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DFT+U provides a convenient, cost-effective correction for the self-interaction error (SIE) that arises when
describing correlated electronic states using conventional approximate density functional theory (DFT). The
success of a DFT+U (+J) calculation hinges on the accurate determination of its Hubbard U and Hund J
parameters, and the linear response (LR) methodology has proven to be computationally effective and accurate
for calculating these parameters. This study provides a high-throughput computational analysis of the U and
J values for transition metal d-electron states in a representative set of over 1000 magnetic transition metal
oxides (TMOs), providing a frame of reference for researchers who use DFT+U to study transition metal
oxides. In order to perform this high-throughput study, an ATOMATE workflow is developed for calculating U
and J values automatically on massively parallel supercomputing architectures. To demonstrate an application
of this workflow, the spin-canting magnetic structure and unit cell parameters of the multiferroic olivine LiNiPO4

are calculated using the computed Hubbard U and Hund J values for Ni-d and O-p states, and are compared
with experiment. Both the Ni-d U and J corrections have a strong effect on the Ni-moment canting angle.
Additionally, including a O-pU value results in a significantly improved agreement between the computed lattice
parameters and experiment.
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I. INTRODUCTION

Density functional theory (DFT) is a workhorse of compu-
tational materials science. However, the proper treatment of
electronic exchange and correlation within the framework of
DFT is a long-standing challenge [1]. Local density approxi-
mation (LDA) and generalized gradient (GGA) [2] functionals
were developed to add exchange-correlation (XC) contribu-
tions to the energy functional within the Kohn-Sham (KS)
formalism [3]. However, numerous studies have shown that
these XC functionals have an associated self-interaction er-
ror (SIE) [1,4,5]. This shortcoming ultimately derives from
the difficulty in quantifying exact exchange and correlation
effects, without solving the many-body Schrödinger equation,
using only density-based approximations.

Over the past couple of decades, DFT+U has found favor
as a method that strikes a reasonable balance between accu-
racy and computational cost, making it particularly suitable
for high-throughput computation [6–10]. DFT+U function-
als add a correction to the conventional XC functional to
account for the Coulombic interaction between localized elec-
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trons [4,11]. In more recent studies, various researchers have
explored extensions of DFT+U with the goal of further cor-
recting for static correlation effects and delocalization errors
[12–14].

One drawback to DFT+U type functionals is that one must
first determine its associated parameters, the Hubbard U and
Hund J , and possibly also inter-site electronic interactions de-
noted as “+V ” [15–17]. The results of a DFT+U calculation
can quantitatively and even qualitatively change depending
on these parameters, and so obtaining reliable values is of
paramount importance. This is as true for the Hund J as it is
for the Hubbard U , even in the simplified rotationally invari-
ant DFT+Ueff functional [18]. In this particular functional,
the Hubbard U and Hund J are grouped in single effective
Hubbard parameter Ueff, defined as Ueff = U − J . This for-
malism assumes spherically symmetric on-site interactions,
and results in a corrective term that only couples electrons
of the same spin [10,18,19]. Nevertheless, the reduction in the
effective parameter by J can be significant.

While the aforementioned approximation may seem more
justifiable for systems with no magnetic order, in the case of
magnetic systems it results in a lost opportunity to use the
Hund J to beneficially enhance the spin moments in simulated
broken-symmetry ground states. Moreover, when we move
to noncollinear magnetism, the spin texture of materials is
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particularly sensitive to screening interactions between spin
channels [19–21]. In fact, magnetic exchange constants can
be derived from the extended Hubbard model, from which it
is possible to relate exchange constants to ratios between U
and J values [22].

The famous Hubbard model provides a simplified frame-
work on which to explain the rich physics of correlated
transition metal compounds [22]. Additionally, it has been
shown that the Hund J term is important for describing im-
portant physical phenomena, such as Jahn-Teller distortions
[22,23], emergent intra-atomic exchange, and the Kondo ef-
fect [24,25]. Therefore the introduction of explicit unlike-spin
exchange corrections beyond simplified rotationally invariant
DFT+Ueff is clearly of interest, and this requires the treatment
of the Hund J on the same footing as the Hubbard U .

A. Strategies for determining Hubbard parameters

A common approach for determining Hubbard U values
is to tune them such that some desired result—for example,
the DFT+Ueff band gap, or a formation energy—matches its
experimental value, or a value obtained via more accurate
and computationally expensive beyond-DFT methods [26,27].
There are several problems with this strategy. Firstly, it is not
systematic: just because one result (e.g., the band gap) now
matches experiment, this does not guarantee the same will
be true for other observables (e.g., local magnetic moments).
Indeed, there are a multitude of reasons why DFT may not
match experiment, and it is wrong to rely on Hubbard correc-
tions to correct for errors that do not arise from self-interaction
[28]. Secondly, this strategy is not predictive: it relies on the
existence of experimental/beyond-DFT data. This makes it
particularly ill-suited to the prediction of novel materials and
high-throughput studies.

Yet another difficulty that arises is the lack of transferabil-
ity of Hubbard and Hund parameters. It has been repeatedly
shown that these parameters are in fact very sensitive to the
local chemical environment [29]. Even the specific pseudopo-
tentials [5] or the specific site occupation projection scheme
[30] have a significant effect on the computed Hubbard U val-
ues. The end result is that U values (and by extension Hund J
values, which are albeit normally less environment-sensitive)
are not transferable: they cannot be tabulated, and must always
be determined on a case-by-case basis.

These issues can be overcome by calculating the Hubbard
and Hund parameters from first principles. The two primary
methods for doing so are the constrained random phase ap-
proximation (cRPA) [31,32] and the linear response (LR)
methods [4,10]. In this study, we focus on the LR method due
to its lower computational cost compared to existing cRPA
methods, which are not yet appropriate for high-throughput
applications.

The linear response method, as introduced by Cococcioni
and coworkers [4], is founded on the idea that SIE can be
related to the behavior of the total energy as a function of the
total occupation [33]. It is known that the total energy ought
to be piece-wise linear with respect to total site occupation
numbers in the dissociated limit [34], but in fact for semi-
local DFT XC functionals, the energy is erroneously convex
at fractional electron numbers. Cococcioni and coworkers il-

lustrated that the +U correction counteracts this erroneous
curvature within local subspaces (the hope being that cor-
recting local curvature will help address the erroneous global
curvature [35]). Crucially, the magnitude of this curvature can
be directly measured by a DFT linear response calculation,
allowing the value of U to be determined accordingly. Unlike
empirical fitting, this approach is (a) systematic, because the
value of U is derived directly as a measure of the underlying
SIE present in the DFT calculation, and (b) it is predictive, be-
cause it only requires DFT calculations to extract the Hubbard
parameters, and not experimental or beyond-DFT results.

B. Paper outline

The Materials Project is a web-based database that contains
computed information on a vast range of materials, both ex-
perimentally established and computationally predicted [36].
Among the various computational results it presents are Hub-
bard parameters Ueff . However, these current default Ueff

values were obtained by fitting DFT+Ueff energies to exper-
imental formation energies for a selected number of redox
reactions [29,37]. This paper aims to replace these values
with ones computed using linear response. In order to achieve
this, we present a unified framework for computing on-site
Hubbard and Hund corrections in a fully parallelized and au-
tomated computational workflow (which will be introduced in
Sec. II). Using this workflow, we performed a high-throughput
calculation of U and J values for a set of over one thousand
transition-metal-containing compounds. This provides us with
a novel, big-picture point of reference for the sensitivity of U
and J across a wide range of systems of varying chemistries
and local chemical environments (Secs. III A and III B). A
subset of the values presented in Sec. III A are hosted publicly
at Ref. [38]. We then explore the effects of these Hubbard
corrections on magnetic materials that exhibit a rich variety
of noncollinear spin configurations, exemplified through the
spin canting structure of olivine LiNiPO4 (Sec. III C).

II. METHODS

A. The Hubbard functional

The Hubbard functional is a corrective functional, in the
sense that it involves adding a corrective term EHub − Edc on
top of some base functional EDFT (typically a local or semi-
local functional), resulting in a total energy functional

EDFT+U+J [ρ, {nσ
γ }] = EDFT[ρ] + EHub

[{
nσ

γ

}] − Edc
[{

nσ
γ

}]
= EDFT[ρ] + EU/J

[{
nσ

γ

}]
. (1)

The (nσ
γ )mm′ = 〈ϕγ m|ρ̂σ |ϕγ m′ 〉 are elements of matrices that

represent the projection of the (spin-dependent) density oper-
ator onto Hubbard subspaces (indexed γ ) defined by some set
of orbitals |ϕγ m〉. These orbitals are typically atom-centred,
fixed, spin-independent, localised, and orthonormal, often
corresponding to the 3d or 4 f subshell of a transition metal or
lanthanide. The nσ

γ occupation numbers are the corresponding
traces of nσ

γ matrices.
In the following paragraphs, we will provide a summary of

some of the most well known formulations of DFT+U (+J).
We note that because we are interested in the fully localized

014409-2



HIGH-THROUGHPUT DETERMINATION OF HUBBARD U … PHYSICAL REVIEW MATERIALS 8, 014409 (2024)

limit (FLL), we will not discuss extensions of DFT+U+J
to metallic systems, where an “around mean field” (AFM)
double-counting correction may be more appropriate [10].

Starting from DFT+U+J implementations of the highest
complexity, and moving forward through increasing levels of
simplification, we introduce the rotationally invariant imple-
mentation proposed by Liechtenstein et al. [39]. Within this
flavor of DFT+U+J , EHub and Edc take the following form:

EHub = 1

2

∑
{m},γ ,σ

〈m, m′′|Vee|m′, m′′′〉(nσ
γ

)
mm′

(
n−σ

γ

)
m′′m′′′

+ 1

2

∑
{m},γ ,σ

{〈m, m′′|Vee|m′, m′′′〉

− 〈m, m′′|Vee|m′′′, m′〉}(nσ
γ

)
mm′

(
nσ

γ

)
m′′m′′′ , (2)

Edc =
∑

γ

Uγ

2
nγ (nγ − 1) +

∑
γ ,σ

Jγ

2
nσ

γ

(
nσ

γ − 1
)
, (3)

where 〈·|Vee|·〉 are the Coulomb integrals projected on the
orbital basis, indicated by the associated {m} set of quantum
numbers [10,12,39]. This correction is parameterized by both
Hubbard Uγ and Hund Jγ coupling constants through the
double-counting energy contribution, Edc.

As an aside, we note that it is possible to extend this
formalism to noncollinear magnetism, which is essential for
the inclusion of spin-orbit coupling (SOC). In this case
the on-site occupation matrix acquires off-diagonal elements
(nσ,σ ′

γ )mm′ , in accordance with the spinor extension of DFT,
and DFT+U+J by extension [19–21,40]. Within this formal-
ism, the notion of “up” and “down” spin electron densities
is tied to the eigenvalues of the nσ,σ ′

, and become n↑ =
1
2 (n + |m|) and n↓ = 1

2 (n − |m|), where m = [mx my mz]T is
the magnetization, on-site or otherwise [41]. Equations 2 and
3 still apply to the noncollinear case, provided (nσ

γ )mm′ are

obtained from a spin-diagonalization of (nσ,σ ′
γ )mm′ .

Simplified versions of Eqs. (2) and (3) were proposed by
Dudarev et al. [18], and later by Himmetoglu and coworkers
[42], which approximate 〈·|Vee|·〉 using Slater integrals, which
can be parameterized through U and J values. There are many
helpful explanations for this approximation, such as those
summarized in Refs. [10,12].

In the spirit of following increasing levels of simplifi-
cation, we will start with the Himmetoglu implementation
[42], inspired by the work of Solovyev et al. [43]. Using the
Slater integral parametrization of U and J , it is possible to
approximate and simplify EU/J from Eqs. (2) and (3) into the
following

EU/J = EHub − Edc =
∑
γ σ

Uγ − Jγ

2
Tr

[
nσ

γ

(
1 − nσ

γ

)]

+
∑
γ σ

Jγ

2
Tr

[
nσ

γ n−σ
γ

]
. (4)

A well known further simplification of Eq. (4), notwithstand-
ing that it substantially predated the latter, is the formulation

of DFT+Ueff put forth by Dudarev et al. [18] and given by

EU = EHub − Edc =
∑
γ σ

U eff
γ

2
Tr

[
nσ

γ

(
1 − nσ

γ

)]
. (5)

As discussed in the Introduction, this approximation arises
by assuming spherical symmetry of the Coulomb interactions,
〈·|Vee|·〉 [10,12,42]. Within the simplified Dudarev DFT+Ueff

of Eq. (5), the effective Hubbard U becomes U eff
γ = Uγ − Jγ

[10,12,18].

B. Hubbard U and Hund J spin polarized linear response

The DFT+Ueff correction of Eq. (5) adds a convex energy
penalty to fractional occupations of the orbitals that diago-
nalize nσ

γ , which can (in principle) counterbalance the SIE
present in these Hubbard subspaces. In the linear-response
approach, one measures the curvature in the total energy as
a function of the subspace occupancy, and then chooses a
value U to match the observed curvature. Naïvely computing
this energy curvature as a function of the subspace occupancy
would require a constrained DFT calculation, but one can
recast the problem and instead measure the energy curvature
with respect to the magnitude vγ of an on-site perturbing
potential v̂γ = ∑

m vγ |ϕγ m〉〈ϕγ m|. The energy functional is
then given by

E [{vγ }] = minρ(r)

{
E [ρ(r)] +

∑
γ

vγ nγ

}
, (6)

from which one computes the response matrices

χγγ ′ = ∂nγ

∂vγ ′
. (7)

Thus far we have used a general index “γ ” to represent each
site. Conventionally, this index refers purely to the atom γ on
which the Hubbard site is centered. In this case, the Hubbard
parameter for that subspace is given by

Uγ = (χ−1
0 − χ−1)γ γ (8)

where χ and χ0 are the interacting, (or self-consistent)
and noninteracting (or non-self-consistent) response matrices
[4,10]. We note that the sign of the response matrices in
Eq. (8) is consistent with the foundational linear response
body of literature, such as in Ref. [4], however, they are
defined as having opposite sign within VASP (Vienna ab initio
simulation package) [44].

The above strategy does not delineate between spin chan-
nels: during the linear-response calculations the spin-up and
spin-down channels are perturbed simultaneously by the same
amount, i.e., v↑

γ = v↓
γ and we only observe the change in total

occupancy nγ = n↑
γ + n↓

γ . If we want to calculate J , one must
instead consider the spin-dependent perturbation

v̂σ
γ =

{
+∑

m vγ |ϕγ m〉〈ϕγ m| σ =↑
−∑

m vγ |ϕγ m〉〈ϕγ m| σ =↓ (9)

and then construct a second set of response matrices which
then relate to J in a completely parallel approach [45] to the
calculation of U in Eq. (8).
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A separate but ultimately equivalent strategy is to treat the
spin channels separately [5]. In this case, a general index runs
over both the atom index γ = {1, . . . , N} and also the two
spin channels σ = {↑,↓}. In this case, the response matrices
of Eq. (7) become rank-four tensors, i.e.,

χσσ ′
γ γ ′ = ∂nσ

γ

∂vσ ′
γ ′

(10)

and now the equivalent of Eq. (8) is

f σσ ′
γ γ = (

χ−1
0 − χ−1

)σσ ′

γ γ
(11)

where now we must now prescribe how to map the 2 × 2
matrix f σσ ′

γ γ to the scalar parameters Uγ = GU ( f σσ ′
γ γ ) and Jγ =

GJ ( f σσ ′
γ γ ). Possible definitions for these mappings GU and GJ

are motivated and explored in detail in Ref. [5], but the end
result is the following: there are two possible approaches.
In the first approach one can define this mapping in order
to recover the Uγ and Jγ that one would obtain using the
conventional spin-agnostic approach of Eqs. (8) and (9). In
this approach, the spin moment is permitted to vary during a
charge perturbation, and vice versa. We will hereafter refer
to this as the “conventional” strategy (in the language of
Ref. [5] this is the “scaled” approach). Throughout this work,
unless otherwise stated, we will use the conventional strategy,
which as the name suggests is the one that has been in almost
universal use to date.

In the second approach, one defines the mapping to impose
the condition that the local magnetic moment (local occupa-
tion) is held fixed during the perturbation while calculating
the Hubbard (Hund) parameter, specifically by means of the
equations rather than in the explicit sense of fixing these
quantities using constrained DFT. We will refer to this as the
“constrained” approach (the “simple” approach in Ref. [5]).
This approach has recently been demonstrated to be the cor-
rect one for use with a DFT+U type functional “BLOR”
explicitly designed to impose the flat-plane condition upon
subspaces [34]. The spin-polarized linear response formalism
permits us to compute the “constrained” approach U and J
values simultaneously, at no additional cost.

C. Implementation of linear response
within a high-throughput workflow

The linear response method was implemented as a work-
flow within the high-throughput ATOMATE framework [46].
The workflow allows the user to compute Hubbard U and
Hund J values using either a spin-polarized or a non-spin-
polarized response. In addition to screening between spin
channels, the implementation provides the straightforward ex-
tension to multiple levels of screening, including inter-site and
inter-spin-channel responses [5]. A more detailed explanation
of how these screening matrices are computed is provided in
Appendix A.

All of the individual calculations within this workflow
were performed with VASP [44], a plane-wave DFT code. The
PBE exchange-correlation functional was used throughout as
the base functional [47]. Unless otherwise stated we use PAW
PBE pseudopotentials, which are the default pseudopotentials
for the PYMATGEN input sets for VASP [48]. In this regard,

our work supplements the high-throughput work of Bennett
et al. [49] where ultrasoft pseudopotentials were used to
reduce computational cost in high-throughput computations
[49], mirroring early foundational studies on the linear re-
sponse method [4,15].

We have used an automatic k-point generation scheme that
uses 50 k-points per reciprocal angstrom, and a cutoff energy
of 520 eV. The full set of input parameters can be found in the
HUBBARDHUNDLINRESPSET in the ATOMATE repository [50],
and the derived VASP input sets in the PYMATGEN repository
[48]. For the linear response analysis, the on-site applied
potential vIσ range was from −0.2 to +0.2 eV (−0.05 to
+0.05 eV for the periodic table data set) sampled at nine
points at uniform intervals. In Appendix C, we address the
sensitivity of the linear response analysis to the truncated pre-
cision in VASP’s occupation number I/O, which we observed
for some TMO systems.

III. RESULTS

Hubbard U and Hund J values were calculated for over
one thousand transition metal oxides using the linear response
workflow implemented in ATOMATE. The majority of the cal-
culations corresponded to materials containing Mn-d , Fe-d ,
and/or Ni-d species. All the systems studied were previously
predicted by Ref. [51] to have a collinear magnetic ground-
state using a separate high-throughput workflow. That work
used the empirical Hubbard U values reported on the Materi-
als Project.

In addition, a representative set of O-p responses were
calculated and analyzed. It is less common to include Hub-
bard corrections to oxygen 2p states. However, an appreciable
number of studies have shown how O-p on-site corrections
have improved the agreement with experimentally measured
bond lengths between oxygen and transition metal species
[5,45,52–55]. It is perhaps less intuitive to apply spin-
polarized Hund J parameters to oxygen sites, because O-p
states are conventionally not included in effective models
for magnetism. However, while oxygen atoms do not de-
velop magnetic moments, early studies have demonstrated
theoretically and computationally that O-p states mediate
the antiferromagnetic superexchange interaction in transition
metal oxides, such as MnO [22,56,57].

A. Periodic table sample set

Figure 1 displays two periodic tables containing the distri-
butions of computed Hubbard U and Hund J values for each
transition metal element (and oxygen) computed for different
structures within the database. In Table I, values obtained in
this study are listed alongside the standard Ueff values em-
ployed by the Materials Project [29,37]. Those values were
determined using the procedure outlined by Wang et al. [59]
which finds a Ueff value that minimizes the error in forma-
tion energy for several representative redox couples. Due to
the limited amount of experimental data available, these Ueff

values are determined with only experimental data from a
single redox couple (Co, Cr, Mo, Ni, and W) or two redox
couples (Fe, Mn, and V). Therefore it is possible or likely
that these Ueff values are not appropriate for a more general
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FIG. 1. Periodic table of Hubbard U and Hund J values computed for representative set of transition metal oxides. The color map indicates
the mean value computed for each element over each material. The materials used in the creation of these periodic tabled were selectively
chosen: noting that many databases, including the ICSD, contain a growing number of hypothetical materials which may or may not be
realizable, we selected materials that are well-studied and exhibit more than two ICSD IDs each. Furthermore, to remove cross-correlations
between magnetic elements, we also require that these compounds only contain a single d-block element (occupying a single symmetrically
equivalent site) with no f -block species. Ultimately, these data correspond to the U and J values for over 800 materials, and are distributed
over the transition metal species. A more detailed table containing data on the distribution of values is included in Table V in the Appendix.
The plotted distributions of U/J values are generated using a Gaussian kernel-density estimator implemented in SCIPY [58].
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TABLE I. Comparison of computed Ueff in the present work with
values used by the Materials Project [29,37].

Element Mean Ueff (eV) U MP
eff (eV) Diff. (eV)

Co 4.430 ± 1.474 3.32 1.110
Cr 2.425 ± 0.472 3.7 −1.275
Fe 4.108 ± 1.322 5.3 −1.192
Mn 4.135 ± 0.724 3.9 0.235
Mo 1.911 ± 0.318 4.38 −2.469
Ni 5.258 ± 0.773 6.2 −0.942
V 3.060 ± 0.673 3.25 −0.190
W 1.461 ± 0.218 6.2 −4.739

system containing these elements. Nevertheless, the MP Ueff

values are found to be the same as the Ueff values in the present
work within the standard deviation for most elements (Co, Fe,
Mn, and V) or slightly outside the value in the present work
(Ni). Exceptions are Cr, Mo, and W, with the largest, notable
discrepancy of 4.739 eV for W.

To evaluate the impact of these discrepancies, compounds
containing W from a dataset of experimental formation ener-
gies [60] used by the Materials Project were taken and relaxed
using the new Ueff value for W from the present work but with
all other calculation settings kept consistent with standard
Materials Project settings, to obtain a new set of computed
energies. These energies substantially lowered the correction
introduced in Ref. [60] for W from −4.437 to 0.12 eV/atom,
suggesting that the newer Ueff is indeed more appropriate for
the calculation of formation energies.

We stress that these values are not transferable to studies
that use DFT+U+J implementations in other codes. QUAN-
TUM ESPRESSO and ABINIT use localized projections that are
separately different from that in the projector augmented wave
(PAW) method implemented in VASP [30], for different rea-
sons.

The trends across these periodic tables—and in particular,
the increasing U across the 3d transition metals—are remi-
niscent of results from early studies that related the Hubbard
and Hund parameters to Slater integrals over the Coulomb
operator [10,18,61,62]. For example, Ref. [61] proposes a
linear relationship between the atomic number Z and the
Hubbard and Hund parameters, based on both Hartree-Fock
calculations and empirical observations. Note, however, that
this is only valid for unscreened Coulomb kernels [10], and
the Slater integrals are in fact highly dependent on the screen-
ing of Coulomb exchange between electrons (and hence the
chemical environment) [10,32]. We also do not want to over-
state this comparison, which mixes older definitions of the
Hubbard and Hund parameters (i.e., as derived from Slater
integrals) with those used in this work (i.e., as measures of the
deviation of the DFT functional from piecewise linearity).

B. Focused study on Mn-d, Fe-d, Ni-d, and O-p, including
the reason for large O-p Hubbard U values

We now present a more detailed study on materials con-
taining Mn-d , Fe-d , Ni-d , and O-p Hubbard sites. For these
systems, the distributions of the computed Hubbard U and
Hund J values are provided in Fig. 2. The variations in U

and J values calculated for these three species is immediately
apparent, with a range on the order of approximately 1 to 2 eV.
These distributions reflect the intrinsic screening environment
dependence of the calculated value for a given element. At
this point, we note only their apparently universal unimodal-
ity (single peak) and the near-general decrease in U with
chemical period within a given group, however we will re-
turn presently to a more physically and chemically motivated
observation. In Table II, we list for comparison the U values
currently used in Materials project (fitted empirically) as well
as a range of U values found for a set of spinels and olivines
by Zhou and co-workers (calculated via self-consistent linear
response) [29].

We find that O-p exhibits the largest associated Hubbard
U value of approximately 10 eV, which agrees with the lin-
ear response results from a previous study using a different
code and somewhat different linear-response formalism [5].
While large oxygen Hubbard U values may seem surprising
within a strongly correlated materials context, it has become
more accepted in recent years within first-principles solid-
state chemistry that oxygen 2p orbitals can warrant, both by
direct calculation and by necessity (when resorting to fitting),
a remarkably high U value in DFT+U .

1. Interpretation of Hubbard U in terms
of the subspace chemical hardness

We will now attempt to motivate and explain the phe-
nomenon of comparatively larger O-p U values. We note
from the outset that the element projector orbital profile
plays a complicating role in the following analysis. Over
a sample of materials, we observe that the 2 × 2 averaged
diagonal elements of the χ−1

0 noninteracting response are
of approximately the same magnitude for both TM-d and
O-p site matrix elements, with a mean difference close to
zero. The non-self-consistent response can be interpreted as
the response due to noninteracting response effects at a site
due to its surroundings [10], and thus it can be understood
as a property primarily of the environment of the atom un-
der scrutiny. Then, unless screening is very short ranged
(as it may be in a very wide-gap insulator), this quantity
may be said to be somewhat similar, on average, for metal
and oxygen ions in an oxide. Thereby, the chemical trends
in the Hubbard U arise mostly in the interacting response,
instead.

Next, for this same sample of materials, we note that the
magnitude of the O-p interacting response χ tends to be
significantly less than the interacting TM-d response. This
indicates that −χ−1 = d2E/dn2

γ , the curvature of the to-
tal energy versus occupation, nγ , is greater for O-p states.
This greater curvature versus occupation can be explained
in terms of known trends in the chemical hardness, i.e., the
second chemical potential, i.e., the derivative of the chemical
potential with respect to total charge at fixed external poten-
tial. (We note in passing that some authors choose to include
a factor of one half in the definition of the chemical hardness
for historical reasons, but we suppress that discussion here.)
Specifically, we can focus on the finite difference (three-
point) approximation to the global chemical hardness [63],
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FIG. 2. Distributions of Hubbard U and Hund J values computed using the linear response method; for (a), (b), and (c) that correspond
to d-electron TM site corrections, the U and J values are plotted against the DFT (no +U+J correction) computed site magnetic ml , where
ml=2 corresponds to the d character of the local moment, which has an l = 2 angular momentum quantum number. The O-p U and J values in
(d) are plotted against nl (the p occupation in the case of O-2p) total site occupations. The number of samples for on-site correction values for
Mn-d , Fe-d , Ni-d , and O-p are 285, 248, 149, and 206, respectively.

namely

ν ≡ d2E/dN2 ≈ E (N − 1) − 2E (N ) + E (N + 1)

= [E (N + 1) − E (N )] − [E (N ) − E (N − 1)]

≡ Ei − Ea ≡ Eg, (12)

which is nothing but the fundamental band gap. This is a
quantity that has been tabulated many times. Using the re-
sults of Ref. [64], we find that for atomic oxygen its value
is 11.2 eV, compared to that of the transition metal atoms,
where it ranges from 5.8 eV (Ti and Zr) to 8.0 eV (Mn) if
we exclude the often problematic zinc group, where it reaches
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TABLE II. Computed range of U , J , and Ueff values compared with reported Ueff on the Materials Project (MP) [37], as well as the MP
literature [29]. Each mean value has an associated standard deviation indicated after the “±.”

Mean computed Mean computed Mean computed Reported MP [37] Reported range [29]
Species U (eV) J (eV) Ueff = U − J (eV) Ueff (eV) Ueff (eV)

Mn-d 4.953 ± 0.635 0.520 ± 0.156 4.433 ± 0.654 3.9 3.60–5.09
Fe-d 4.936 ± 0.700 0.177 ± 0.367 4.759 ± 0.790 5.3 3.71–4.90
Ni-d 5.622 ± 1.221 0.399 ± 0.434 5.223 ± 1.296 6.2 5.10–6.93
O-p 10.241 ± 0.910 1.447 ± 0.171 8.794 ± 0.926 N/A N/A

11.6 eV. This mirrors and explains the observed relatively
large first-principles Hubbard U value for oxygen 2p states
predicted in this and several previous studies.

Ultimately, we conclude that the Hubbard U may be
interpreted as the subspace-projected, environment-screened
chemical hardness. More precisely, U can be intuited as con-
tributions to the hardness due to interactions such as Hartree,
exchange, correlation, and perhaps other terms like implicit
solvent and PAW potential. After all, it is from these interac-
tions that most chemical trends appear to arise in practice. For
subspaces that project heavily at both band-edges, as in nor-
mal DFT+Ueff practice, the U inherits chemical trends from
the chemical hardness (fundamental gap) of the atom that it
resides upon. This is higher for a greater atomic ionization
energy Ei (that of oxygen is generally around twice that of
transition metals) and higher also for a more negative electron
affinity Ea (that of oxygen is more negative than that of most
but not all transition metals). By and large, both quantities
are well known to increase in magnitude as we move “up
and right” in the periodic table, and this same broad trend is
reflected in our periodic table of Hubbard U values.

When a DFT+Ueff subspace projects only onto one band
edge, as is the case for charge-tranfer insulators, then only
the trend in either the ionization energy or electron affinity
will be very relevant to the trends in U . Due to the relatively
large electronegativity of oxygen, typically there will be little
weight at the conduction band edge for oxygen 2p orbitals
projectors. Therefore the particularly clear trend in ionization
energy drives the relatively large U value for oxygen. Indeed,
if this argument holds, then one would guess that the oxygen
2pU value is roughly twice that of an average transition-metal
d subspace, which turns out to be the case from first principles
linear response.

Within the present formalism, the Hund J may be in-
terpreted as an analog for the spin degree of freedom, and
specifically as minus (by a convention thought to originate
with Ising) the interaction part of the subspace-projected,
environment screened spin-hardness, where the spin-hardness
is a quantity discussed, for example, in Ref. [65].

2. Trends in U and J values

In order to explore trends in the distribution of U and J
values, we have plotted these on-site corrections in scatter
plots within Fig. 2. These plots illustrate the relationship be-
tween U and J values with respect to site occupations. For
transition metal species, we plot U and J versus the “d” com-
ponent of the projected moment m, denoted as “ml=2.” These
moment values are those output by VASP as the difference

between up and down spin site occupancy numbers computed
using PAW core-region operators. Because the oxygen atoms
do not have an associated magnetic moment, we plot O-p
Hubbard U and Hund J versus nl=1 occupations on oxygen
sites.

We should stress that the values of “ml” and “nl ” are only
computed from the calculation without the +U/J correction.
One reason for using the bare PBE computed ml and nl is
that these occupations should be independent from the applied
Hubbard U or Hund J values. This would offer the “bare”
m, as well as n, as a possible predictors of U and J values.
However, it is important to note that these occupations could
change significantly with applied U and J values [5,66,67].

There is an apparent clustering of datapoints at different
on-site ml magnetizations in Figs. 2(a)–2(c). This grouping
at different on-site magnetization values is most likely due to
different spin and charge states dependent on the underlying
chemistry. We also observe a larger range of U and J values
for higher values of ml , which is due to the coupling between
highly spin-polarized states to on-site Coulomb screening for
TM species. As would be expected, we see similar trends
for J , a measure of the screened interaction between spin
channels.

The clusters that lie at the associated maximum computed
ml fall off and exhibit a negative slope trend with the mag-
nitude of the site moment. This is likely due to the fact that
ml is highly dependent on the local chemical environment,
which will govern the interacting and noninteracting energy
curvatures with respect to spin-occupations, which are related
to U and J within linear response [4]. The clear trend for the
manganese may be due to the strong tri-modal distribution of
Mn magnetic moments seen in Figure 1 of Ref. [51]. The “sta-
ble” magnetic configurations from this study were used in the
LR analysis, therefore a similar statistical distribution should
hold for the subset of structures used in this LR analysis.

The trends of the datapoints for Hubbard U and Hund
J values in Fig. 2(d) appear to show a downward trend for
U versus p-occupation numbers, nl=1, and a slower, upward
trend for J values versus nl=1. We expect that the nl=1 occu-
pations will be strongly dependent on the oxidation/reduction
state of oxygen atoms. Due to the nature of TM-O bonding in
these oxides, and their generally greater electronegativity, the
oxygen atoms will tend to maximize their valence. Therefore
building on the previous explanation of the magnitude of
O-p U values based on chemical hardness and specifically
the more relevant ionization potential component of that, the
higher electron count for oxygen corresponds to a lower ion-
ization potential, and therefore to a reduced Hubbard U , as
observed.
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3. Exploration using random forest regression

To more robustly tease apart these observed trends, we
performed a rudimentary random forest regression test on
the dataset, ultimately in an attempt to predict the on-site
corrections U and J from the input crystal structures and
site properties. We used the random forest regression algo-
rithm as implemented in SCIKIT-LEARN. The input quantities
supplied to the random forest regression routine consisted
of the corresponding PBE-computed ml and nl (i.e., without
on-site corrections), as well as the oxidation state estimated
using the bond-valence method [68], and finally a selection of
relevant site featurizers provided by the MATMINER PYTHON

package [69]. Unsurprisingly the U and J values appeared
to be the most sensitive to the magnetic moment magnitude,
m = n↑ − n↓, and site occupation, n = n↑ + n↓. This is in
accordance with what would be expected from the dependence
on the Hubbard U values on spin and charge state [66,67].
However, these features proved to be insufficient to accurately
predict U and J .

Most of the MATMINER site featurizers were tested as in-
put to the random forest regression model. Additionally, the
oxidation states calculated using the bond valence method
(BVM) [68] were also included as input to the model. For
learning trends across different atomic species, the atomic
number of the associated element was also supplied. Addi-
tionally, we tested the orbital field matrix (OFM) features as
formulated by [70,71]. The OFM encodes the orbital char-
acter of the surrounding chemical environment. For more
information on this method please refer to Ref. [70]. The
OFM functionality is not implemented in MATMINER or PY-
MATGEN. We were motivated to test the vectorized OFM by
the chemical intuition that on-site Hubbard U and Hund J
values are very sensitive to the local chemical environment.
Additionally, the OFM has demonstrated success in predicting
DFT-computed magnetic moments in the past [70]. Further-
more, the OFM nearest-neighbor contributions are weighted
according to the geometry of the Voronoi cell, which could
possibly provide information beyond the relative importance
of the Voronoi MATMINER featurizer. Of the MATMINER fea-
turizers, Ewald energy and Voronoi site featurizers had the
greatest associated importance metric [69], second only to the
on-site magnetization ml . The on-site magnetization for Mn,
Fe, and Ni, respectively, had an importance of at least ten
percent more than any of the other local chemical environment
descriptors.

From Hund’s rules, it is possible to derive magneto-
chemistry rules governing the coupling between the mag-
netic spin-moment and associated charge state, dictated
by the associated multiplet ground state [61,72,73]. There-
fore the correlation between on-site corrections and projected
site moments is not surprising. After all, previous studies
have explored the connection between charge states of transi-
tion metal species and the integrated net spin calculated from
DFT [74–76]. In fact, recent studies show that the magnetic
moment is often the most convenient and reliable indicator of
charge states [74].

4. Conventional vs. constrained linear response

In introducing the linear response theory in Sec. II B, we
mentioned that there are two possible schemes for computing

FIG. 3. Comparison between the conventional and constrained
approaches for calculating (a) Hubbard U and (b) Hund J values for
Fe-d Hubbard sites.

U and J: “conventional” and “constrained” linear response,
where in the latter case the linear response is performed in
such a way that the magnetic moment (occupation) is held
fixed while measuring the curvature with respect to the oc-
cupation (magnetic moment). While arguments can be made
as to theoretically which approach is the most valid for a
given corrective functional (a topic which is the subject of
ongoing research [34]), this dataset presents an opportunity
to evaluate how much this choice will practically affect the
resulting Hubbard and Hund parameters.

For the majority of the computed U and J values using
these two methods, the difference between the two strategies
fell within their computed uncertainty. However, we observed
a significant deviation from y = x behavior for the computed
U and J values for iron Hubbard U and Hund J values shown
in Fig. 3. The width of this deviation from equality is greater
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than 1 eV for U in some regions, which is enough to affect
computed physical properties [4,66].

5. Dependence on structure and magnetic state

For some input magnetic structures, the magnetic configu-
ration changed while applying the on-site potentials during the
linear response analysis. Our hypothesis is that the input mag-
netic structure corresponds to a local minimum configuration,
or possibly a metastable state. Therefore, in our analysis, we
screen out these structures with the intent that these systems
will be studied in the future using a self-consistent approach
to calculating on-site corrections.

In order to test the sensitivity of U and J values to the input
structure specifically, we perform a geometry-self-consistent
linear response study of antiferromagnetic NiO, which is pro-
vided in Ref. [77]. Each iteration consists of a step which
includes geometry optimization of cell shape, followed by a
linear response calculation of the PBE-based U and J values at
the DFT+U+J geometry (so as to isolate the impact of the ge-
ometry from the matter of parameter self-consistency). These
on-site correction values are then used in the next subsequent
geometry optimization step. Self-consistency is achieved once
the U and J values fall within their corresponding uncertainty
values. Starting from the input structure—which was opti-
mized using the current default Materials Project U values
[37]—convergence was achieved after only two iterations.

It has been well established in previous studies that U
values should be computed self-consistently with geometry
optimization [66,78]. As demonstrated from the experiments
with antiferromagnetic NiO in the Supplementary Informa-
tion [77], both the Hubbard U and Hund J values should be
calculated self-consistently. In this self-consistency study, J
had the largest relative convergence, and therefore appeared
to be most susceptible to geometric self-consistency. Due to
the coupling between Hund J and magnetic exchange [22], it
is possible that both magnetic and structural features should
be included in the self-consistency cycle. Within the ATOMATE

framework, it would be possible to incorporate an iterative
workflow that wraps the workflow developed in this study, in
order to alternate linear response calculations with geometry
relaxation until self-consistency is achieved.

C. Case study: LiNiPO4

We now present a detailed study on the olivine LiNiPO4,
designed to test the results produced by the linear response
workflow. Previous GGA + U and GGA+U+J studies have
attempted to reproduce the experimentally-observed spin-
canting structure and unit cell shape as shown in Fig. 4
[19,29,79].

We calculated U and J for this system via spin-polarized
linear response. The spin-polarized linear response method
introduced in Sec. II B can be generalized to noncollinear DFT
using the relationship between spin-density occupations and
the magnitude of the magnetic moment: n↑ = 1

2 (n + | 	m|) and
n↑ = 1

2 (n − | 	m|) [21].
Within the context of linear response, this simplification

is akin to assuming that EHub and Edc can be stated as func-
tionals of n and | 	m| alone. As we discussed in Sec. II A, this
assumption is justified in both collinear and noncollinear (with

FIG. 4. Olivine crystal structure of LiNiPO4 with magnetic
atoms visible. Taken from Ref. [79] via the Bilbao MAGNDATA
database [79,80]. The purple atoms correspond to magnetic nickel
atoms. The oxygen octahedra surrounding lithium atoms are indi-
cated in orange, where the grey oxygen octahedra surround nickel
sites.

spin-orbit coupling) DFT+U+J , as stated in Eqs. (2) and
(3). Reassuringly, | 	m| and m hold similar meanings in both
noncollinear and collinear DFT, respectively.

For comparison to the “noncollinear” results, we also
performed a collinear calculation, where the magnetic con-
figuration for LiNiPO4 was obtained by projecting the canted
noncollinear structure shown in Fig. 4 along the z direction.
In addition to one unit cell of the collinear antiferromangetic
(AFM) configuration, a linear response analysis was per-
formed on a 1 × 2 × 2 supercell. Table III summarizes the
results of the computed Hubbard U and Hund J values. From
this table, it is evident that the U value is significantly smaller
in magnitude with the inclusion of spin-orbit coupling. A
possible justification for this behavior is the introduction of
orbital contributions to the total localized magnetic moments
with the inclusion of spin-orbit coupling [22,81].

1. Canting angle exploration

In order to explore the effects of Hubbard and Hund pa-
rameters on the energetics of noncollinear magnetic structure,
we calculated the energy as a function of constrained canting
angle, which has been experimentally measured for LiNiPO4

[79]. The noncollinear magnetic constraints were performed
in VASP in accordance with the method developed by Ma
and Dudarev [82]. We used the experimentally derived spin
canted structure as a reference provided by the Bilbao Crys-
tallographic Server, as shown in Fig. 4 [79,80]. The energy
versus canting angle curve is shown in Fig. 5(a). We found
that the stable canting direction is in the opposite direction
to the experimentally measured canting angle. However, this
discrepancy with experiment was limited to the canting direc-

TABLE III. Hubbard and Hund results for Ni-d in LiNiPO4

(atomwise screening).

Cell Magnetism U (eV) J (eV)

1 × 1 × 1 collinear 5.43 ± 0.16 0.38 ± 0.07
1 × 2 × 2 collinear 5.44 ± 0.24 0.54 ± 0.07
1 × 1 × 1 noncollinear 5.09 ± 0.15 0.42 ± 0.05
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FIG. 5. (a) Computed relative energy and (b) x component of
effective constraining local magnetic field for various Hubbard and
Hund on-site corrections applied to the Ni-d and O-p manifolds.
The y-axis of plot (b) is in electron volts over Bohr magnetons,
because the constraining local field can be expressed, variationally,
as the derivative of energy with respect to local magnetic moment.
Therefore, the units of this quantity are in energy per magnetic
moment, in spin per electron.

tion; the computed stable magnetic structure still obeyed the
symmetry of the Pnm’a magnetic space group.

Similarly to the work by Bousquet and Spaldin [19], we
observe an increasing canting angle with Hund J value. In-
terestingly, adding a U and J correction to O-p results in a
slightly decreased stable canting angle. However, we find that
in all cases, the computed stable canting angle is significantly
less than the experimentally measured canting angle of 7.8◦
[79].

The constraining effective site magnetic field 	H eff
i can be

described as the following:

	H eff
i = 2λ

[ 	Mi − M̂0
i

(
M̂0

i · 	Mi
)]

, (13)

where 	Mi are the integrated magnetic moments at site i and M̂0
i

are the unit vectors pointing in the individual site constraining
directions [82]. The x component of the constraining field (in
the direction of canting), H eff

i,x , is plotted versus the constrain-
ing angle in Fig. 5(b). We see that where H eff

i,x changes sign
corresponds to the minimum of Fig. 5(a).

2. Effect of U and J values on geometry optimization

While the addition of Hubbard and Hund parameters go
some way to addressing the canting angle of LiNiPO4, intro-
ducing these terms can also alter the geometry of the system.
To explore this effect, we performed structural relaxations of

the system with various combinations of Hubbard and Hund
corrections. In each of the structural relaxation calculations, a
maximum force tolerance of 10 meV/Å was used. The Hub-
bard U and Hund J values used include those calculated using
linear response, which are approximations of the values that
are reported in Table III. Additionally, we tested the Ni-d U
and J values used in Ref. [19]. All calculations included spin-
orbit coupling, and were constrained to the experimentally
observed canting angle (7.8◦).

Table IV lists the optimized unit cell parameters and vol-
ume, compared with the experimentally measured geometry
[79]. For both the PBE+Ueff and PBE+U+J schemes, adding
corrections to the Ni-d space worsens the geometry relative
to the uncorrected PBE geometry (as earlier observed by
Zhou and co-workers [29]). However, the further addition of
corrections to the O-p subspace reduces the errors by three-
fold, resulting in geometries that are closest to experiment.
This is similar to observations in other studies when applying
corrections to O-p subspaces [5,45]. We note that applying a
+J correction to nonmagnetic O-p states may seem unconven-
tional. However, it should be stressed that this correction is for
localized static correlation error effects that do not vanish at
zero magnetization. Nor, indeed, does the introduction of +J
necessarily induce magnetization, and the projected magnetic
moments on LiNiPO4 remain just below 0.01μB, with and
without on-site corrections to O-2p states. Meanwhile, we can
see that adding a +J parameter does not significantly alter the
cell parameters.

3. Discussion on TM-O bond length versus U, J, and V corrections

Table IV also presents the change in mean Ni-O bond
length between nearest-neighbor pairs for various on-site cor-
rections. For the Ni-O bond length, it is the same story as
for the cell parameters: applying U and J to the Ni-d sites
worsens the results relative to the PBE result, but by applying
corrections to the O-p channels we obtain bond lengths that
are in closer agreement with experiment. In Ref. [5], some of
us attempted to rationalize this trend in the computed bond
length between transition metal species and oxygen anions
and how it improves with the introduction of corrections to
the O-p subspace. We suggested that when +U is added to
the Ni-d subspace the resulting shift in the potential disrupts
hybridization between the Ni-d and O-p orbitals, weakening
the bonding between these two elements (and thus leading to
bond lengthening). Applying corrections to the O-p re-aligns
these two subspaces and allows them to “rehybridize.” The
DMFT community has sought to address these issues with
other approaches, including by tweaking the double-counting
term or by using results from GW [83,84].

In an attempt to more thoroughly explore this reasoning,
Fig. 6 provides a comparison for the projected density of
states (DOS) of LiNiPO4 for PBE and PBE + U + J (with
and without corrections to O-p). It is difficult to discern re-
hybridization from these DOS plots alone.

Without an explicit quantification of hybridization effects,
we have added a derivation in the Supplementary Information
[77] that presents a mathematical expression of the forces
acting on ions due to +U+V corrections. This result is an
extension of the theory put forth by Matteo Cococcioni in
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TABLE IV. Lattice parameters, cell volume, and mean Ni-O bond length (d) of LiNiPO4 canted structure for different Hubbard U and
Hund J corrections.

Method Ni-d (eV) O-p (eV) a (Å) b (Å) c (Å) Volume (Å3) d (Å)

experiment 10.03 5.85 4.68 274.93 2.086 ± 0.044
PBE 10.09 (+0.6%) 5.92 (+1.1%) 4.72 (+0.9%) 282.09 (+2.6%) 2.099 ± 0.037

Ueff = 4 Ueff = 0 10.14 (+1.1%) 5.92 (+1.1%) 4.73 (+1.0%) 283.71 (+3.2%)
PBE + Ueff Ueff = 7.5 10.07 (+0.4%) 5.87 (+0.3%) 4.69 (+0.3%) 277.56 (+1.0%)

U = 5 U , J = 0 10.15 (+1.2%) 5.92 (+1.1%) 4.73 (+1.0%) 284.19 (+3.4%) 2.108 ± 0.039
PBE+U + J

J = 1 U , J = 9, 1.5 10.07 (+0.4%) 5.88 (+0.4%) 4.69 (+0.3%) 277.86 (+1.1%) 2.095 ± 0.043

Sec. 4.1 of Ref. [10]. We argue that in quantifying the forces
on TM-O bond lengths due to on-site corrections, it is pos-
sible to show that the force contributions due to both +U γ

and +V γ γ ′
can, and should, be treated on the same footing,

where γ and γ ′ correspond to atomic sites. It is not possi-
ble to definitively state the comparative magnitude, or sign,
of these force contributions without additional calculations
or simplifications based on physical intuition. However, the
result suggests that the forces on TM-O bond-length due to
O-p U values will have a comparative magnitude to the forces
due to inter-site Coulomb corrections from +V .

In Ref. [77], we further hypothesize the sign of these force
contributions, starting from a DFT geometry-optimized struc-
ture without on-site corrections. Using these assumptions,
which are based on computational trends in bulk TMOs, we
conclude that either applying a +U correction to the O-p
manifold or a +V between TM and O states mitigates the
overestimation of TM-O bond lengths that arise when apply-
ing +U to localized states around the TM species.

IV. CONCLUSIONS

This study provides a high-throughput ATOMATE frame-
work for calculating Hubbard U and Hund J values. Using
the spin-polarized linear-response methodology [5], we gen-
erated a database of U and J values for over one thousand
transition-metal-containing materials. This enabled the cre-
ation of a “periodic table” of U and J distributions, where
for each element we observe a range of Hubbard U and Hund
J values. These distributions exhibited clustering depending
on the corresponding ml and nl values, but these quantities

alone do not prove sufficient to predict the Hubbard and Hund
parameters.

In order to investigate inter-site screening effects on the
resulting U/J values, we performed a small supercell scaling
study for the full screening linear response analysis for NiO,
in addition to the conventional, atomwise, screening. This
exploration can be found in Ref. [77], and the details of the
full screening matrix inversion can be found in Appendix A.
We found that the full matrix inversion is much more sensitive
to the size of the unit cell compared to the conventional, atom-
wise screening. The theoretical reasons for this phenomenon
will be an interesting pursuit for future studies.

In order to test the validity of the linear response im-
plementation, we explored the spin-canting noncollinear
magnetic structure and unit cell shape of LiNiPO4, and
compare the results with previous experimental [79] and com-
putational [19,29] studies. Similarly to Bousquet and Spaldin
[19], we observed that the computed stable canting angle
was less than 50% of the experimentally measured canting
angle of nickel magnetic moments in olivine LiNiPO4 for all
Ni-d Hund J values tested. We also observed that the canting
angle was very sensitive to the Hund’s J values. This confirms
that Hund J values are crucial for exploring the properties of
transition metal oxides which exhibit a noncollinear magnetic
structure. In addition to the canting structure of LiNiPO4, we
examined the optimal unit cell geometry for various Hub-
bard U and Hund J corrections. While applying a +U+J
correction to Ni-d resulted in increased disagreement with ex-
perimentally measured unit cell parameters [29], applying an
on-site Hubbard/Hund correction to O-p occupancies greatly
improved the agreement of unit cell shape with experiment

FIG. 6. Projected electronic density of states for LiNiPO4 (calculated using experimental unit cell [79]) without Hubbard or Hund
corrections applied, as well as +U and +J applied to Ni-d channels, and both Ni-d and O-p states, respectively.
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[79]. This finding reinforces the importance of including a
+U+J correction to oxygen sites in order to resolve the
accurate bonding behavior between transition metal species
and neighboring oxygen atoms.
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APPENDIX A: SCREENING MATRIX INVERSIONS

Below are the matrix representations of the response ma-
trices at each level of response matrix inversiooutlined by
Linscott and others for a system with two Hubbard sites [5].

Pointwise 1 × 1 inversion:

χ−1 =
(

1/χ11 0
0 1/χ22

)
. (A1)

Atomwise (conventional) 2 × 2 inversion:

χ−1 =
(

χ11 χ12

χ21 χ22

)−1

. (A2)

We can extend this formalism to the multiple site (multisite)
responses by considering the response matrix for two sites,
χi j , where i and j are the site indices.

Pointwise inversion:

χ−1 =

⎛
⎜⎜⎜⎝

(
1/χ

↑↑
11 0

0 1/χ
↓↓
11

)
0

0

(
1/χ

↑↑
22 0

0 1/χ
↓↓
22

)
⎞
⎟⎟⎟⎠. (A3)

Atomwise (conventional) inversion:

χ−1 =

⎛
⎜⎜⎜⎜⎜⎝

(
χ

↑↑
11 χ

↑↓
11

χ
↓↑
11 χ

↓↓
11

)−1

0

0

(
χ

↑↑
22 χ

↑↓
22

χ
↓↑
22 χ

↓↓
22

)−1

⎞
⎟⎟⎟⎟⎟⎠. (A4)

Full inversion:

χ−1 =

⎛
⎜⎜⎜⎜⎜⎝

χ
↑↑
11 χ

↑↓
11 χ

↑↑
12 χ

↑↓
12

χ
↓↑
11 χ

↓↓
11 χ

↓↑
12 χ

↓↓
12

χ
↑↑
21 χ

↑↓
21 χ

↑↑
22 χ

↑↓
22

χ
↓↑
21 χ

↓↓
21 χ

↓↑
22 χ

↓↓
22

⎞
⎟⎟⎟⎟⎟⎠

−1

. (A5)

We note that in the latter case, when performing a spin-
polarize linear response calculation, one constructs a 2N ×
2N response matrix where N is the number of Hubbard sites
(or N × N in the case of non-spin-polarized linear response).
For bulk systems often several Hubbard sites will be equiv-
alent, and one can save computational time by performing
linear response calculations for the set of inequivalent sites,
and then populating the response matrix for all equivalent
Hubbard-site pairs.

APPENDIX B: POSTPROCESSING AND UNCERTAINTY
QUANTIFICATION

In order to extract the response matrices from the raw
DFT data, curve fitting was performed using a least-squares
polynomial fit implemented in NUMPY [85]. The uncertainty
associated with each computed slope was obtained from the
covariance matrix produced as a result of the least-squares fit.
These uncertainty values were then utilized to determine the
errors associated with the Hubbard U and Hund J values. The
error quantification was performed by computing the propa-
gation of uncertainty based on the Jacobian of each scaling
formula for Hubbard U and Hund J . This method for error
propagation is general to multiple levels of screening between
spin, site, and orbital responses.

We begin by considering the following screening matrix
introduced in Eq. (11), from which Hubbard U and Hund J
values are derived [5]

fi j = (
χ−1

0 − χ−1
)

i j .

Derivatives of the χ−1 matrix with respect to individual χkl

can be obtained by the following relation:

∂

∂χkl
(χ−1) = −χ−1

(
∂

∂χkl
χ

)
χ−1,

where
∂

∂χkl
{χ}i j =

{
1 if kl = i j
0 otherwise ;

∂

∂χkl
{χ−1}i j = −{χ−1}ik{χ−1}l j . (B1)

Using this fact, it is possible to obtain the full Jacobian of
f with respect to response χ matrices which can be used to
obtain the covariance uncertainty matrix associated with the
elements of fi j , to a first-order expansion of fi j [86]

� f = Jχ0�χ0 JT
χ0

+ Jχ�χJT
χ , (B2)

where � f is a N2 × N2 matrix ( f is N × N). Each element
of � f , {
 f }i j,kl , corresponds to the covariance between fi j

and fkl matrix elements. �χ and �χ0 are the covariance ma-
trices for each {χ}kl and {χ0}kl , and the diagonal elements
are populated using the squared uncertainty values associated
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TABLE V. The mean and standard deviation (σ ) in the U and J
parameters (eV) used in the periodic tables of Figure 1, alongside the
number of samples N .

U J

Element Mean σ N Mean σ N

V 4.123 0.471 84 0.599 0.162 84
Mn 4.792 0.830 63 0.740 0.246 63
Cu 7.773 1.251 61 1.366 0.932 61
Fe 4.659 0.826 55 0.279 0.378 55
Ti 4.907 0.481 53 0.635 0.185 53
Cr 2.906 0.471 46 0.611 0.135 46
Nb 0.536 0.157 43 0.241 0.082 43
W 1.844 0.252 42 0.423 0.043 42
Zn 1.917 0.564 40 1.790 0.456 40
Co 5.159 0.608 31 0.560 0.292 31
Ni 5.849 0.797 31 0.682 0.186 31
Ta 3.733 0.164 30 0.668 0.041 30
Zr 4.199 0.244 28 0.907 0.091 28
Ag 2.254 0.852 25 1.236 0.256 25
Mo 2.561 0.321 23 0.483 0.062 23
Hg 0.521 0.142 20 0.429 0.032 20
Re 0.620 0.233 19 0.269 0.103 19
Cd 0.238 0.469 19 0.632 0.097 19
Sc 1.921 0.352 17 1.169 0.396 17
Y 4.302 0.343 17 1.694 0.361 17
Hf 3.515 0.229 13 1.085 0.167 13
Ru 3.000 0.371 11 0.506 0.146 11
Pt 1.554 0.315 10 0.447 0.041 10
Os 1.911 0.440 8 0.392 0.078 8
Pd 3.757 0.899 7 0.691 0.063 7
Au 1.120 0.248 6 0.495 0.034 6
Rh 1.528 0.196 5 0.457 0.056 5
Ir 1.902 0.095 4 0.315 0.324 4
Tc 2.946 0.012 3 0.580 0.004 3
Total 814 814

with the slopes fit to the response data. In addition, Jχ and
Jχ0 are the symbolically derived Jacobians corresponding to
each response value, as proposed in Eq. (B1). Assuming that
the individual elements of χ and χ0 are independent, we can

assume that � covariance matrices are diagonal in order to
make the following simplification:

σ 2( fi j ) =
∑

kl

(
∂

∂{χ0}kl
fi j

)2

σ 2({χ0}kl )

+
∑

kl

(
∂

∂{χ}kl
fi j

)2

σ 2({χ}kl ), (B3)

where σ 2( fi j ), σ 2({χ0}i j ), and σ 2({χ}i j ) correspond to the
diagonal elements of � f , �χ0 , and �χ , respectively.

With the established expression for the uncertainty values
of f in Eq. (B3), we can express the squared uncertainty
of U , for an atomic site γ , in the next level of uncertainty
propagation,

σ 2(U γ ) =
∑
σ,σ ′

(
∂

∂ f σσ ′
γ γ

GU ( fγ γ )

)2

σ 2
(

f σσ ′
γ γ

)
. (B4)

Equation (B4) can be extended to an expression of the squared
uncertainty of Hund J , where GU and GJ are functions of
2 × 2 sub-matrices along the diagonal of f , as introduced
in Eq. (11), and depend on the different scaling schemes
introduced in Ref. [5]. The results of this error analysis are
shown in Table V.

APPENDIX C: VASP PRECISION ISSUE

We found that for some closed-shell systems, such as those
containing Zn, the I/O precision of the occupation numbers in
VASP had a significant effect on the resulting linear response
analysis. This is because the change in occupation number
on Zn-d states induced by the on-site potential was on the
same order of magnitude as the precision cutoff itself. For this
reason, we created a very basic patch to the VASP version 6.2.1
source code to increase the precision of occupation numbers
and site magnetization written in the VASP OUTCAR file.

Using this higher precision, we found that the U and J
calculated using linear response for Zn-d were 2.3 ± 0.1 and
1.7 ± 0.0 eV, respectively. This is in stark contrast to the
original VASP code I/O precision, which wrongly produced
U , J = 0.0 eV.
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