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Crystallographic map: A general lattice and basis formalism enabling efficient
and discretized exploration of crystallographic phase space
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Three-dimensional lattices are fundamental to solid-state physics. The description of a lattice with an atomic
basis constitutes the necessary information to predict solid phase properties and evolution. Here, we present an
algorithm for systematically exploring crystallographic phase space. Coupled with ab initio techniques, such as
density functional theory, this algorithm offers an approach for exploring and tuning materials behavior, with a
broad range of potential applications: particularly martensitic phase transformations and materials stability.

DOI: 10.1103/PhysRevMaterials.8.033401

I. INTRODUCTION

The fundamental description of any crystal consists of a
lattice and an atomic basis. This core geometry dictates a
myriad of materials properties, informing optical, electronic,
mechanical, and chemical functionality. In materials science
and solid-state physics, understanding how the energy varies
as a function of its crystallography is crucial to explaining
phase transformations and behaviors such as piezoelectricity,
mechanical stability, ferroelectricity, etc. However, techniques
for exploring this energetic landscape, particularly to find
low-energy transformation pathways, have remained limited.

A common class of approaches have used Landau theory
and symmetry group-subgroup relationships between start-
ing and ending structures to guess possible transformation
pathways [1]. However, these techniques rely on the crys-
tal retaining a certain degree of symmetry throughout the
transformation. This is not the case in general; further, lin-
ear interpolation and mapping of Wyckoff labels used in
these approaches does not guarantee correspondence with a
low-energy pathway. Other studies have employed special-
ized solid-state nudged elastic band techniques to search for
transformation pathways [2]. These approaches show promise
for surveying crystallographic phase space more generally;
however, ultimately, the search is confined to a small region
dictated by the relaxation of an initial transformation pathway
ansatz.

Other approaches have focused on finding martensitic
phase transformation pathways as a combination of a strain
plus an atomic basis shuffle, including the work of Trinkle
et al. Here various supercells of the starting and ending crystal
structures are connected using a method similar to the magic
strain method [3]. Basis atoms are then mapped by enumerat-
ing possible bijections between the relative coordinates of the
crystal structures and filtering those where the atoms approach
too closely or travel too long distances [3]. Each individual
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pathway is limited to a two-dimensional cut through crystal-
lographic phase space, and computational work is required
to screen out duplicate pathways. The low dimensionality of
each pathway means that any transformation involving a series
of microstrains or distinct atomic shuffles cannot be found
by the formalism. Further, when calculating activation-energy
barriers along a set of derived pathways, it is likely that many
similar crystal geometries will be sampled. This represents
redundant computational work.

As a final note, work on the crystal fingerprint algorithm
[4], as a means of uniquely representing and grouping similar
crystal structures, is very much aligned with the goals of this
paper. In contrast to the use of radial distance functions to pro-
duce a string of structural coordinates, we pursue a different
approach. By using the Voronoi representation of the lattice
[5], detailed below, it is simpler to invert the mapping, going
from a string of coordinates back to a physical crystal struc-
ture in terms of a lattice and basis. Further, each coordinate
is a unique, nonredundant function of the underlying crystal
geometry, and neighboring coordinates are related by a simple
structural distortion. With these strengths in mind, we believe
it important to put forward another approach to numerically
represent crystal structures.

Here, we delineate a distinct algorithm for exhaustively
exploring crystallographic phase space in a nonredundant,
incremental, and rigorous fashion. Further, the approach is
discrete, robust to numerical precision errors, and proceeds
intuitively. The result is a crystallographic map: a means
of uniquely representing a crystal structure’s geometry as a
series of coordinates in a way that immediately elucidates
geometrically similar crystal structures and connects any two
crystal structures, of equal numbers of atoms, by a series
of small structural perturbations. Through the algorithm, we
create an implicit graph data structure that can be used to
explore arbitrary trajectories through phase space and identify
low-energy transformation pathways. With this paper, we aim
to simplify the process of exploring and studying how mate-
rials transform and how crystal structures are geometrically
related, a fundamental part of solid-state physics.
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II. REPRESENTATION OF 3D LATTICES

Any 3D lattice can be represented by a set of three
linearly independent generating vectors; however, an equiv-
alent and alternative specification exists. Every 3D lat-
tice possesses at least one nonstrictly obtuse superbasis
{ �v0, �v1, �v2, �v3}, calculable using the selling algorithm [5].
Here { �v1, �v2, �v3} are a generating set for the lattice,
�v0 := −( �v1 + �v2 + �v3), and the angles between the vectors
are all at least 90o. Additionally, the seven square vec-
tor lengths {v2

0, v
2
1, v

2
2, v

2
3, ( �v0 + �v1)2, ( �v0 + �v2)2, ( �v0 + �v3)2},

termed here as squared vonorms, also represent the lattice.
The matrix equation below [5] relates these vector lengths to
the dot products of the superbasis: { �vi · �v j}. Thus, by knowing
these seven vector lengths, one may calculate the dot products
of an obtuse superbasis of the lattice, thereby reconstructing
the lengths and angles of the 3D lattice’s generating set with
some algebra [Eqs. (4)–(11)]:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 1 1 −1 −1
−1 1 −1 1 −1 1 −1
−1 1 1 −1 −1 −1 1
1 −1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 −1
1 1 −1 −1 1 −1 −1

−1 −1 −1 −1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v2
0

v2
1

v2
2

v2
3

( �v0 + �v1)2

( �v0 + �v2)2

( �v0 + �v3)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�v0 · �v1

�v0 · �v2

�v0 · �v3

�v1 · �v2

�v1 · �v3

�v2 · �v3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The set of seven squared vonorms and the aforementioned
dot products are a geometric invariant of the lattice: any two
lattices related by an affine transformation will have the same
set of square vonorms and dot products. By definition, Eq. (1)
must be satisfied by all obtuse superbases that exist for a
given lattice. However, there may be several distinct obtuse
superbases for the same lattice geometry, either related by
affine transformations or a reordering of the vonorms and dot
products.

Studying the reordering of distinct superbases, we term
the lengths {v2

0, v
2
1, v

2
2, v

2
3} primary squared vonorms and

the lengths {( �v0 + �v1)2, ( �v0 + �v2)2, ( �v0 + �v3)2} secondary
squared vonorms. It can be shown by brute force calculation
that it is impossible to interchange primary and secondary
squared vonorms while preserving the validity of Eq. (1) and
the algebraic structure of a superbasis. However, it is possible
to permute the labels of the primary squared vonorms arbitrar-
ily. These manipulations constitute the S4 permutation group
and signify that there can be up to 24 distinct obtuse super-
bases representing the same lattice geometry, each superbasis
having the same set of lengths and angles in a distinct order.

Calculating the orbit of the squared vonorms under the
group action of S4 yields a collection of reordered primary and
secondary squared vonorms. We choose a unique representa-
tive (L) from this orbit by choosing the permutation for which

the seven ordered lengths, {v2
0, v

2
1, v

2
2, v

2
3, ( �v0 + �v1)2, ( �v0 +

�v2)2, ( �v0 + �v3)2}, are maximally ascending. In a precise sense,
we say that for each orbit member (M), there exists an index j
such that the first (j)–(1) elements of (L) are � the first (j)–(1)
elements of (M) and the jth element of (L) is strictly less than
the jth element of (M). Thus, for any lattice, we can select
a unique ordered string of lengths to represent its geometry
unambigouously.

As an example, consider the rhombohedral crystal structure
of the element, antimony, where the squared vonorms are as
follows (units of Å2, rounded to the nearest 0.1) [6]:{

v2
0 = 19.2, v2

1 = 21.3, v2
2 = 19.2, v2

3 = 21.3, ( �v0 + �v1)2

= 40.5, ( �v0 + �v2)2 = 19.2, ( �v0 + �v3)2 = 21.3
}
.

First, we sort the primary square vonorms. This can be accom-
plished by swapping labels 1 and 2. Notice both secondary
square vonorms ( �v0 + �v1)2 and ( �v0 + �v2)2 also swap:{

v2
0 = 19.2, v2

1 = 19.2, v2
2 = 21.3, v2

3 = 21.3, ( �v0 + �v1)2

= 19.2, ( �v0 + �v2)2 = 40.5, ( �v0 + �v3)2 = 21.3
}
.

Seeing that square vonorms v2
0 and v2

1 are now equal, we
can swap indices 0 and 1 without changing the order of the
primary square vonorms. By swapping 0 and 1, the secondary
square vonorms are reordered. The result is maximally as-
cending:{

v2
0 = 19.2, v2

1 = 19.2, v2
2 = 21.3, v2

3 = 21.3, ( �v0 + �v1)2

= 19.2, ( �v0 + �v2)2 = 21.3, ( �v0 + �v3)2 = 40.5
}
.

Then the final unambiguous representation of this lattice is the
following string:

{19.2, 19.2, 21.3, 21.3, 19.2, 21.3, 40.5}.
From this standardized representation, it is easy to calcu-

late similar lattices. Any two square vonorms out of the seven
can be varied by a small amount ±ξ , such that Eq. (2) remains
true:

− (
v2

0 + v2
1 + v2

2 + v2
3

) + ( �v0 + �v1)2 + ( �v0 + �v2)2

+ ( �v0 + �v3)2 = 0. (2)

This is a necessary invariant of all 3D lattices [5]. Where ξ

is small, the new lengths correspond to a lattice, one that is
related to the original by a small strain (Appendix, Proof 1).
Using this covariation technique, a lattice can have up to 42
different neighboring lattices. Each neighbor will be distinct
but geometrically similar to the original lattice.

It is possible to use a measuring unit of small size ξ . Then,
by rounding each vonorm to the nearest ξ , while preserving
Eq. (2), we can store each lattice as a series of integer coor-
dinates. By varying these coordinates ±1 it is then possible
to calculate the neighbors as before. Referencing Eq. (1), we
observe that, with the given discretization, each dot product
must be an integer multiple of ξ/4. By storing the quantities
4 �vi · �v j , it is possible to represent the dot products also as inte-
gers. For any nonstrictly obtuse superbasis, each dot product
must be less than or equal to zero. Thus, out of the 42 total
possible lattice neighbors, we keep only those who are distinct
with qualifying nonpositive dot products. In floating-point
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arithmetic, due to limited numerical precision, it can be dif-
ficult to determine whether a dot product is positive [7]. Thus,
the decision to use an integer representation has the added
bonus of avoiding any ambiguities in this determination.

It can be shown that, by a series of lattice neighbors, any
integer 3D lattice can be connected to any other integer 3D
lattice (Appendix, Proof 2). Further, by design, if lattice A is
a neighbor of lattice B, it follows that lattice B is a neighbor
of lattice A (Appendix, Proof 3). Keeping these properties in
mind, this discretization scheme creates a grid over the entire
configuration space of 3D lattices and provides a straightfor-
ward means of exploring the space. In general, neighbors are
similar to one another if the discretization parameter is suffi-
ciently small, and two lattices become less similar the more
neighbors that separate them. It is shown in the Appendix,
Proof 1, that ξ/v2

i is roughly equal to the square root of the
magnitude of the principal strains connecting two neighbors.

III. REPRESENTATION OF CRYSTALLINE
ATOMIC BASES

In the representation of a crystal’s atomic basis (n atoms),
there are many redundancies in the specification, namely,
arbitrary origin, identical atoms, and lattice translations. By
choosing relative coordinates in the interval [0,1), the ambi-
guity of arbitrary lattice translations is resolved. By confining
a particular atom to the origin, the ambiguity of arbitrary
origin is accounted for, and only n − 1 atomic positions need
be specified. However, where there are identical atoms, there
remains possible ambiguity as to which one of the identical
atoms is confined to the origin. Further, in an ordered listing
of the n − 1 basis vectors, { �v1, ..., �vn−1}, swapping identical
nonorigin atoms will not change the crystal structure; how-
ever, the listing will be reordered.

Using the same technique employed with the lattice length
strings above, we can calculate the full orbit of basis vector
strings under their permutation group and then pick a unique
representative that is maximally ascending. Specifically, we
order atoms primarily by species and, secondarily, by first,
second, and then third relative coordinates, in ascending nu-
meric order. This uniquely specifies the representation of the
crystal basis in terms of a string of numbers.

Finally, by dividing the interval [0,1) into δ small intervals,
it’s possible to round each basis coordinate to the nearest
interval boundary. Then, the basis can be completely specified
as a string of integers.

As an example, consider the compound Sn2O4, a unit
cell of the experimentally observed tin-oxide rutile phase
in the canonical setting [8]. This crystal has the following
cell parameters: a = 3.24 Å, b = 4.83 Å, c = 4.83 Å, α =
90o, β = 90o γ = 90o, when rounded to the nearest hun-
dredth of an angstrom. It also has the following atomic basis,
when rounded to the nearest tenth in relative coordinates:

Two atoms: Sn @0, 0, 0 and @0.5, 0.5, 0.5.
Four atoms: O @0, 0.7, 0.7; @0, 0.3, 0.3; @0.5; 0.8, 0.2;

and @0.5, 0.2, 0.8.

We decide here to divide the interval [0,1) into 10 small
intervals, and we choose atom Sn to be at the origin. Notice

that there are two distinct choices for which atom Sn is at the
origin.

With the first choice, as written above, the basis can be
represented by the following coordinate string:

5,5,5, 0,3,3, 0,7,7, 5,2,8 5,8,2.

The first Sn atom at the origin is omitted. The second Sn
atom is listed first and its coordinates are discretized. Next,
the four O atoms are listed. They are sorted by first relative
coordinate, then second relative coordinate, then third relative
coordinate.

Choosing the second Sn atom to be at the origin, a distinct
coordinate string results, following the same ordering proto-
col:

5,5,5, 0,3,7, 0,7,3, 5,3,3 5,8,8.

Now comparing the two possible basis strings, element by
element, we find that the first string is less than the second
string. Thus, the standard basis representation is 5,5,5, 0,3,3,
0,7,7, 5,2,8 5,8,2, the maximally ascending element of the
orbit of equivalent basis atom coordinates, given the discretiz-
tation parameter of 10.

To generate similar crystal atomic bases, each integer rel-
ative coordinate of each atomic vector can be individually
varied ±1. Further, we include the vector ±〈1, 1, 1〉 as an
additional allowed variation (explicit enumeration in the Ap-
pendix, motivation in Proof 8). Together, these generate 8n
neighbors for any crystal basis. If δ is sufficiently large, these
neighbors are similar geometrically to the original basis. In
general, 1/δ is roughly related to the phonon mode amplitudes
connecting two neighbors.

IV. REPRESENTATION OF COMPLETE
CRYSTAL STRUCTURE

By combining the integer specifications of the lattice and
the crystal atomic basis, it is possible to completely specify a
crystal using only integers. However, the representation of the
crystal atomic basis, being in relative coordinates, requires a
particular unit cell of the lattice to be defined. Because each
lattice is represented by seven integers that are in an unam-
biguous order, the following formulas [Eqs. (3)–(10)] will
always define three unambiguous generators for the lattice.
Further, this mapping of vonorms to generators is injective:
two distinct strings of vonorms leads to two distinct generat-
ing sets (Appendix, Proof 4). Since the crystal’s orientation is
arbitrary in this paper, a variable orientation arises naturally
when using these formulas:

�v0 = ξv0〈1, 0, 0〉, (3)

�v1 = ξv1〈x, y, 0〉, (4)

x = �v0 · �v1

ξ 2v0v1
, (5)

y = (1 − x2)1/2, (6)

�v2 = ξv2〈a, b, c〉, (7)

a = �v0 · �v2

ξ 2v0v2
, (8)
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b = 1

y

( �v1 · �v2

ξ 2v1v2
− xa

)
, (9)

c = (1 − a2 − b2)1/2. (10)

For conciseness, we group these relations together in a func-
tion L : Z7 → R3×3. L takes in the seven integer vonorms
as a vector, ordered as v2

0 , v2
1 , v2

2 , v2
3 , ( �v0 + �v1)2, ( �v0 + �v2)2,

( �v0 + �v3)2. L uses these seven values to calculate the corre-
sponding dot products, using Eq. (1). Finally, L outputs the
three generating vectors as column vectors of a 3 x 3 matrix
ordered as follows: [ �v0, �v1, �v2].

Now we recall symmetry group S4, which can permute
the order of square vonorms but leaves the geometry of the
lattice unchanged. In the context of function L, each g ∈ S4

can lead to a distinct unit cell and orientation of the lattice.
In general, L(g( �vo)) = AgL( �vo)μ−1

g , where Ag is a pure rota-
tion or rotoinversion (unitary) and μg is a unimodular matrix
(Appendix, Proof 5). Considering this change in unit cell, the
relative basis coordinates must be left-multiplied by μg to ac-
count for the change, whereas, with the affine transformation,
A, the relative basis coordinates do not change (Appendix,
Proof 6) .

For completeness, we list a generating set of S4 and
their unimodular counterparts μg. There is an isomorphism
between these groups (Appendix, Proof 7); thus, any per-
mutation and corresponding matrix can be constructed by
the analogous group multiplication. We restrict μg to have a
positive determinant so only proper rotations are required to
connect neighboring crystal structures (Appendix, Proof 5).
Physically, we base this restriction on the idea that when con-
necting points in crystallographic phase space, basis atoms are
never allowed to invert through the origin. Such an inversion
is physically prohibited, as atoms would approach infinites-
imally close to one another. Further, inversion of the basis
typically represents a large, abrupt change in crystal structure.
Our goal here is to consider small crystallographic perturba-
tions, composing them together to naturally reconstruct larger
structural transformations:

0 ↔ 1 : μg = −
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, (11)

0 ↔ 2 : μg = −
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠, (12)

0 ↔ 3 : μg = −
⎛
⎝−1 0 0

−1 1 0
−1 0 1

⎞
⎠, (13)

1 ↔ 2 : μg = −
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠, (14)

1 ↔ 3 : μg = −
⎛
⎝1 −1 0

0 −1 0
0 −1 1

⎞
⎠, (15)

2 ↔ 3 : μg = −
⎛
⎝1 0 −1

0 1 −1
0 0 −1

⎞
⎠. (16)

Previously, we considered the orbit of vonorms under the
action of S4; however, in the context of a lattice + crys-
tal basis, we need to consider the simultaneous orbit of the
atomic basis relative coordinates as well. Here, we define
�̃vo as the maximally ascending representative of the S4 orbit

on the string of lattice lengths. Some elements in S4 will
leave �̃vo unchanged. Together these form a subgroup H of S4

(orbit-stabilizer theorem). We can orbit the basis coordinates
with all the elements of H, forming the set of all possible
geometrically equivalent crystal bases for the given unit cell
L( �̃vo). For each one of these geometrically equivalent bases,
we calculate the corresponding maximally ascending basis
coordinate string. Then, comparing these strings to one an-
other, we choose a representative that is globally maximally
ascending. Together, the maximally ascending lattice vonorms
and this maximally ascending basis string constitute a unique
representation of the crystal as a string of numbers, termed
here crystal normal form (CNF).

We note that the decision to use integers as a representation
removes ambiguity from the calculation of H. If floating-point
arithmetic were used, the determination as to which vonorms
are equal in value would be difficult and ultimately would
rely on a tolerance. Further, because integers are used, we
can guarantee that high-symmetry lattices, those with many
equal vonorms, will be included and well-represented in the
discretization of crystallographic phase space.

Taken together, the aforementioned sets of 42 vonorm
covariations alongside the 8n crystal basis variations create
a set of geometrically similar crystals, termed here crystal
neighbors (example in the Appendix). By decreasing ξ and
increasing δ, these variations can be made arbitrarily small.
When a neighbor is calculated, the vonorms or basis relative
coordinates are varied, then the neighbor is put into CNF. This
ensures that each crystal is canonically represented and cal-
culated only one time, eliminating redundancies. Under this
scheme, it can be shown that neighbor relationships between
crystal structures are reciprocal and that any crystal structure
can be connected to any other via a series of neighbor connec-
tions, aka small structural perturbations (Appendix, Proof 8).

V. A CONSIDERATION OF SUPERCELLS

The framework outlined so far is sufficient to relate any two
crystal structures with identical number and type of atoms. In
other words, all transformation pathways consisting of strains
and a superposition of gamma-point phonon modes can be
enumerated for a given crystal. By generating supercells of
the corresponding starting and ending crystal structures, it is
possible to find additional transformation pathways involv-
ing generally different strains and other phonon modes with
nonzero wave numbers in the first Brillouin zone. By repeat-
ing this procedure for all possible larger supercell sizes, one
may theoretically derive all possible transformation pathways.
In practice, computational resources qualify the max size that
may be considered.

In general, an exhaustive set of supercell-generating matri-
ces can be derived as detailed in the Appendix, Proof 9. From
these, one may collect all the geometrically unique super-
cells by calculating the corresponding integer coordinates in
CNF and filtering out duplicates. Because there can be many
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supercells with differing lattice and basis geometries, an in-
dividual crystal structure may correspond to many distinct
coordinate strings when represented as a supercell. Further,
any path connecting any two supercells of the different struc-
tures is a valid transformation connecting the crystals.

VI. SEARCHING CRYSTALLOGRAPHIC PHASE SPACE

As a review, due to the nature of the crystallographic map,
each crystal structure has a minimum of 42 neighbors and can
be connected to any other via a series of neighbors. This cre-
ates an implicit graph data structure that can be systematically
searched to discover pathways between different crystals.

If density-functional theory is used to calculate the en-
ergy of a series of neighboring crystal structures, it is
possible to find minimal-activation-energy-barrier pathways
of arbitrary strain and gamma-point phonon-mode complex-
ity. Further, the full exploration of crystallographic phase
space clearly shows the energetic landscape, giving insight
into finite-temperature behavior as well. Naturally, crystallo-
graphic phase space is generally high dimensional, and a fine
grid is required to well-characterize the energy variation over
the space. As such, running DFT calculations over a signifi-
cant region of phase space is too costly for most applications.
However, using interatomic potentials or analyzing crystal
structures by examining lengths and angles between atoms is
more computationally tractable.

Naturally, algorithms like the A∗ search algorithm [9] are
tempting to use. When the overall cost function corresponds to
maximum energy along the transformation pathway, it guar-
antees finding the lowest activation-energy barrier between
the phases, as it is an admissible heuristic search algorithm.
If the cost function is changed from maximum energy to other
geometric considerations, such as closest-atomic-approach,
then one can guarantee paths that satisfy certain geometric in-
variants. With the appropriate heuristics, this framework could
provide guesses of transformation pathways based purely on
geometric constraints.

We mention too that there may be other cases where the
phase space is too high-dimensional to be computationally
tractable. In these cases, development of aggressive heuris-
tics and a greedy search algorithm may speed discovery of
transformation pathways but at the cost of guaranteeing the
optimal path. Further, noting that the energy landscape is
highly nonlinear with respect to atomic displacement, there is
a balance when setting parameters ξ and δ. Too fine increases
computational cost in finding pathways. Too coarse means
potentially skipping over important features of the energy
landscape. These are concerns to be addressed in future work.

VII. APPLICATION: ZR CRYSTAL SYSTEM

As an example of applying this framework and highlight-
ing its unique strengths, we study zirconium crystal systems.

Many transition metals have been well-researched in
ab initio studies, and there are known low-energy canonical
pathways connecting various phases, namely, fcc, bcc, and
hcp. For the Zr system, studied using density-functional the-
ory, the energies and structures are approximately as follows:

Starting with bcc: E = −9.016 meV
atom ,

abcc

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

= abcc

2

⎛
⎝−1 1 1

1 −1 1
1 1 −1

⎞
⎠

⎛
⎝2 1 1

0 1 0
0 0 1

⎞
⎠

⎛
⎝−1 0 0

1 0 1
1 1 0

⎞
⎠,

Bbcc = {�0, 〈1/2, 1/2, 1/2〉}, Bbcc = {�0}, abcc = 3.52 Å.

Then fcc: E = −9.049 meV
atom ,

afcc

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

= afcc

2

⎛
⎝ 1 1 −1

−1 1 0
0 0 1

⎞
⎠

⎛
⎝2 1 0

0 1 0
0 0 2

⎞
⎠

⎛
⎝0 −1 0

1 1 1
0 0 1

⎞
⎠,

Bfcc = {�0, 〈1/2, 1/2, 0〉, 〈1/2, 0, 1/2〉, 〈0, 1/2, 1/2〉},

Bfcc = {�0}, afcc = 4.46 Å.

Then hcp: E = −9.081 meV
atom ,⎛

⎝a −a/2 0
0 a

√
3/2 0

0 0 c

⎞
⎠ Bhcp = {�0, 〈2/3, 1/3, 1/2〉},

ahcp = 3.19Å,
( c

a

)
hcp

= 1.60.

All the above structures represent relaxed structures using the
PBE-sol functional, and a force cutoff of 0.003 eV/Å.

A low-energy transformation pathway connecting bcc to
fcc is known to be a tetragonal strain, with elongation ori-
ented along one of the canonical cubic cell axes and equal
contraction in the perpendicular plane. This is visualized in
Fig. 1 for the Zirconium crystal system. A low-energy trans-
formation pathway connecting bcc to hcp is known to be
a similar tetragonal strain with contraction and elongation
in the perpendicular plane located along the face diagonals.
This strain is coupled with a minimal-shuffling phonon mode.
The combined strain-phonon energy landscape is visualized
in Fig. 2 for the Zirconium crystal system.

By using the A∗ search algorithm in conjunction with
density-functional theory to calculate static energies, we
search the crystallographic phase space of two-atom zirco-
nium unit cells, starting with the stable hcp phase. We then
search for target structures: fcc and bcc phases. These phases
have primitive unit cells of one atom per unit cell; as such, we
search for any geometrically unique index-2 supercell of the
fcc or bcc structure.

For illustrative purposes, a single pathway is chosen for
analysis, out of the many possible pathways all sharing the
same activation energy barrier. To make this choice, all
shortest paths connecting the starting and ending structures
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FIG. 1. The canonical strain transformation from bcc to fcc along the tetragonal strain path is visualized, using the calculated minimum-
strain pathway. Along the x axis is % transformed in terms of strain. Along the y axis is the energy. This pathway also shows the dynamical
instability of the bcc structure at low temperatures.

are considered. Then, of these paths, the unique shortest path
whose energy stays the lowest in the first n steps is considered.

We conduct this search using discretization parameters as
follows: ξ = 1.5 Å2 and δ = 30. With this choice, the hcp,
bcc, and fcc structures have coordinates as presented below:

hcp: 7, 7, 17, 24, 7, 24, 24, 10, 20, 15,
bcc: 6, 8, 17, 23, 6, 23, 25, 0, 15, 15,
bcc: 8, 8, 8, 21, 15, 15, 15, 15, 15, 15,
fcc: 6, 7, 13, 25, 13, 18, 20, 15, 15, 15,
fcc: 7, 7, 20, 20, 7, 20, 27, 0, 15, 15.

For the transformation from hcp to bcc, the selected
minimum energy transformation pathway proceeds as an
interleaved strain + phonon pathway. The bcc crystal struc-
ture is higher in energy than the hcp crystal structure, and
the transformation pathway from bcc to hcp has a zero
activation-energy barrier. The cumulative strains and atomic
displacements along the pathway are shown below, starting
from the bcc structure, all diagonalized to highlight the princi-
pal axes. The coordinate system is the same as that presented
in the canonical bcc unit cell setting in the preceding para-
graphs. Each strain is shown at 20% transformation pathway

FIG. 2. The canonical strain-phonon transformation from bcc to hcp is visualized, using the calculated minimum-strain, minimal-shuffling
pathway. Along the x axis is % transformed in terms of strain. Along the y axis is % transformed in terms of phonon mode. Along the z axis is
the energy. This pathway also shows the dynamical instability of the bcc structure at low temperatures.

033401-6



CRYSTALLOGRAPHIC MAP: A GENERAL LATTICE AND … PHYSICAL REVIEW MATERIALS 8, 033401 (2024)

increments:

Start (bcc): 6, 8, 17, 23, 6, 23, 25, 0, 15, 15.
E = −9.012 meV

atom .
20%: 6, 6, 20, 25, 6, 25, 26, 0, 15, 15.

ε =
⎛
⎝−0.057 0.533 0.845

0.996 −0.027 0.084
0.067 0.846 −0.529

⎞
⎠

×
⎛
⎝−0.150 0.000 0.000

0.000 0.040 0.000
0.000 0.000 0.105

⎞
⎠P−1,

�δ = �0,

E = −9.023 meV
atom .

40%: 6, 7, 19, 25, 6, 25, 26, 2, 16, 15.

ε =

⎛
⎜⎝

−0.000 −0.707 −0.707
1.000 −0.000 −0.000

−0.000 −0.707 0.707

⎞
⎟⎠

×
⎛
⎝−0.080 0.000 0.000

0.000 0.014 0.000
0.000 0.000 0.072

⎞
⎠P−1,

�δ = 〈2/30, 1/30, 0〉,
E = −9.024 meV

atom .
60%: 6, 7, 19, 25, 6, 25, 26, 6, 18, 15.

ε =
⎛
⎝−0.000 −0.707 −0.707

1.000 −0.000 −0.000
−0.000 −0.707 0.707

⎞
⎠

×
⎛
⎝−0.080 0.000 0.000

0.000 0.014 0.000
0.000 0.000 0.072

⎞
⎠P−1,

�δ = 〈6/30, 3/30, 0〉,
E = −9.029 meV

atom .
80%: 6, 7, 18, 25, 7, 24, 25, 9, 17, 15.

ε =
⎛
⎝−0.180 −0.707 0.684

0.967 0.000 0.255
−0.180 0.707 0.684

⎞
⎠

×
⎛
⎝−0.092 0.000 0.000

0.000 0.043 0.000
0.000 0.000 0.083

⎞
⎠P−1,

�δ = 〈9/30, 2/30, 0〉,
E = −9.051 meV

atom .
100% (hcp): 7, 7, 17, 24, 7, 24, 24, 10, 20, 15.

ε =
⎛
⎝−0.000 0.707 0.707

1.000 0.000 0.000
0.000 −0.707 0.707

⎞
⎠

×
⎛
⎝−0.080 0.000 0.000

0.000 0.014 0.000
0.000 0.000 0.127

⎞
⎠P−1,

�δ = 〈10/30, 5/30, 0〉,
E = −9.075 meV

atom .

FIG. 3. The search for transformation pathways from bcc to hcp
is visualized with the phase space surrounding a path of minimal
activation energy barrier highlighted. Along the x axis, the number of
steps along the transformation pathway are shown. Along the y axis,
two of the lowest energy orthogonal nearest neighbors are shown to
the left and right. Along the z axis is the energy. This pathway shows
the dynamical instability of the bcc structure at low temperatures.

We note that in contrast to conventional strain-shuffling
transformation pathways, characterized by linear interpola-
tion, this pathway proceeds as a superposition of microstrains
with distinct principal axes and atomic shuffles in distinct
directions. By comparison, it is a more dynamic pathway.

It is difficult to fully visualize the energetic landscape
across all degrees of freedom, as it is a ten-dimensional space
in this study. However, it is possible to create an energy plot
by considering a particular low-energy pathway through the
landscape. Along the x axis, we can measure % progression
along the pathway and along the z axis we can measure the
energy. Then, for each step along the pathway, we can con-
sider the set of nearest neighbors not on the path. Taking the
two nearest neighbors of lowest energy and plotting them at
±1 along the y axis, the plot is then three-dimensional. While
not showing the complete information of the landscape, this
representation allows one to see whether the minimum energy
pathway contains points that are low in energy compared to
its neighboring phase space. This plot is shown below for hcp
to bcc in Fig. 3 and then hcp to fcc in Fig. 4.

FIG. 4. The search for transformation pathways from fcc to hcp
is visualized with the phase space surrounding a path of minimal
activation energy barrier highlighted. Along the x axis, the number of
steps along the transformation pathway is shown. Along the y axis,
two of the lowest energy orthogonal nearest neighbors are shown to
the left and right. Along the z axis is the energy. This pathway shows
the metastability of the fcc structure at low temperatures.
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We contrast this to the calculated energy landscape of the
aforementioned canonical bcc–hcp. Along the x axis is %
transformed in terms of strain. Along the y axis is % trans-
formed in terms of phonon mode. Along the z axis is the
energy.

For the transformation from hcp to fcc, the minimum en-
ergy transformation pathway proceeds as an interleaved series
of incremental strains and phonon mode steps. The fcc crystal
structure is higher in energy than the hcp crystal structure,
and the transformation pathway from fcc to hcp has a nonzero
activation energy barrier, indicating the metastability of the
fcc structure. The energy at this barrier is −9.015 meV/atom,
corresponding to a barrier height of 34 meV/atom when trans-
forming from fcc to hcp. The crystal structure at this barrier
is close to bcc in terms of geometry. The cumulative strains
and atomic displacements along the pathway are shown below,
starting from the fcc structure. The coordinate system is the
same as that presented in the canonical fcc unit cell setting in
the preceding paragraphs:

Start (fcc): 7, 7, 20, 20, 7, 20, 27, 0, 15, 15.
E = −9.029 meV

atom .
20%: 6, 9, 17, 19, 6, 20, 25, 0, 15, 15.

ε =
⎛
⎝ 0.144 0.759 −0.635

0.973 −0.226 −0.050
−0.182 −0.611 −0.771

⎞
⎠

×
⎛
⎝−0.151 0.000 0.000

0.000 −0.026 0.000
0.000 0.000 0.166

⎞
⎠P−1,

�δ = �0,

E = −9.019 meV
atom .

40%: 6, 9, 16, 20, 6, 20, 25, 2, 16, 15.

ε =
⎛
⎝ 0.052 0.705 0.707

0.997 −0.074 −0.000
−0.052 −0.705 0.707

⎞
⎠

×
⎛
⎝−0.190 0.000 0.000

0.000 0.009 0.000
0.000 0.000 0.164

⎞
⎠P−1,

�δ = 〈2/30, 1/30, 0〉,

E = −9.019 meV
atom .

60%: 6, 9, 16, 22, 6, 22, 25, 5, 17, 15.

ε =
⎛
⎝ 0.032 0.706 −0.707

0.999 −0.045 0.000
−0.032 −0.706 −0.707

⎞
⎠

×
⎛
⎝−0.237 0.000 0.000

0.000 0.081 0.000
0.000 0.000 0.164

⎞
⎠P−1,

�δ = 〈5/30, 2/30, 0〉,

E = −9.019 meV
atom .

80%: 7, 7, 17, 23, 7, 23, 24, 6, 18, 15.

ε =
⎛
⎝−0.120 0.707 −0.697

0.986 −0.000 −0.169
0.120 0.707 0.697

⎞
⎠

×
⎛
⎝−0.143 0.000 0.000

0.000 0.026 0.000
0.000 0.000 0.172

⎞
⎠P−1,

�δ = 〈6/30, 3/30, 0〉,
E = −9.044 meV

atom . 100% (hcp): 7, 7, 17, 24, 7, 24, 24, 10, 20,
15.

ε =
⎛
⎝−0.102 0.707 0.700

0.102 0.707 −0.700
0.990 −0.000 0.144

⎞
⎠

×
⎛
⎝−0.164 0.000 0.000

0.000 0.026 0.000
0.000 0.000 0.202

⎞
⎠P−1,

�δ = 〈10/30, 5/30, 0〉,
E = −9.075 meV

atom .
We note that, once again, in contrast to conventional strain

transformation pathways, characterized by linear interpola-
tion, this pathway proceeds as a superposition of strains with
distinct principal axes and atomic shuffles in multiple direc-
tions. By comparison, it is again a more dynamic pathway.

We visualize the local energy environment along the calcu-
lated fcc-hcp pathway in the plot shown below.

This identified transformation pathway is comparable to a
combined transformation pathway consisting of the canonical
tetragonal strain from fcc to bcc and then the canonical strain-
shuffle transformation from bcc to hcp. Notably, the activation
energy barriers are within 4 meV (measured in a two-atom
unit cell), which is insignificant relative to room-temperature
thermal vibrations of around 25 meV

atom and limited precision
due to large discretization sizes of ξ and δ. The bcc to hcp
canonical transformation energetics are shown above. Below,
the fcc to bcc transformation is shown in a similar plot. Along
the x axis is % transformed in terms of strain. Along the y axis
is the energy.

Taken together, these plots illustrate that this formalism is
capable of finding additional minimal-energy transformation
pathways that differ from known low-energy transformation
pathways observed in the literature. More generally, using the
delineated algorithm, many other pathways can be enumer-
ated as well. However, all the presently identified pathways
and the previously known transformation pathways share the
same activation energy barriers. This helps to verify the valid-
ity of this formalism for use as a general search algorithm for
finding activation energy barriers, as it agrees with previous
results.

VIII. APPLICATION: CARBON CRYSTAL SYSTEM

Studying the carbon crystal system, we use this framework
to examine the connection between three common crystal
systems: diamond, graphite, and lonsdaleite. A choice of
primitive unit cells are specified below as well as their CNF
coordinate strings, using discretization parameters ξ = 0.1 Å
and δ = 50.
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Diamond:
Lattice: L = {〈1.7835Å, 1.7835 Å, 0〉, 〈1.7835 Å, 0,

1.7835 Å〉, 〈0, 1.7835 Å, 1.7835 Å〉}.
Basis: B = {〈0, 0, 0〉, 〈1/4, 1/4, 1/4〉}.
CNF: 63, 64, 64, 64, 64, 64, 127, 25, 12, 37.
Graphite:
Lattice: L = {〈1.228 Å, 2.127 Å, 0〉, 〈1.228 Å,−2.127 Å,

0〉, 〈0, 0, 6.708 Å〉}.
Basis: B = {〈0, 0, 0〉, 〈1/3, 2/3, 0〉, 〈0, 0, 1/2〉, 〈2/3, 1/3,

1/2〉}.
CNF: 60, 60, 450, 510, 60, 510, 510, 0, 0, 25, 17, 33, 0, 33,

17, 25.
Lonsdaleite:
Lattice: L = {〈1.26 Å, 2.182 Å, 0〉, 〈1.26 Å,−2.182 Å, 0〉,

〈0, 0, 4.12 Å〉}.
Basis: B = {〈1/3, 2/3, 1/16〉, 〈2/3, 1/3, 15/16〉, 〈1/3,

2/3, 7/16〉, 〈2/3, 1/3, 9/16〉}.
CNF: 63, 64, 170, 233, 64, 233, 233, 0, 0, 19, 33, 16, 25,

33, 17, 44.

Notably, the primitive unit cells of graphite and lonsdaleite
have four atoms per unit cell; however, the primitive unit
cell of diamond has just two atoms per unit cell. To use this
formalism, we must look for connections between the index-
2 supercells of diamond and the allotropes of graphite and
lonsdaleite so the number of atoms are the same. Referencing
Proof 9, there are seven possible index-2 sublattice generating
matrices in three dimensions, listed here:

Matrices:⎛
⎝2 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝2 1 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝2 0 1

0 1 0
0 0 1

⎞
⎠

⎛
⎝2 1 1

0 1 0
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 2 1
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 2 0
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 1 0
0 0 2

⎞
⎠.

When the corresponding sublattice of diamond is created
using each matrix, the following crystal structures result, co-
ordinates listed in CNF (same discretization parameters):

Substructures of diamond:
63, 64, 127, 253, 127, 189, 191, 0, 25, 12, 25, 0, 37, 25, 25,

25
63, 64, 127, 253, 127, 189, 191, 0, 25, 13, 25, 0, 38, 25, 25,

25
63, 64, 127, 253, 127, 189, 191, 0, 25, 12, 25, 0, 37, 25, 25,

25
64, 64, 191, 191, 64, 191, 255, 0, 25, 25, 13, 6, 19, 13, 31,

44
64, 64, 191, 191, 64, 191, 255, 0, 25, 25, 13, 6, 19, 13, 31,

44
64, 64, 191, 191, 64, 191, 255, 0, 25, 25, 12, 6, 19, 12, 31,

44
64, 64, 191, 191, 64, 191, 255, 0, 25, 25, 12, 6, 19, 12, 31,

44.
Immediately it is clear that there are only two geometri-

cally distinct diamond substructures, as there are two sets of
nearly identical coordinate strings. The small variation is neg-
ligible, as they are all equal to one or two neighbor steps from
one another. We will term these two substructures diamond A
and diamond B, respectively.

FIG. 5. A transformation pathway from graphite to diamond (B)
is visualized with intermediate phases highlighted at 0%, 20%, 40%,
60%, 80%, and 100% transformed.

From each one of these index-2 substructures, it is possible
to find pathways connecting diamond to both graphite and
lonsdaleite. In this example, we use the square difference
in each CNF coordinate as the A∗ search heuristic weight-
ing function as opposed to the energy (used in the previous
study). Pathways generated in this way will tend to have the
fewest number of intermediate neighbors. This corresponds
to a minimal amount of overall strain and atomic shuffling,
which is a common metric used for conceptualizing possible
transformations. We add the additional physical constraint
that any pathway in which the carbon atoms approach closer
than 1.4 Å is disqualified. This is 90% the equilibrium bond
length in diamond. We note that there are many other possible
geometric criteria as well as possible interatomic potentials
that could be utilized in lieu of this particular choice. Such
choices might generate better possible guesses for the suite
of minimal-activation-energy-barrier pathways. We use this
method here for simplicity, as the pathways can be found
quickly, less than one second on modern desktop computers.

We summarize the pathways from graphite and lonsdaleite
to diamond (B) below (full pathways in the Appendix). Fig-
ure 5 shows the intermediate structures in the transformation
from graphite to diamond. Figure 6 shows the intermediate
structures from lonsdaleite to diamond.

Start (graphite): 60, 60, 450, 510, 60, 510, 510, 0, 0, 25,
17, 33, 0, 33, 17, 25.

20%: 60, 60, 411, 413, 60, 413, 471, 8, 42, 25, 17, 33, 0, 25,
25, 25.

ε =
⎛
⎝−0.00 −0.00 1.00

0.63 −0.78 0.00
0.78 0.63 0.00

⎞
⎠

×
⎛
⎝−0.13 0.00 0.00

0.00 0.08 0.00
0.00 0.00 0.00

⎞
⎠P−1,

�δ = [0.024,−0.11, 0.029][−0.0072, 0.12,−0.015]

× [0.013,−0.12, 0.020][−0.029, 0.10,−0.033].
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FIG. 6. A transformation pathway from lonsdaleite to diamond
(B) is visualized with intermediate phases highlighted at 0%, 20%,
40%, 60%, 80%, and 100% transformed.

40%: 60, 60, 343, 345, 60, 345, 403, 8, 42, 25, 17, 33, 0, 25,
25, 25.

ε =
⎛
⎝−0.00 0.00 1.00

0.00 1.00 0.00
1.00 0.00 0.00

⎞
⎠

⎛
⎝−0.09 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

⎞
⎠P−1,

�δ = [−0.023,−0.0081,−0.015][0.023, 0.0081, 0.015]

× [−0.023,−0.0081,−0.015][0.023, 0.0081, 0.015].

60%: 60, 60, 276, 277, 60, 277, 336, 8, 42, 25, 17, 33, 0, 25,
25, 25.

ε =
⎛
⎝−0.50 −0.02 −0.87

0.87 −0.01 −0.50
−0.00 −1.00 0.02

⎞
⎠

×
⎛
⎝0.00 0.00 0.00

0.00 −0.11 0.00
0.00 0.00 0.00

⎞
⎠P−1,

�δ = [−0.028,−0.0084,−0.018][0.027, 0.0083, 0.018]

× [−0.027,−0.0083,−0.018][0.028, 0.0084, 0.018].

80%: 60, 60, 208, 209, 60, 209, 268, 8, 42, 25, 17, 33, 0, 25,
25, 25.

ε =
⎛
⎝0.00 0.00 1.00

0.00 1.00 0.00
1.00 0.00 0.00

⎞
⎠

⎛
⎝−0.14 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

⎞
⎠P−1,

�δ = [−0.036,−0.012,−0.024][0.036, 0.012, 0.024]

× [−0.036,−0.012,−0.024][0.036, 0.012, 0.024].

100% (diamond B): 64, 64, 191, 191, 64, 191, 255, 0, 25, 25,
13, 6, 19, 13, 31, 44.

ε =
⎛
⎝−0.50 −0.03 −0.87

0.87 −0.02 −0.50
−0.00 −1.00 0.03

⎞
⎠

×
⎛
⎝0.03 0.00 0.00

0.00 −0.05 0.00
0.00 0.00 0.03

⎞
⎠P−1,

�δ = [−0.083, 0.060, 0.11][−0.057,−0.10,−0.20]

× [0.083, 0.10, 0.23][0.057,−0.055,−0.14].

Start (lonsdaleite): 63, 64, 170, 233, 64, 233, 233, 0, 0, 19, 33,
16, 25, 33, 17, 44.

20%: 63, 64, 175, 208, 64, 207, 239, 0, 1, 19, 16, 33, 24, 17,
34, 44.

ε =
⎛
⎝−0.04 0.04 1.00

−0.66 −0.75 0.00
0.75 −0.66 0.05

⎞
⎠

×
⎛
⎝0.08 0.00 0.00

0.00 −0.08 0.00
0.00 0.00 0.01

⎞
⎠P−1,

�δ = [0.021, 0.023, 0.037][−0.0019,−0.011,−0.029]

× [−0.013,−0.038,−0.043][−0.0064, 0.026, 0.035].

40%: 63, 64, 190, 192, 64, 192, 253, 0, 0, 19, 35, 17, 26, 35,
18, 45.

ε =
⎛
⎝−0.52 −0.58 0.63

0.85 −0.35 0.38
0.00 0.74 0.68

⎞
⎠

×
⎛
⎝−0.00 0.00 0.00

0.00 0.09 0.00
0.00 0.00 −0.08

⎞
⎠P−1,

�δ = [0.0088, 0.0070, 0.0052][−0.00095,−0.060,−0.034]

× [−0.0090, 0.060, 0.034][0.0012,−0.0070,−0.0052].

60%: 63, 64, 191, 191, 64, 191, 254, 4, 8, 27, 8, 22, 13, 15,
33, 43.

ε =
⎛
⎝−0.50 −0.64 −0.59

0.87 −0.36 −0.34
0.00 0.68 −0.73

⎞
⎠

×
⎛
⎝0.00 0.00 0.00

0.00 0.01 0.00
0.00 0.00 −0.01

⎞
⎠P−1,

�δ = [0.11, 0.12, 0.12][0.085,−0.038,−0.11]

× [−0.055, 0.039, 0.12][−0.13,−0.12,−0.13].
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80%: 64, 65, 191, 191, 64, 192, 255, 0, 17, 29, 12, 16, 16, 13,
33, 46.

ε =
⎛
⎝−0.15 0.52 0.86

0.09 0.81 −0.49
0.98 −0.29 0.17

⎞
⎠

×
⎛
⎝0.00 0.00 0.00

0.00 −0.00 0.00
0.00 0.00 0.01

⎞
⎠P−1,

�δ = [0.040, 0.051, 0.024][0.00013,−0.071, 0.17]

× [−0.020, 0.071,−0.16][−0.020,−0.051,−0.034].

100% (diamond B): 64, 64, 191, 191, 64, 191, 255, 0, 25, 25,
13, 6, 19, 13, 31, 44.

ε =
⎛
⎝0.00 −0.49 0.87

0.33 0.82 0.46
0.94 −0.29 −0.16

⎞
⎠

×
⎛
⎝−0.00 0.00 0.00

0.00 −0.01 0.00
0.00 0.00 0.00

⎞
⎠P−1,

�δ = [−0.015,−0.019, 0.0057][0.065, 0.059, 0.24]

× [−0.075,−0.059,−0.25][0.025, 0.019, 0.0043].

IX. SUMMARY

As presented, any crystal structure can be connected to any
other crystal structure with the same formula unit via a series
of similar neighbors: small incremental strains and phonon
mode amplitudes. These neighbor relationships are reciprocal,
forming a well-defined grid. Further, each crystal structure
can be uniquely represented as a series of integers. As such,
the entire 3D crystallographic configuration space, for a fixed
number of atoms per unit cell, can be discretized and explored
using the parameters ξ and δ.

Employing this approach, we anticipate many possible
applications to the field of solid-state physics and materials
science. By studying a general collection of crystal structures
and evaluating their energies using first-principles techniques,
we can gain greater insight into the phase space of mate-
rials and assess materials stability, among other functional
properties. The larger energetic landscape reveals activation
energy barriers separating distinct phases of a material and
may elucidate general transformation pathways induced by
external fields, such as magnetic, electric, and mechanical en-
ergy gradients. The curvature around energetic minima yields
second-order response functions, such as elastic tensors and
various phonon frequencies. Ultimately, an energy landscape
generated using this technique may also enable another way
to sample phase space via Monte Carlo approaches. While
the orientation of the crystal system has been explicitly dis-
counted in this treatment, with additional effort, the strain
and rotation connecting neighboring crystal structures can be
calculated using techniques such as Ref. [10]. With these
parameters, it is possible to keep track of the overall crystal
orientation relative to an external applied field or similar.

In this way, coupled properties, such as structural variation
in response to external fields or changes in spin state as a
response to structural perturbation can be assessed under a
consistent global coordinate system.

From a materials engineering perspective, by using this
representation in combination with a data set of first-
principles materials energies, we anticipate possible utility in
fitting interatomic potentials and training machine-learning
algorithms. Using an entire energy landscape as a training
input would add rich structure-energy information outside
of the well-known crystal structures and their perturbations,
likely improving the generality of fitted models. Additionally,
this technique offers another way to assess crystallographic
similarity between materials: the fewer nearest-neighbor hops
required, the more similar the crystals. This may prove useful
in large databases of crystal structures to quickly screen for
duplicates in the database.
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APPENDIX

1. Proof 1: Nearest-neighbor lattices are connected
by small strains

Assume there exist two lattices, L1 and L2, with similar
square vonorms, differing by a small amount ∼ξ .

Assume there exists a transformation A such that [L2] =
A[L1], where [L] is a 3 x 3 matrix with three generating
vectors of L arranged as column vectors.

Then, it follows that 〈A �vi, A �vi〉 = 〈 �vi, �vi〉 + ξi, where �vi

corresponds to one of the seven voronoi vectors, and ξi is the
difference in the square vonorm value between lattices L1 and
L2 for the ith square vonorm.

Rearranging 〈 �vi, AT A �vi〉 − 〈 �vi, �vi〉 = ξi, using the standard
definitions of matrix multiplication and conventional cartesian
inner product on Rn.

Rearranging ξi = v2
i 〈v̂i, (AT A − I )v̂i〉, using linearity and

the distributive property of the inner product, where v̂i repre-
sents a unit vector in the direction of �vi.

Assume AT A − I has an orthonormal eigenbasis {b̂i} with
eigenvalues {λi}, noting that AT A − I is real and symmetric,
thereby invoking the spectral decomposition theorem.

We can express v̂i as a linear combination of eigenbasis
vectors: v̂i = ∑

j c j b̂ j .

Rearranging ξi

v2
i

= ∑
j,k〈c j b̂ j, λkckb̂k〉 = ∑

j c2
jλ j .

Further, note that
∑

i c2
i = 1, as v̂i and b̂i are all unit vec-

tors.
Thus, ξi/v

2
i is a non-negative weighted average of all λi

values. When the set of ξi/v
2
i values are near zero for all i, it

must follow that for many different weightings, the weighted
average of all λi values is small. Thus, each λi value must be
near zero.
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Invoking the polar decomposition theorem, A = RT , where R is unitary and T is symmetric. Physically, R corresponds to a
rotoinversion and T corresponds to a stretch. Thus, the quantity AT A − I = T 2 − I , and the eigenvalues, λi = s2 − 1, correspond
to a square principal stretch value minus 1.

Thus, where λi values are small, it follows that the principal stretch values must be near 1, meaning a small strain connects
the lattices.

2. Proof 2: Every lattice can be connected to every other lattice via a series of nearest neighbors

We start by referencing Proof 3: every lattice neighbor relationship is reciprocal. Thus, to show lattices L1 and L2 are
connected by a series of neighbors, it suffices to show that they are both connected to an intermediate lattice L̃.

With a bit of algebra, it can be shown that the following matrix equation applies for any superbasis, whether or not obtuse:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −1 0 0 1 0
−1 0 −1 0 0 1
0 1 1 0 −1 −1
1 0 0 1 −1 −1
0 −1 0 −1 0 1
0 0 −1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v2
0

v2
1

v2
2

v2
3

( �v0 + �v1)2

( �v0 + �v2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

�v0 · �v1

�v0 · �v2

�v0 · �v3

�v1 · �v2

�v1 · �v3

�v2 · �v3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Considering a subset of vonorm modifications { �χi}, listed completely in Sec. 10 of the Appendix, we can calculate the image
of each modification when multiplied by the above matrix. Notice only the first six square vonorms are listed: the seventh is
uniquely implied by Eq. (2):

{ �χi} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

A{ �χi} = 1

2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1
0

−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0

−1
0

−1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
1
0

−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1

−1
0
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
1
0

−1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−1
1
0
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
−1
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, ...

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0

−1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0

−1
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−1
−1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0

−1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Noting that the matrix above is invertible, it can be seen that if all dot products �vi · �v j are zero, then all vonorms must be zero.
As such, every 3D lattice must have at least one dot product strictly less than zero.

Examining the images of { �χi} above, every 3D lattice has at least one neighbor that keeps all dot products nonpositive. Further,
by combining multiple of these neighbors together in a series, the dot products �vi · �v j can be made arbitrarily negative. Here we
call this specific summation and series of neighbors a canonical obtuse step. Further, when derived in this order, the neighbors,
relative to their full S4 orbit, remain maximally ascending at each step. This is because larger vonorms are incremented first
before smaller vonorms are later incremented by the same amount. Thus, the ordering is always unchanged:

�χi + �χ j ... =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ...
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⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A( �χi + �χ j ...) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0

−1
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0

−1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0

−1
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−1
−1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ...

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
1
0

−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−1
−1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−1
1
0
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
1
0

−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−1
−1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1
−1
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With these preliminaries, we begin the proof.

Take two lattices L1 and L2. Begin by adding first any
necessary �χi values from above so all �vi · �v j values are at most
−3/2. We will then start with these derived neighbors L̃1 and
L̃2, ensuring that the vonorms are in maximally ascending
order. At any time during the course of the steps below, if any
dot products of either lattice become −1 or larger, both lattices
must be modified by a canonical obtuse step to reduce the dot
products. This ensures that specific neighbors can continue
to be derived while keeping the superbasis obtuse. Applying
a canonical obtuse step to both lattices concurrently will not
change the difference between the vonorms of both lattices.

Using �χi = 〈0, 0, 0, 1, 0, 0, 1〉, we construct consecutive
neighbors from the lattice with the smaller v2

3 square vonorm
until both lattices have equal values for v2

3 .
Using �χi = 〈0, 0, 1, 0, 0, 0, 1〉, we construct consecutive

neighbors from the lattice with the smaller v2
2 square vonorm

until both lattices have equal values for v2
2 .

Using �χi = 〈0, 1, 0, 0, 0, 0, 1〉, we construct consecutive
neighbors from the lattice with the smaller v2

1 square vonorm
until both lattices have equal values for v2

1 .
Using �χi = 〈1, 0, 0, 0, 0, 0, 1〉, we construct consecutive

neighbors from the lattice with the smaller v2
0 square vonorm

until both lattices have equal values for v2
0 .

At this point, both original lattices L1 and L2 have been
connected via nearest neighbors to new lattices L̃′

1 and L̃′
2.

Both of these new lattices have identical primary square
vonorm values. Further, the progression above ensures that the
primary square vonorms are always sorted in ascending order
at each intermediate step. Thus, no permutation changing the
order of primary square vonorms occurs.

Using �χi = 〈0, 0, 0, 0, 1̄, 0, 1〉, we construct consecutive
neighbors from the lattice with the smaller ( �v0 + �v3)2 square
vonorm until both lattices have equal values for ( �v0 + �v3)2.

Using �χi = 〈0, 0, 0, 0, 1̄, 1, 0〉, we construct consecutive
neighbors from the lattice with the smaller ( �v0 + �v2)2

square vonorm until both lattices have equal values for
( �v0 + �v2)2.

At this point, both original lattices L1 and L2 have been
connected via nearest neighbors to new lattices L̃′′

1 and L̃′′
2.

Both of these lattices have identical primary square vonorm
values and identical values for ( �v0 + �v3)2 and ( �v0 + �v2)2. Fur-
ther, the progression above ensures that the secondary square
vonorms are always sorted in maximally ascending order at
each intermediate step. Thus, no permutation changing the
order of secondary square vonorms occurs.

Finally, referring to Eq. (2), the value of six square
vonorms determines the value of the remaining vonorm. In
this case, because both lattices L̃′′

1 and L̃′′
2 have the same

six square vonorms, they must have the same seven square
vonorms. Thus, both lattices must be equal. As such, any two
lattices L1 and L2 can be connected by a series of neighbors
to a common lattice. Thus, any two lattices can be connected
to one another via nearest neighbors.

3. Proof 3: Lattice neighbor relationships are reciprocal

Assume lattice LA has neighbor LB. Mathematically, this
means that when a displacement �χi is added to the vonorms
of LA and the vonorms are sorted to be maximally ascending,
the vonorms of LB result:

g( �voA + �χi ) = �voB : g ∈ S4,

We can rearrange this equation algebraically:

g−1( �voB − g( �χi )) = �voA.

Referencing Sec. 10 of the Appendix, where all{ �χi} are
listed, it can be seen that every permutation g ∈ S4 is a bijec-
tion on this set. That is, by construction, the set is closed under
this group action. Further, for each �χi in the set, its negative is
included.
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Thus, the action −g maps �χi onto another element of the
set: �χ j ,

−g( �χi ) = �χ j,

Thus, it can be said that there exists a displacement such
that

g( �voB + �χ j ) = �voA : g ∈ S4.

As such, lattice LB has neighbor lattice LA by definition.

4. Proof 4: The lattice mapping function L(�vo) is injective

For this proof, we reference the following truncated re-
lationship between vector norms and dot products for any
superbasis:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −1 0 0 1 0
−1 0 −1 0 0 1
0 1 1 0 −1 −1
1 0 0 1 −1 −1
0 −1 0 −1 0 1
0 0 −1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v2
0

v2
1

v2
2

v2
3

( �v0 + �v1)2

( �v0 + �v2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

�v0 · �v1

�v0 · �v2

�v0 · �v3

�v1 · �v2

�v1 · �v3

�v2 · �v3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Assume that L( �vo1) = L( �vo2). Then, the generating vec-
tors output must be identical from the function, and they must
have equal lengths and angles.

Noting equal generator lengths, it follows that v2
0 , v2

1 , and
v2

2 must be equal for both input square vonorm vectors �vo1

and �vo2.
Noting equal angles, the dot products �v0 · �v1, �v0 · �v2, and

�v1 · �v2 must be equal for both input square vonorm vectors
�vo1 and �vo2.

From above, �v0 · �v1 = −v2
0 − v2

1 + ( �v0 + �v1)2. Because v2
0

and v2
1 are equal for both �vo1 and �vo2, it must follow that ( �v0 +

�v1)2 is equal for both �vo1 and �vo2.
From above, �v0 · �v2 = −v2

0 − v2
2 + ( �v0 + �v2)2. Because v2

0
and v2

2 are equal for both �vo1 and �vo2, it must follow that ( �v0 +
�v2)2 is equal for both �vo1 and �vo2.

From above, �v1 · �v2 = v2
0 + v2

3 − ( �v0 + �v1)2 − ( �v0 + �v2)2.
Because v2

0 , ( �v0 + �v1)2, and ( �v0 + �v2)2 are equal for both �vo1

and �vo2, it must follow that v2
3 is equal for both �vo1 and �vo2.

Combining these results with Eq. (2), because six square
vonorms are equal, all seven square vonorms must be equal
between �vo1 and �vo2. Thus, �vo1 = �vo2.

5. Proof 5: The group S4 has an action on set of lattice
generators L(�vo) arranged as column vectors. This action is as
follows: L(g(�vo)) = AgL(�vo)μ−1

g : g ∈ S4, where Ag is a unitary
rotoinversion and μg is a unimodular matrix

To show a valid group action, we algebraically note the
following, referencing that unitary and unimodular matrices

form groups under composition:

L(g1 · g2( �vo)) = Ag1·g2L( �vo)μ−1
g1·g2

= Ag1 Ag2L( �vo)μ−1
g2

μ−1
g1

= L(g1(g2( �vo))),

L(e( �vo)) = A−1
e L( �vo)μe = L( �vo).

As a justification for this definition of group action, con-
sider the action of S4 on the set of seven square vonorms.
The lengths and angles of the superbasis are preserved at
all times, just reordered. The geometry of the lattice is pre-
served; although the mapping function L( �vo) may change
the orientation of the lattice. This is represented by a left
multiplication by a unitary matrix, which preserves lengths
and angles. Again, considering the preservation of lattice ge-
ometry, the unit cell L( �vo) must geometrically be a unit cell of
the original lattice. Thus, right multiplication by a unimodular
matrix represents this geometric constraint.

Further, S4 is simply a permutation of the superbasis
vectors labels, and it’s the closure of the following simple
transpositions: 0 ↔ 1, 0 ↔ 2, 0 ↔ 3, 1 ↔ 2, 1 ↔ 3, 2 ↔ 3.
If any transposition occurs, the unit cell L( �vo), defined ge-
ometrically by the generators �v0, �v1, and �v2, must change to
reflect the transposition.

In the order, 0 ↔ 1, 0 ↔ 2, 0 ↔ 3, 1 ↔ 2, 1 ↔ 3, 2 ↔
3, the generating set { �v0, �v1, �v2} gets orbited to the following:
{ �v1, �v0, �v2}, { �v2, �v1, �v0}, {− �v0 − �v1 − �v2, �v1, �v2}, { �v0, �v2, �v1},
{ �v0,− �v0 − �v1 − �v2, �v2}, { �v0, �v1,− �v0 − �v1 − �v2}, noting that
�v3 = −( �v0 + �v1 + �v2).

By inspection, these transpositions can be accomplished
by the right multiplication of the following unimodular matri-
ces:

0 ↔ 1 : μg = ±
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠,

0 ↔ 2 : μg = ±
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠,

0 ↔ 3 : μg = ±
⎛
⎝−1 0 0

−1 1 0
−1 0 1

⎞
⎠,

1 ↔ 2 : μg = ±
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠,

1 ↔ 3 : μg = ±
⎛
⎝1 −1 0

0 −1 0
0 −1 1

⎞
⎠,

2 ↔ 3 : μg = ±
⎛
⎝1 0 −1

0 1 −1
0 0 −1

⎞
⎠.

In listing the unimodular matrices, ± is included to
represent a sign ambiguity, as all lattices have inversion sym-
metry in their group structure. Therefore, a unit cell or its
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inversion will have the same geometry and order of square
vonorms. However, when we consider the presence of a crys-
tal basis, we need to pick the appropriate sign for which no
inversion occurs. Physically, this ensures that each neighbor
involves only a small change in basis. Recall that inversion
is a large discontinuous change in crystal basis in the general
case: when the basis does not also share inversion symmetry.

Rearranging the definition of the group action,

Ag = L(g( �vo))μgL( �vo)−1,

we can take the determinant of both sides:

|Ag| = |L(g( �vo))||μg||L( �vo)−1|.
We note that, as defined, L( �vo) always outputs a right-

handed set of generators and has a positive determinant.
Thus, it follows that

sign|Ag| = sign|μg|.
The constraint that no inversion occurs signifies that

|Ag| > 0, thus, |μg| > 0.
As such, we pick the negative representatives above so

each μg has a positive determinant. The set of unimodular
matrices with positive determinant likewise forms a group, so
the conclusions above are unchanged.

6. Proof 6: A unitary rotoinversion of the crystal does not
change the relative coordinates of the crystal basis; however, a

unimodular change of unit cell does change the relative
coordinates of the crystal basis

Consider a crystal with basis B, represented as a matrix
with each basis atom’s Cartesian coordinates corresponding
to a column vector. Assume L to be a matrix representing the
three generators of a lattice, arranged as column vectors of the
matrix. Then we define [B]L := L−1B, where [B]L is a matrix
with each basis atom’s relative coordinates corresponding to a
column vector.

When a unitary rotoinversion A of the crystal occurs, L →
AL, B → AB. That is, the lattice generators andCartesian
basis coordinates are all modified correspondingly. However,
calculating the relative basis coordinates, we see they are
unchanged:

[B]L → L−1A−1AB = L−1B = [B]L.

When a unimodular matrix μg changes the unit cell of the
crystal, no geometric change has occurred; thus, the Cartesian
basis coordinates remain the same. However, the geometry of
the lattice generators has changed: L → Lμg. Calculating the
relative basis coordinates, we see they are changed:

[B]L → μ−1
g L−1B = μ−1

g [B]L.

7. Proof 7: There exists an isomorphism between S4 and
the group of unimodular matrices accomplishing

the change of unit cell μg

Referencing the group action from Proof 5, the homomor-
phism from S4 to {μg} is already defined through the generator
relations.

Assume that μg = I . This implies that g ∈ S4 does not
change the order of �v0, �v1, and �v2. Thus, g can only orbit �v3

with itself and must leave the other primary voronoi vectors
unchanged. Thus, g can only be the identity permutation,
and the homomorphism has a trivial kernel. This means the
homomorphism is injective.

We take {μg} to be the set of all products of the generators
defined in Proof 5. As such, for every μg there exists g ∈ S4

that maps to μg by the homomorphism. This means the homo-
morphism is surjective.

Taken together, this means that the homomorphism is an
isomorphism (bijection) between S4 and the set {μg}.

8. Proof 8: The structure of crystal neighbors is reciprocal
and complete

If crystal B is a neighbor of crystal A, one of the following
must be true:

(a) If B is a lattice neighbor:
�voB = g( �voA + �χi ), BB = μgBA, g ∈ S4.

(b) If B is a crystal basis neighbor:
�voB = �voA, BB = μg(BA + �δa), g ∈ S4.

We can rearrange the equations as before:
(a) If B is a lattice neighbor:
�voA = g−1( �voB − g( �χi )), BA = μ−1

g BB, g ∈ S4.
(b) If B is a crystal basis neighbor:
�voB = �voA, BA = μ−1

g (BB − μg �δa), g ∈ S4.
Inspecting both cases:
(a) { �χi} is closed under S4 permutation and negation:

−g( �χi ) = �χ j . Thus, if B is a lattice neighbor of A, A will be a
lattice neighbor of B.

(b) It can be shown that the set {�δi} in Sec. 10 of the
Appendix is invariant under the action of the generators of
{μg} and negation: −μg �δi = �δ j . Thus, if B is a crystal basis
neighbor of A, A will be a crystal basis neighbor of B.

Therefore, neighbor relationships are reciprocal.
Continuing the proof, we reference Proof 2 to demonstrate

that any crystal lattice can be reached as a series of lattice
neighbors from any other crystal lattice. Thus, we need only
show that for a fixed unit cell reference frame (implying
a fixed lattice), all sets of integer basis coordinates can be
reached as a series of crystal neighbors. Together this would
imply that any combination of lattice and basis can be reached
via a series of neighbors.

To demonstrate this, we take two bases within the same unit
cells B1 and B2. Due to the integer specification and the fact
that the displacements {�δi} span the vector space of all atomic
displacements, there exists a finite series of displacements
(aka basis coordinate neighbors) connecting the two bases:
B2 = B1 + ∑ �δi

Now, throughout the algorithm, as displacements occur,
the unit cell may shift (though the lattice is unchanged)
L → Lμ−1

g . Putting the coordinates into CNF dictates these
changes. With each shift, the basis coordinates will change:
μgB2 = μgB1 + ∑

μg �δi. Because {�δi} is closed with respect
to all possible unimodular multiplication, even in the new cell
setting a finite path between the starting and ending bases
exists, and the next step of the path is always accessible.

Eventually, the path terminates and the bases coincide. This
process can be repeated for any B2 of the original unit cell and,
from the perspective of this unit cell, all possible basis relative
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coordinates are accessible. This process can also be repeated
for any different unit cell and the same results hold, regardless
of the unit cell chosen.

9. Proof 9: All geometrically unique supercells of a given index,
N, can be enumerated by a finite set of upper triangular matrices

Summarizing previous work, given L̃ � L, L̃ generated by
{�ti, ...}, L generated by {�bi, ...}, then {�ti, ...} can be chosen
such that {�ti, ...} = {�bi, ...}A, where A is upper triangular [11].

Define vectors �γi ∈ L̃ : �γi = z1�b1 + ... + zi�bi, zi �= 0, |zi|
chosen to be as small as possible.

�γi is well-defined, as the vector �γi = N �bi is guaranteed
to fall in L̃ by construction; however, there may be other
combinations of �bi that result in a smaller zi value.

Assume ∃�c ∈ L̃ : �c /∈ ispan{�γi}, �c = ξ1�b1 + ... + ξk �bk , k ∈
Z ∩ [1, n], ξk �= 0.

Examine the vector �c − s�γk ∈ L̃, s ∈ Z: �c − s�γk = (ξ1 −
sz1)�b1 + ... + (ξk − szk )�bk .

We can choose s to minimize the integer |ξk − szk|; further,
we can show that this minimized value is less than |zk|:

|ξk − szk| = |zk|
∣∣∣∣ ξk

|zk| − s

∣∣∣∣.
It is possible to choose s so the the term | ξk

|zk | − s| lies in the in-

terval [0, 1); thus, we can say | ξk

|zk | − s| < 1, for an appropriate
choice of s.

From this, we see that |ξk − szk| < |zk|.
If |ξk − szk| = 0, then we repeat the above step using �c →

�c − s�γk and thus a smaller value of k for this next iteration.
If this continues until �c = �0, then c ∈ ispan{�γi}, otherwise we
will reach the conclusion below.

If |ξk − szk| �= 0, then �γk could not have been chosen to
minimize k, a contradiction.

Thus, it must follow that �c ∈ ispan{�γi}.
This shows that the set {�γi} serves as a generating set for the

lattice L̃. Then, by construction, the �γi vectors can be derived
from the set {�bi, ...} via multiplication of the following upper-
triangular matrix by construction:

[�γ1, �γ2, �γ3] = [�b1, �b2, �b3]

⎛
⎝a b d

0 c e
0 0 f

⎞
⎠.

Here, matrices [�γi] and [�bi] contain generators {�γi} and {�bi},
respectively, as column vectors. These can be derived by

referencing the previously proven fact that every sublattice
can be generated by multiplying the appropriate upper trian-
gular matrix, γ . For a sublattice of index N , the generating
matrix must have a determinant equal to N . This places the
following constraint on γ ’s elements:∏

γii = N.

If N has a prime factorization N = ∏
pi, where pi are primes,

then all possible γ matrices involve some distribution of these
prime factors along γ ’s diagonal. Thus, to enumerate all pos-
sible matrices {γ }, we must first collect all unique ways to
parcel these prime factors along the diagonal.

Note that for every γ matrix, γμ : μ ∈ SL3(Z), generates
the same sublattice geometrically. Further, if two γ matrices
γ1 and γ2 generate the same lattice geometrically then the
following is true:

[L]γ1 = [L̃], [L]γ2 = [L̃]μ → γ −1
1 γ2 = μ ∈ SL3(Z).

We now consider the following transformations for three di-
mensions:⎛

⎝a b d
0 c e
0 0 f

⎞
⎠

⎛
⎝1 ±1 0

0 1 0
0 0 1

⎞
⎠ =

⎛
⎝a b ± a d

0 c e
0 0 f

⎞
⎠,

⎛
⎝a b d

0 c e
0 0 f

⎞
⎠

⎛
⎝1 0 ±1

0 1 0
0 0 1

⎞
⎠ =

⎛
⎝a b d ± a

0 c e
0 0 f

⎞
⎠,

⎛
⎝a b d

0 c e
0 0 f

⎞
⎠

⎛
⎝1 0 0

0 1 ±1
0 0 1

⎞
⎠ =

⎛
⎝a b d

0 c e ± c
0 0 f

⎞
⎠.

Clearly, the integer upper triangular elements of the gamma
matrices can be put in the interval including zero but exclud-
ing the diagonal element of the corresponding row. If the
elements fall outside this range, there always exists a uni-
modular matrix that will transform the elements back into the
appropriate range and preserve the geometry of the generated
sublattice.

Building on the prime factorization above, for each
parcelling of prime factors, it is possible to exhaustively enu-
merate values of all off-diagonal elements. This collection
of matrices may contain geometric duplicates; however, the
products γ −1

a γb must be calculated. If any products produce
a unimodular matrix, then the matrices γa and γb produce
geometrically duplicate sublattices.

10. Miscellaneous

Here, we write a complete enumeration of lattice neighbor displacements, { �χi} (42 elements):

±

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

−1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

−1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ...
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1

−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Here we write a complete enumeration of crystal basis neighbor displacements: {�δi}. These displacements can be applied to
any basis atom of the crystal:

±
⎧⎨
⎩

⎛
⎝1

0
0

⎞
⎠

⎛
⎝0

1
0

⎞
⎠

⎛
⎝0

0
1

⎞
⎠

⎛
⎝1

1
1

⎞
⎠

⎫⎬
⎭.

Here we calculate all the neighbors of an example crystal in CNF:
The original crystal in CNF:
6 6 15 16 4 19 20 2 10 10.
The original crystal in CNF:
6 6 15 16 4 19 20 2 10 10.

The lattice neighbors of the original crystal:
6 6 15 16 4 18 21 2 10 10
6 6 15 16 4 19 20 10 2 10
6 6 15 16 3 19 21 2 10 10
6 6 15 16 5 19 19 2 10 10
6 6 15 16 3 20 20 2 10 10
6 6 15 16 5 18 20 2 10 10
6 6 15 15 4 19 19 0 8 10
6 6 15 17 4 19 21 2 10 10
6 6 15 15 4 18 20 0 8 10
6 6 15 17 4 20 20 2 10 10
6 6 15 15 3 19 20 0 8 10
6 6 15 17 5 19 20 2 10 10
6 6 14 16 4 19 19 2 10 10
6 6 16 16 4 19 21 0 8 10
6 6 14 16 4 18 20 2 10 10
6 6 16 16 4 20 20 0 8 10
6 6 14 16 3 19 20 2 10 10
6 6 16 16 5 19 20 0 8 10
6 6 14 17 4 19 20 2 10 10
6 6 15 16 4 19 20 0 8 10
5 6 15 16 4 19 19 10 2 10
6 7 15 16 4 19 21 2 10 10
5 6 15 16 4 20 18 10 2 10
6 7 15 16 4 20 20 2 10 10
5 6 15 16 3 20 19 10 2 10
6 7 15 16 5 19 20 2 10 10
5 6 15 17 4 20 19 10 2 10
6 7 15 15 4 19 20 2 10 10
5 6 16 16 4 19 20 0 8 10
6 7 14 16 4 19 20 2 10 10
5 6 15 16 4 19 19 2 10 10
6 7 15 16 4 21 19 10 2 10
5 6 15 16 4 18 20 2 10 10
6 7 15 16 4 20 20 10 2 10
5 6 15 16 3 19 20 2 10 10
6 7 15 16 5 20 19 10 2 10
5 6 15 17 4 19 20 2 10 10
6 7 15 15 4 19 20 0 8 10
5 6 16 16 4 19 20 2 10 10
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6 7 14 16 4 20 19 10 2 10
5 7 15 16 4 19 20 2 10 10
5 7 15 16 4 20 19 10 2 10.

The basis neighbors of the original crystal:
6 6 15 16 4 19 20 1 9 9
6 6 15 16 4 19 20 3 11 11
6 6 15 16 4 19 20 2 10 9
6 6 15 16 4 19 20 2 10 11
6 6 15 16 4 19 20 2 9 10
6 6 15 16 4 19 20 2 11 10
6 6 15 16 4 19 20 1 10 10
6 6 15 16 4 19 20 3 10 10.
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