coordination environments signi� cantly
better than the other two algorithms. We thus report the results of
BrunnerNN_reciprocal in the main text and refer to this algorithm as
BrunnerNN. Coordination number predictions using the other two
Brunner algorithms are reported in Section S4 and Figure S5 of the
Supporting Information.

Brunner’s method18 (BrunnerNN) chooses the distance cut-o� by
considering the largest reciprocal gap in interatomic distances from a
central site. The equation

j
d d

j nargmax
1 1

: 1...
j ij i j

max

( 1)

= Š =
+

�O
�P
�R�R�R

�Q
�R�R�R

�_
�`
�R�R�R

�a
�R�R�R (3)

is used to determine the largest reciprocal gap, wheredij anddi(j+1) are
the interatomic distances between a central site,i, and thejth and (j +
1)th neighboring sites, ordered in increasing distance from the central
site. The distance cut-o� for determining coordination is then given
by

d di ij
cut max �= + (4)

where� is a tolerance parameter set to 0.0001 Å for numerical
stability of the procedure.

2.5. O’Kee� e’s Bond Valence Method.The minimum O’Kee� e
algorithm (MinimumOKee� eNN) determines atomic coordination
based on a minimum relative distance approach. Here, the relative
distance between two atoms,dij

rel, is given by

d
d

d
ij

ij

ij

rel
O•Keeffe

=
(5)

wheredij is the interatomic distance between sitesi andj, dij
O’Keeffeis

the bond valence parameter,19 an ideal bond length de� ned as

d r r
r r c c

c r c r

( )
ij i j

i j i j

i i j j

O•Keeffe emp emp
emp emp 2

emp emp= + Š
Š

+ (6)

whererempis an empirical“size” parameter19 based on the atomic radii
and c is the electronegativity calculated using the Allred� Rochow
scale.29 Two atoms are considered bonded if

Inorganic Chemistry pubs.acs.org/IC Article

https://dx.doi.org/10.1021/acs.inorgchem.0c02996
Inorg. Chem.XXXX, XXX, XXX� XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02996/suppl_file/ic0c02996_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02996/suppl_file/ic0c02996_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02996/suppl_file/ic0c02996_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02996/suppl_file/ic0c02996_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02996/suppl_file/ic0c02996_si_001.pdf
pubs.acs.org/IC?ref=pdf
https://dx.doi.org/10.1021/acs.inorgchem.0c02996?ref=pdf


d d j n(1 ) min : 1...ij ij
rel rel�� + × { = } (7)

where� is a tolerance parameter set to 0.1.
2.6. Hoppe’s Method of E� ective Coordination Numbers.

The e� ective coordination number algorithm (EconNN) calculates
coordination numbers using Hoppe’s e� ective coordination number
formula.20 In this method, a weighted average bond length,0davg, is
obtained according to

( )
( )

d

d exp 1

exp 1

j ij
d

d
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wheredij is the distance between sitei and neighboring sitej, anddi
min

is the distance from sitei to its closest neighbor. To avoid small bond
distances biasing the weighted average, an iterative procedure is
employed in whichndavg is calculated according to
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Starting withn = 1,davgis calculated untilndavg� n� 1davg� 0.001 Å.
This procedure always converges, with the� nal value independent of
0davg. Two atoms are considered bonded if

d

d
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where� is a tolerance parameter set to 0.5. We investigate the impact
of the tolerance parameter in Section S5 and Figure S5 of the
Supporting Informationand� nd that the results are largely insensitive
for values from 0.1 to 0.8.

2.7. O’Kee� e’s Method of Voronoi Coordination. O’Kee� e’s
method of Voronoi coordination (VoronoiNN) uses geometric
principles to determine an atom’s coordination.21 The crystal
structure is� rst partitioned using Voronoi decomposition of the
atomic sites (Figure 1a,b). From this, an atom’s “domain” is de� ned
by a polyhedron, with faces determined by an equidistant border
between the atom and a neighboring site.30 Sites that share a face with
the central atom are considered either direct or indirect neighbors. To
distinguish between the two, atoms are weighted by the solid angle
subtended by the polyhedral face. Because indirect neighbors usually
subtend smaller angles, only neighboring atoms with weights within a
speci� ed tolerance of the largest weight are considered coordinated to
the central atom. In this work, atoms are considered bonded if the
weights are within 50% of the largest weight for that site. This
tolerance was found to be close to optimal for the MaterialsCoord
benchmark and was chosen for simplicity and to avoid over� tting to
the materials included in the data set (see Section S6 and Figure S7 of
the Supporting Information).

2.8. Valence Ionic Radius Evaluator Method.The minimum
valence-ionic radius evaluator (VIRE) method22 for determining
coordination (MinimumVIRENN) uses a similar“minimum relative
distance” approach as the minimum O’Kee� e algorithm. The relative
distance between two atoms is given by

d
d

dij
ij

ij

rel
VIRE=

(11)

wheredij
VIRE is the ideal bond length, calculated according to

Figure 1.Schematic of the CrystalNN bonding algorithm for determining the coordination of a site. A crystal structure (a) is partitioned using
Voronoi decomposition (b). Only the Voronoi polyhedron for the gray central site is illustrated for clarity. The Voronoi polyhedral faces are
formed by equidistant borders between the central site and its neighbors. The solid angle weights de� ned by the Voronoi polyhedron are rescaled
based on site properties, such as electronegativity di� erences and distance cut-o� s. The weights are normalized and projected onto a quadrant of a
circle in descending order (c). The relative probability of a certain coordination number is de� ned by the area under the curve (AUC) between
adjacent weights. If a single coordination number is desired, the environment with the highest probability is used. In this example, the largest areais
between the green and orange weights and so the weight associated with the green line is set as the minimum weight cuto� . All sites with weights
larger than this cuto� are considered bonded to the central site, as shown in (d).
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d r rij i j
VIRE Shannon Shannon= + (12)

in whichri
Shannonis the Shannon crystal radius for sitei, computed

using the VIRE method implemented in pymatgen.22 In the VIRE
approach, the valence of a site is� rst calculated using O’Kee� e’s bond
valence sum method.19 Next, an initial guess for the coordination is
obtained from O’Kee� e’s method of Voronoi coordination (Vor-
onoiNN). The element type, oxidation state, and coordination
number are then used to look up the associated radius in tabulated
Shannon crystal radii data.31 Where information on ionic radii is
lacking, for example, in structures without oxidation states or for
species without associated Shannon radii, the atomic radius is used.28

Finally, two atoms are considered bonded if

d d j n(1 ) min : 1...ij ij
rel rel�� + × { = } (13)

where� is a tolerance parameter set to 0.1. The MinimumVIRENN
algorithm is not self-consistent; coordination numbers are determined
once using the VoronoiNN method to aid in determining the
associated Shannon radii. Coordination numbers are not recalculated
once the Shannon radii have been determined.

2.9. Crystal Near-Neighbor Algorithm. The crystal near-
neighbor method (CrystalNN) is an algorithm we recently
introduced32 that uses Voronoi decomposition23 to determine the
probability of various coordination environments and selects the one
with the highest probability. The� rst step of this approach is to
determine a set of weights,wij, that correspond to the likelihood of a
central atomi being a neighbor to surrounding atomsj. This weight
has multiple components.

A � rst component of the weightwij is based on the Voronoi
construction, which we callwVor. In the simplest case,wVor can be set
to the solid angle of the neighbor atom,wsa. However, we note that for
porous structures, the solid angle weight can be quite high even for
distant atoms; thus, by default, we scale this quantity by the ratio of
the solid angle to the Voronoi facet area, thereby penalizing distant

atoms, withwVor = wsa2/ wfa.
A second component of the neighbor weights,wij

dc, more directly
penalizes atoms that are too far from the central atom, according to

w

d d
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(14)

wheredij is the distance between sitei and neighboring sitej, ri is the
radius of the species at sitei, and� low

cut and� high
cut are the low and high

distance cut-o� s, set to 0.5 and 1 Å, respectively. Essentially, this
function gradually starts penalizing atoms that are greater in distance
thandlow

cut and explicitly excludes neighbors that are further thandhigh
cut .

We note that the type of radius that is used depends on what
information is available about the structure and is in order of
decreasing preference: the ionic radius (if the oxidation state is known
and an ionic radius is available), an averaged cation� anion radius (if
an ionic radius is not tabulated for that species), a covalent radius, and
� nally an atomic radius (if a covalent radius is not available).
CrystalNN will use a mixture of radii types in cases where higher
preference radii information is available for some sites but not others.
In this work, we remove all oxidation states from the test structures,
so only the covalent or atomic radii are used by CrystalNN.

Finally, atoms that have greater electronegativity di� erence from
the central atom are weighted higher according to

w 1
3.3ij
i jen en�

� �
= +

| Š |

(15)

where� i is the Pauling electronegativity of sitei, and� en is a parameter
that controls the preference for neighbors with higher electro-
negativity di� erences, set to the default value of 3. The normalization
factor of 3.3 on the denominator is chosen as it is the largest
electronegativity di� erence possible between any two elements. The
� nal normalized weighting is calculated as

w
w w w

wmax( )ij
ij ij ij
Vor dc en

=
× ×

(16)

We have evaluated the importance of each weight by disabling
individual features of the algorithm and investigating the resulting
performance on the benchmark, with the results provided in Section
S13 and Figure S21 of theSupporting Information.

In the CrystalNN approach, the coordination number of a site is
determined by (i) projecting the normalized weights onto a quadrant
of a unit circle, ordered from the largest to smallest weight, (ii)
calculating the area under the circle between adjacent weights to
obtain coordination probabilities, and (iii) choosing the coordination
number with the largest probability. This procedure is illustrated in
Figure 1. The end result is that one can either obtain a probabilistic
assessment of di� erent coordination scenarios or take the maximum
likelihood scenario and obtain a single coordination environment (as
is done in this work).

2.10. Benchmarking Framework.To compare the predictive
ability of NN algorithms to reproduce literature-reported coordina-
tion numbers, we have developed a package called MaterialsCoord.33

Using this package, a NN algorithm can be tested against a database
of reported coordination environments, built from a literature search
of prototypical crystal structures from the ICSD.12 The data set
contains 56 structures, broken down into 16 elementary, 11 binary,
and 29 ternary compounds. The MaterialsCoord benchmark includes
a wide variety of material types covering metallic and intermetallic
compounds, semiconductors, and insulators. All structures are stable
at ambient temperatures and pressures. Coordination numbers for
these structures are tabulated in the MaterialsCoord GitHub
repository.33 We stress that coordination numbers are fundamentally
subjective quantities and are not an intrinsic or measurable property
of a structure. Accordingly, MaterialsCoord is only so useful as to
identify the bonding algorithms that agree with a human
interpretation of coordination. In many cases, the assigned
coordination numbers are well justi� ed. For instance, structures that
have basic coordination geometries (e.g., tetrahedral and octahedral
coordination), in which further neighboring atoms are clearly not
within � rst neighbor shells, have robust coordination numbers. The
coordination numbers of more complex structures with highly
asymmetrical bonding, such as oxides or intermetallics, are more
di� cult to assign consistently; in several cases, many bonding
descriptions for the same structure can be found in the literature. We
rely on literature-reported data and descriptions for each structure in
the data set and cite accordingly. Structures with basic arrangements
[e.g., face-centered cubic (fcc), body-centered cubic (bcc), and
hexagonal close-packed (hcp)] and well-versed coordination environ-
ments are not given a speci� c citation. Complex structures with
ambiguous coordination environments are discussed further in the
following sections.

For a given structure, each NN algorithm is assigned a score

Z
N

N

CN CNi
N

i i i1
calc expected degen

sites

sites
unique

=
� | Š |=

(17)

whereNsites
unique is the number of symmetrically distinct atomic sites,

Ni
degenis the number of degenerate atomic sites, andNsitesis the total

number of atomic sites in a structure’s unit cell. For ionic compounds,
we distinguish between cation and anion sites (e.g., Nsites

uniqueandNcations
for calculatingZcations). The CNi

calc and CNi
expectedare the calculated

and expected coordination numbers of theith site. A score of zero
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indicates that the algorithm is in consensus with the coordination
description in the literature. Values greater than zero indicate that
there are inconsistencies between the literature and computed
coordination number for a particular structure.

Several structures have multiple coordination interpretations
corresponding to primary and secondary bonding interactions. For
example, in� -U, atoms are tetrahedrally coordinated to four
neighbors, forming corrugated sheets held together by secondary
covalent bonds to form the overall structure (accepted coordination
numbers = 4 or 12).34 For these cases, algorithms are penalized based
on the smallest deviation from any of the possible coordination
de� nitions. Using� -U as an example, if an algorithm were to predict
the coordination as 11, the score would be 1.

We use the Einstein crystal test rig method26 to determine how
robust di� erent neighbor-� nding methods are toward small
distortions in the crystal structures. The method mimics thermal
vibrations and can thus assess the performance of di� erent algorithms
when analyzing partially relaxed structures and molecular dynamics
simulations. The Einstein crystal test rig method is also useful as a
framework to perform uncertainty quanti� cation of the coordination
number prediction methods in a more statistically rigorous way.

MaterialsCoord is provided as an open-source package.33 The
benchmark suite is implemented in Python 3.5+ and is designed to be
easily extensible to both user-de� ned structures and additional near-
neighbor� nding algorithms. Instructions on how to benchmark
additional test structures and alternative near-neighbor� nding
algorithms are provided as tutorial notebooks in the MaterialsCoord
GitHub repository. Further documentation on MaterialsCoord and a
diagram of how the benchmarking scores are calculated can be found
in Section S7 and Figure S8, respectively, of theSupporting
Information.

3. RESULTS

We compare how well the eight near-neighbor� nding
algorithms mentioned inSection 2can reproduce literature
descriptions by testing them on the MaterialsCoord data set of

56 experimentally determined prototypical structures from the
ICSD.24 This test set includes 16 elementary, 11 binary, and 29
ternary structures, of which many of the compounds are
oxides. In addition to the mostly ceramic compounds discussed
here, we also separately tested intermetallic structures for
which coordination can be even more ambiguous (see Section
S8 and Figure S9 of theSupporting Information). The results
of our benchmarking e� orts are presented in the form of
heatmaps, in which algorithms are assigned a score for each
structure re� ecting their ability to match literature-reported
coordination numbers (lower scores indicate greater consensus
with reported values). In our discussion, we focus on structures
for which multiple algorithms deviate from the expected
coordination environments.

3.1. Elemental Structures.The benchmarking scores for
the 16 elemental structures in the MaterialsCoord data set are
shown inFigure 2. The set includes“simple” structures, such
as fcc Cu, bcc� -W, hcp La and Mg, and diamond.35 In
addition, the set includes layered compounds (e.g., � -As,36

black P,37 graphite, and Sm38) and several elements with
complex, low-symmetry structures, such as� -Mn39 and � -
Mn.40 The literature coordination environments for all
elemental materials are provided in Section S9 and Figure
S10 of theSupporting Information. In general, the algorithms
obtain similar bonding descriptions for the elemental
structures, with all matching literature-reported coordination
descriptions in 80% or more of the structures. CrystalNN
demonstrates the greatest consensus with the literature by
reproducing the human-determined coordination environ-
ments for all test structures. The threshold-based cuto�
approaches (MinimumDistanceNN, MinimumOKee� eNN,
and MinimumVIRENN), EconNN, BrunnerNN, and Vor-
onoiNN perform similarly, achieving scores between 4 and 10.

Figure 2.Ability of near neighbor algorithms (x-axis) to reproduce literature descriptions of cation coordination for the elemental structures in the
MaterialsCoord benchmark suite (y-axis). Scores are color-coded, with darker colors indicating greater deviation from the literature coordination
number. The total score for each algorithm is calculated as the sum of the scores across all structures.
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JmolNN shows the greatest disagreements, dramatically over-
predicting the coordination of Mg to achieve an overall score
of 21.

All algorithms agree with the literature when predicting the
coordination of basic structures (bcc, hcp, fcc, and diamond-
like). Similar behavior is seen for� -Sn, which has a distorted
octahedral geometry (CN = 6).41 For Se, which is composed
of parallel helical chains of Se atoms (CN = 2),42 only
VoronoiNN predicts a coordination that does not match the
reported literature value. Furthermore, all algorithms agree
with the literature for layered structures, albeit with a few
exceptions in which additional interlayer bonds are predicted.
In particular, the relative interlayer spacing appears to correlate
with the di� culty of determining the coordination number.
For example, all algorithms reproduce the literature description
of graphite which possesses the largest interlayer spacing, with
next-nearest neighbor distances 42% larger than the nearest
neighbor distance. In contrast, black P and� -As possess next-
nearest neighbor spacings of 32 and 20% of the nearest
neighbor distance with JmolNN and VoronoiNN obtaining
inconsistent descriptions for each structure, respectively.

Of all the elemental structures,� -Mn exhibits the greatest
divergence in bonding descriptions, with half of the algorithms
obtaining coordination environments at variance to the
literature. This can be ascribed to the presence of mixed
coordination environments:� -Mn contains 58 atoms,
comprised of 2 Mn� sites (CN = 16), 8 Mn� sites (CN =
16), 24 Mn� sites (CN = 13), and 24 Mn� sites (CN = 12), as
illustrated inFigure 3.39 This structure is the only elemental

compound for which the threshold-based cut-o� approaches
(MinimumDistanceNN, MinimumOKee� eNN, and Mini-
mumVIRENN) deviate from the literature. All three
algorithms under-predict the coordination identically; they
assign a CN of 10 (instead of 16) to Mn� , a CN of 4 (instead
of 13) to both Mn� , and a CN of 9 (instead of 12) to Mn� .
VoronoiNN also under-predicts the coordination of� -Mn, but
to a lesser extent, assigning the coordination of Mn� as 10,
Mn� as 12, and Mn� as 11.

3.2. Binary Structures.The benchmarking scores for the
11 binary structures in the MaterialsCoord data set are
illustrated inFigure 4. For ionic compounds, we abbreviate
coordination using the nomenclature A:X, where A and X are
the coordination numbers of the cations and anions,
respectively (e.g., NaCl has 6:6 coordination). We follow
bonding literature convention and focus our analysis on cation
coordination in the main text� the results for anions show

qualitatively the same trends and are provided in Section S10
and Figure S12 of theSupporting Information. The set
includes common simple binary solids, including rock-salt43,44

(6:6), CsCl43,44 (8:8), sphalerite44 (4:4), wurtzite43 (4:4),
rutile43,45 (6:3), and corundum46 (6:4). In addition, we
include� -brass (Cu5Zn8), a more complicated structure with
metallic bonding.47 The literature coordination environments
for all binary materials are provided in Section S9 and Figure
S11 of theSupporting Information.

For the binary compounds, only CrystalNN matches the
literature coordination in all cases. EconNN, VoronoiNN,
MinimumDistanceNN, and BrunnerNN also obtain similar
predictions, achieving scores of 2, 3, 5, and 8, respectively. The
largest deviation is exhibited by JmolNN, MinimumOKeef-
feNN, and MinimumVIRENN, which only match the literature
coordination for 2 (score of 37.0), 5 (score of 23.6), and 6
(score of 19.4) structures, respectively out of 11 total
structures.

Of the simple binary structures, CsCl (Figure 5) appears
particularly challenging, with only MinimumDistanceNN,
VoronoiNN, EconNN, and CrystalNN matching literature-
reported coordination values.43 The disagreements of the other
algorithms can be attributed to several factors. The relatively
large distance between Cs and its nearest neighbor Cl atoms
(3.6 Å� larger than any other anion� cation near neighbor
distance in the data set) causes JmolNN, which employs radii
tables, to entirely miss the Cs� Cl bonds. In addition, several
algorithms predict bonding between adjacent Cs atoms,
despite the large distance (4.1 Å) separating these sites
(MinimumOKee� eNN, MinimumVIRENN, and BrunnerNN).
Because the MinimumOKee� eNN approach explicitly ac-
counts for electronegativity di� erences, this behavior is
especially surprising.

The metallically bonded� -brass shown inFigure 5also
proved di� cult, with half of the algorithms predicting
coordinations that deviate from the literature description.47

In most cases, disagreements originate from the Cu� site,
which is bonded in a distorted icosahedra coordination
geometry to 10 Zn and 3 Cu atoms (CN = 13). Perhaps
because of their reliance on distance cut o� s, MinimumDis-
tanceNN, MinimumOKee� eNN, and MinimumVIRENN miss
the coordination between Cu� and� ve of the neighboring Zn
atoms.

Most of the algorithms su� er from some degree of erroneous
cation� cation bonding. An egregious example is nickeline
(NiAs), in which Ni is bonded in an octahedral con� guration
to 6 As atoms.48 All algorithms assign the expected Ni� As
bonds but most� except CrystalNN and MinimumOKee� e�
also predict bonding between Ni and two Ni neighbors. A
similar e� ect is entirely responsible for the high scores for
corundum (Al2O3),

46 magnetite (Fe3O4),
49 Th3P4,

50 rutile
(TiO2),

45 and Pb3O4.
51 To assess this e� ect further, we have

calculated the MaterialsCoord scores when coordination is
restricted to sites of opposing charge, that is, only considering
cation to anion bonding (see Section S11 and Figures S14 and
S15 of theSupporting Information). This constraint
signi� cantly improves the agreement of the algorithms against
the literature-bonding descriptions, with the scores of
EconNN, BrunnerNN, and VoronoiNN reducing to zero and
the scores of MinimumOKee� eNN, MinimumVIRENN, and
JmolNN more than halved.

3.3. Ternary Structures.We next report the benchmark-
ing results for the 29 ternary compounds in the Materi-

Figure 3.(a) � -Mn unit cell consisting of Mn� (gray), Mn� (light
blue), Mn� (orange), and Mn� (red) atomic sites and their
respective coordination environments (b� e).39
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alsCoord data set. The structures comprise oxides and
� uorides with ABX3, ABX4, and A2BX4 stoichiometries,
where A and B are cations. In our data set, A is typically
larger and heavier than B, and X is either O or F. The
performance of all NN algorithms for predicting cation
coordination numbers is illustrated inFigure 6� the results
for anions show qualitatively the same trends and are provided
in Section S10 and Figure S13 of theSupporting Information.
Compared to the elemental and binary structures, the ternary
compounds produce greater deviations against human
interpretations of bonding for most algorithms. The greatest
consensus is exhibited by VoronoiNN (score of 2), CrystalNN
(4.8), EconNN (7), and BrunnerNN (10.7) which agree with
the literature description in over 90% of structures.
Interestingly, MinimumDistanceNN (15) and MinimumVIR-
ENN (19), show almost exactly the same scores for each
structure in the test set. MinimumOKee� eNN (124) and
JMolNN (89) achieve the highest scores and only identify the
expected coordination in 31 and 14% of the structures.

All algorithms reproduce the literature coordination for
several structures including zeolite-like materials (AlAsO4,
GaPO4, and BAsO4)� in which A- and B-site cations are

tetrahedrally coordinated to O atoms52� 54� and MgAl2O4 and
MnMoO4� which have octahedral A-site cations bound to
tetrahedral B-site cations.55,56 Noticeably, all algorithms match
the coordination of tetrahedral- and trigonal planar-coordi-
nated B-site cations. B sites with larger coordination numbers,
however, often show greaterdeviations. For example,
MinimumVIRENN underestimates the octahedral coordina-
tion environment of W (CN = 6) in FeWO4 as being 4-
coordinated.55 The same e� ect is observed for octahedrally
coordinated Tl in TlAlF4,

57 where most algorithms (Mini-
mumOKee� eNN, MinimumVIRENN, JmolNN, and Crys-
talNN) underestimate the coordination number.

The coordination environments for� -K2SO4 and SbNbO4
show large variation from the literature for all algorithms. In
the � -K2SO4 structure, units of tetrahedrally coordinated SO4
are bonded to two unique K sites.58 K� is bonded to 11 O
atoms, whereas K� is bonded to 9 atoms (Figure 7). We note
that � -K2SO4 is a highly complex structure for which
reproducing the literature description of bonding may be
di� cult even for experienced researchers. All algorithms match
the expected coordination of the SO4 unit but exhibit
inconsistencies with the K sites. The trend across algorithms

Figure 4.Ability of near neighbor algorithms (x-axis) to reproduce literature descriptions of cation coordination for the binary structures in the
MaterialsCoord benchmark suite (y-axis). Scores are color-coded, with darker colors indicating greater deviation from the literature coordination
number. The total score for each algorithm is calculated as the sum of the scores across all structures.

Figure 5.(a) CsCl unit cell and corresponding coordination environments (b,c) of Cs (pink) and Cl (green) atomic sites.43,44 (d) � -brass unit cell
consisting of Cu� (dark blue), Cu� (blue), Zn� (brown), and Zn� (purple) atomic sites and their respective coordination environments (e� h).47
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is to underestimate the coordination. MinimumDistanceNN,
MinimumOKee� eNN, MinimumVIRENN, JmolNN, Crys-
talNN, and VoronoiNN all underestimate the coordination

of at least one of the K sites. JmolNN exhibits the largest
disagreement, assigning a coordination of 0 to both sites. In
contrast, BrunnerNN and EconNN both overbind by assigning

Figure 6.Ability of near-neighbor algorithms (x-axis) to reproduce literature descriptions of cation coordination for the ternary structures in the
MaterialsCoord benchmark suite (y-axis). Scores are color-coded, with darker colors indicating greater deviation from the literature coordination
number. The total score for each algorithm is calculated as the sum of the scores across all structures.

Figure 7.(a� c) Coordination environments of K� (dark purple), K� (light purple), and S (yellow) to O atoms (red), respectively, in the� -K2SO4
structure (d). (e) SbNbO4 unit cell and coordination environments of Sb (orange) and Nb (green) to O (red) atomic sites (f� g).55
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additional bonding to neighboring S sites and K sites. SbNbO4
comprises layers of distorted NbO6 octahedra (CN = 6)
connected by layers of trigonal prismatic SbO6 (CN = 6).59

Again, in most cases, the coordination of the cations Nb and
Sb is underestimated. MinimumDistanceNN, MinimumOKeef-
feNN, and MinimumVIRENN under-predict the coordination
number of both cations as either 3 or 4. EconNN, BrunnerNN,
VoronoiNN, and CrystalNN match the coordination of Nb but
determine Sb to be 3- or 5-coordinated rather than 6. JmolNN
behaves similarly but further bonds Sb to two neighboring Sb
sites.

Any trends between algorithms are generally di� cult to
determine because of the large variation in coordination
predictions. However, the threshold distance-based algorithms
(MinimumDistanceNN, MinimumOKee� eNN, and Mini-
mumVIRENN) often show similar behavior. When these
algorithms diverge from the literature description, they almost
always under-bind, that is, predict lower coordination numbers
than the reference. For instance, all predict the edge-sharing
octahedral MgO6 and UO6 units in MgUO4 to be 2-
coordinated rather than 6.60 The under-predicted coordination
environments are because of the di� erences in interatomic
distances between the cation and the oxygens: each Mg is
coordinated to 2 O atoms at 1.98 Å and 4 O atoms further
away at 2.19 Å. Likewise, the U atoms are coordinated to 2 O
atoms at 1.92 Å and 4 O atoms further away at 2.21 Å. A
similar behavior is seen in ZnSO4, comprising edge-sharing
ZnO6 octahedral chains linked by edge-sharing SO4 tetrahe-
dra.61,62 In each case, these algorithms under-predict the 6-
coordinate Zn cations as 4-coordinate. For thirteen of the
twenty-nine structures, JmolNN predicts A-site cations to be
uncoordinated. This behavior persists over a range of structural
prototypes including scheelite (CaWO4),

63 stu� ed tridymite-
type BaAl2O4,

64 phenakite (Be2SiO4),
65 and perovskite-

structured SrTiO3 and BaTiO3.
55 Interestingly, while JmolNN

often diverges from the literature on the A-site coordination, it
matches the coordination of all B-sites.

As observed in the binary structures, many algorithms assign
unexpected bonding from cations to other cations. This
behavior is highlighted by aragonite-structured CaCO3,
containing Ca cations bonded to nine oxygen atoms.55 Both
BrunnerNN and MinimumOKee� e assign additional bonds
from Ca to neighboring C and Ca sites. We investigate this
e� ect further by calculating the MaterialsCoord benchmark
scores with coordination limited to sites of opposing charge
(see Section S11 and Figures S16 and S17 of theSupporting
Information). This constraint improves the agreement with the
literature for many algorithms. In particular, the scores for
MinimumOKee� eNN (124), JmolNN (89), and BrunnerNN
(11) are dramatically reduced to 40, 66, and 2, respectively. In
contrast, the scores of MinimumDistanceNN, VoronoiNN,
and CrystalNN remain una� ected, indicating that these
algorithms do not assign any cation� cation bonds in the
ternary structure test set.

3.4. Analysis of Coordination Trends. Figure 8
illustrates the tendency for algorithms to either under- or
over-predict coordination numbers. Here, the deviation in
coordination prediction (CNcalc � CNexpected) of every site
across all structures is plotted as a histogram for each
coordination algorithm. Only prediction di� erences are
included, with the area of the distribution being proportional
to the number of diverging predictions. Distributions with
greater area above zero signify over-coordination, whereas

larger negative areas indicate under-coordination. A theoretical
algorithm that can reproduce all literature descriptions would
have no area at all.

Most algorithms tend to underpredict coordination
numbers, as indicated by the tails of the distributions which
are generally negative. In particular, MinimumDistanceNN,
EconNN, VoronoiNN, and CrystalNN show very little positive
area. Accordingly, the ability of these methods to reproduce
literature descriptions might be improved by adjusting their
tolerance parameters (� ) to yield more balanced prediction
di� erences. The considerable disagreements of MinimumO-
Kee� e and JmolNN against literature descriptions is re� ected
in the large area of their distributions. These algorithms are the
only methods which frequently over-coordinate, with pre-
diction di� erences reaching 14 for some sites. To further
analyze the behavior of the algorithms, we break down the data
set into elemental, binary, and ternary compounds and report
their coordination trends in Section S12 and Figures S18� S20
of theSupporting Information.

3.5. Perturbation of Crystal Structures.We next discuss
our benchmarking results for structures containing atomic
perturbations introduced using the Einstein crystal test rig
method.26 Coordination analysis of perturbed structures has
already found use tracking the local coordination of sites in
molecular dynamics simulations.66 Furthermore, by assessing
the stability of coordination predictions against small
perturbations, the robustness of coordination algorithms can
be determined. It is important to note that this analysis
assumes that the coordination number should remain constant
when perturbations are introduced. For small atomic displace-
ments (less than� 0.1 Å), this assumption is reasonable. For

Figure 8.Tendency of NN algorithms (x-axis) to either under- or
over-predict coordination numbers (y-axis). Distributions that tend
toward positive values indicate over-coordination, whereas negative
values indicate under-coordination. Only� nite prediction di� erences
are included, with the area of the distribution being proportional to
the number of diverging predictions. Thus, the density at zero error
(which dominates the data) is not plotted. A theoretical algorithm
that can reproduce all literature descriptions would have no area at all.
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larger displacements, the true coordination number is not well
de� ned and it is unclear whether the coordination number
should remain the same. It may be that at such large
perturbation values, the coordination number can signi� cantly
vary from that of the ideal crystal structure. Regardless, the
performance of the algorithms against large displacements can
still be instructive.

The results of the perturbation analysis are illustrated in
Figure 9. Most algorithms follow a similar trend, in which the

prediction di� erences increase with increasing perturbation
distance. Within small perturbation values (<0.05 Å), the
sensitivity of most algorithms seems reasonable as there is not
much change in the benchmark scores. Slightly larger
perturbations between 0.05 <� < 0.15 Å, however, results in
higher sensitivity to perturbation, particularly for Minimum-
DistanceNN, MinimumOKee� eNN, MinimumVIRENN, and

BrunnerNN algorithms. Benchmarking scores for these
algorithms rise rapidly in this region. In contrast, CrystalNN,
VoronoiNN, and JmolNN are considerably more robust to
atomic displacements, with scores that vary little up to
displacements of 0.1 Å. JmolNN in particular is extremely
insensitive to atomic displacements, showing minimal change
in benchmark score even with 0.2 Å perturbations. This is
likely because it employs absolute cuto� s that do not depend
on the relative distances or weights between sites. In Section
S14 and Figure S22 of theSupporting Information, we
investigate the performance of the near-neighbor algorithms on
structures containing point defects and� nd that all algorithms
are relatively tolerant to atomic vacancies.

3.6. Jaccard Distance Quanti� cation. It is interesting to
understand whether two algorithms show similar behavior
despite di� erent scienti� c justi� cations on a large scale.
Although two algorithms can be compared based on their
benchmark scores, this approach does not provide a reliable
indication of similarity. For example, the same coordination
number can be achieved through completely di� erent bonding.
To robustly compare the behavior of coordination algorithms,
we therefore employ the Jaccard distance, which is a measure
of dissimilarity between two sets.67 Here, we only consider the
set of bonds present in the primitive crystallographic cell. Each
bond is characterized by (i) the origin atom, (ii) the
destination atom, and (iii) the periodic image of the
destination atom (keeping the origin atom in the origin
image by convention). The Jaccard distance between two
algorithms on a speci� c structure is calculated as

J 1
bonds bonds

bonds bonds bonds bondsdist
A B

A B A B

= Š
| � |

| | + | | Š | � |
(18)

where bondsA and bondsB are the sets of bonds determined by
algorithm A and B, respectively. The Jaccard distance is 0 if

Figure 9.Robustness of coordination prediction to random atomic
displacements. CrystalNN, VoronoiNN, and JmolNN show greater
stability against perturbation than other methods. Displacements
introduced according to the Einstein crystal test rig approach.

Figure 10.(a) Heatmap of average Jaccard distances illustrating the similarity in bonding behavior between two algorithms. The Jaccard distance is
0 if two algorithms behave identically and 1 if they do not share a single bond in common. (b) Histogram of Jaccard distances for CrystalNN
against other NN algorithms, calculated across all experimental compounds in the Materials Project database.
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two algorithms behave identically and 1 if they do not share a
single bond in common.

The Jaccard distance algorithm was implemented in
pymatgen22 for the purposes of this analysis. We calculate
the Jaccard distance for all structures in the Materials Project
database that have been characterized experimentally� 42,500
compounds at the time of writing. We note that these
structures are calculated with density functional theory68 using
the Perdew� Burke� Ernzerhof69 parameterization of the
generalized gradient approximation (GGA)70 along with (for
most transition-metal oxides) Hubbard +U corrections.71

Notably, lattice parameters may be slightly overestimated in
general compared to experimental values.72 Because of
inclusion of organic crystals in this data set, we exclude
MinimumVIRENN from our analysis as it is speci� cally
formulated for ionic materials. For each structure in the data
set, the Jaccard distance was calculated between every pair of
algorithms. Finally, the pairwise Jaccard distances were
averaged across all structures to give a single distance metric
characterizing the similarity between two algorithms.

The averaged Jaccard distance results are illustrated in
Figure 10a. BrunnerNN, MinimumDistanceNN, CrystalNN,
VoronoiNN, and EconNN exhibit similar bonding behavior,
with average Jaccard distances between 0.12 and 0.19. The
smallest Jaccard distance (0.12) is found between CrystalNN
and EconNN. Surprisingly, MinimumDistanceNN and Crys-
talNN also share a small Jaccard distance (0.13) despite their
vastly di� erent underlying formulation. The largest Jaccard
distance is between JmolNN and VoronoiNN (0.38). In
general, EconNN and MinimumOKee� eNN exhibit di� erent
bonding behavior from all other algorithms. Furthermore, the
methods themselves share a high Jaccard distance (0.32),
indicating they often assign di� erent bonding. As these
algorithms exhibit the largest scores on the MaterialsCoord
benchmark, this indicates the algorithms often diverge from
literature-bonding descriptions but in di� erent ways. For
CrystalNN, we report the distribution of Jaccard distances
(nonaveraged) across all materials (Figure 10b). This analysis
further illustrates CrystalNN’s similarity to BrunnerNN,
MinimumDistanceNN, VoronoiNN, and EconNN while
highlighting its contrasting behavior to MinimumOKee� eNN
and JmolNN.

3.7. Timing Analysis. A common practical use for
coordination prediction algorithms is providing local environ-
ment information in ML studies or in large database analyses.
Often ML models are trained on tens or hundreds of
thousands of materials simultaneously. Accordingly, the
computational demand of the prediction algorithm should be
minimized. To assess the tradeo� between speed and ability to
reproduce literature-reported coordination numbers of the
near-neighbor algorithms, we calculate the time taken to run
each algorithm on all elemental, binary, and ternary materials
in the MaterialsCoord benchmark. We note that the
implementation of a particular algorithm might be slow even
if the method could be much faster. For example, in principle,
the timing of VoronoiNN should be approximately equal to
that of CrystalNN, but the implementation of CrystalNN in
pymatgen employs an intelligent cut-o� scheme for Voronoi
construction that reduces runtime. Accordingly, our results
provide an indication of the computational demand of the
algorithms as implemented in pymatgen but that might be
subject to further optimization. Regardless, our results may still
pragmatically guide materials scientists in their choice of

neighbor-� nding algorithm when constrained by computa-
tional resources.

The trade-o� between speed and ability to reproduce
literature-reported coordination numbers of the near-neighbor
algorithms is illustrated inFigure 11. The Pareto frontier of

most optimal algorithms is highlighted in blue. These
algorithms are not dominated in both score and runtime
simultaneously by any other method. While CrystalNN obtains
the lowest benchmark score, it is the third most computation-
ally expensive method in terms of runtime (0.66 s per
structure). Accordingly, the reduced computational demand of
EconNN (0.24 s per structure) or MinimumDistanceNN (0.16
s per structure) may be a more attractive option when
analyzing large computational data sets or long molecular
dynamics simulations. However, because the computational
cost of CrystalNN falls within the same order of magnitude as
other approaches, we expect that its ability to reproduce
literature-reported coordination numbers will make it a viable
option for all but the most demanding computational
applications.

4. DISCUSSION
The MaterialsCoord benchmark is, to our knowledge, the� rst
tool for the quantitative assessment of near-neighbor� nding
methods. The primary use of MaterialsCoord is to identify the
algorithms which show the greatest consensus with human
interpretations of coordination. CrystalNN shows the greatest
agreement with literature-reported coordination numbers, with
a total score of 5 across all structures� including cation and
anion sites. EconNN, VoronoiNN, MinimumDistanceNN, and
BrunnerNN also perform similarly, with overall scores of 13,
15, 24, and 25 respectively. The remaining algorithms,
MinimumVIRENN, MinimumOKee� eNN, and JMolNN,
show greater deviations achieving scores of 46, 84, and 108,
respectively. Along with its ability to predict literature-reported
coordination numbers, CrystalNN is also one of the more
robust algorithms against structures with small atomic
perturbations. The ability to reproduce human interpretations
of bonding, combined with relatively high speed, robustness to

Figure 11.Tradeo� between computational speed and ability to
reproduce literature-reported coordination numbers of near neighbor
methods on the MaterialsCoord benchmark. The algorithms high-
lighted in blue form the Pareto frontier. These are the most-optimal
methods that are not dominated in both score and runtime by any
other method.
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small changes in bond length and built-in avoidance of cation�
cation bonding make CrystalNN a viable new option for use in
a variety of applications.

Nevertheless, there will be situations in which to prefer other
algorithms. For applications in which speed or simplicity is
paramount, MinimumDistanceNN performs relatively well on
the MaterialsCoord benchmark and its results agree with
CrystalNN to a high degree (the two algorithms have a
relatively small Jaccard distance). However, a weakness of this
algorithm is that small perturbations to atomic distances can
potentially result in di� erent coordination assignments, which
may be problematic for applications such as constructing graph
neural networks or analyzing molecular dynamics trajectories.
The EconNN represents a relatively good compromise
between speed, ability to reproduce coordination numbers
from the literature, and robustness to atomic displacement.
This method is also relatively insensitive to its single tolerance
parameter (seeSupporting Information), and thus, one does
not need to worry about overparameterization. Finally,
although we� nd that CrystalNN generally outperforms a
simpler Voronoi procedure on the MaterialsCoord benchmark,
the Voronoi algorithm is conceptually simpler and results are
also relatively insensitive to the choice of solid-angle tolerance
parameter in the range of 0.3� 0.6. Furthermore, the speed of
this algorithm should be able to match that of CrystalNN with
further code optimization.

Most near-neighbor methods evaluated in this work assign
bonds between sites of like charge, that is, cation-to-cation or
anion-to-anion bonds. One route to improving the ability of
these algorithms to match literature coordination numbers
would be to manually restrict bonding to sites of opposing
charge. Unfortunately, this approach is complicated by several
factors. Primarily, the oxidation states of the atomic sites may
not be known in advance. In addition, this route will fail for
strongly covalent materials� such as organic molecules�
where formal oxidation states are not well-de� ned and not
necessarily re� ective of bonding.

Improvements to coordination prediction has bene� ts in a
broad range of applications. For example, databases such as the
Materials Project rely on neighbor algorithms for text-
descriptions (robocrystallographer)73 and structural similarity
analysis.32 MaterialsCoord may assist in the development of
novel coordination algorithms. In particular, analysis of over-
coordination versus under-coordination can be applied to
understand how algorithms fail in order to produce more
balanced predictions. Although the algorithms investigated
here rely solely on crystal structure as input, MaterialsCoord
may also be used to assess more advanced methods such as
those that rely on charge densities from� rst-principles
calculations.

5. CONCLUSIONS
We have introduced MaterialsCoord, an open-source bench-
mark suite for evaluating the agreement of near-neighbor
� nding algorithms with human interpretations of coordination.
The benchmark contains 56 experimentally determined
prototype structures from the ICSD, comprising a diverse
test set of elemental, binary, and ternary compounds. We
introduce CrystalNN, a novel algorithm for determining near
neighbors and benchmark it against other existing near
neighbor� nding methods on MaterialsCoord. We demonstrate
CrystalNN to be a viable coordination number prediction
algorithm, able to compete with other well-established

methods such as MinimumDistanceNN, VoronoiNN, and
EconNN. We reveal that CrystalNN is relatively fast and is
particularly tolerant to structures with small perturbations (e.g.,
those mimicking thermal motion). Accordingly, CrystalNN is a
viable option for many near neighbor� nding applications. We
believe that this work will aid the development of coordination
prediction algorithms as well as improve structural descriptors
for ML.
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