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Noncollinear ground states of solids with a source-free exchange correlation functional
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In this paper, we expand upon the source-free (SF) exchange correlation (XC) functional developed by
Sangeeta Sharma and coworkers to plane-wave density functional theory (DFT) based on the projector aug-
mented wave (PAW) method. This constraint is implemented by the current authors within the VASP source
code, using a fast Poisson solver that capitalizes on the parallel three-dimensional fast Fourier transforms (FFTs)
implemented in VASP. Using this modified XC functional, we explore the improved convergence behavior
that results from applying this constraint to the GGA-PBE+U+J functional. In the process, we compare the
noncollinear magnetic ground state computed by each functional and their SF counterpart for a select number
of magnetic materials in order to provide a metric for comparing with experimentally determined magnetic
orderings. We observe significantly improved agreement with experimentally measured magnetic ground-state
structures after applying the source-free constraint. Furthermore, we explore the importance of considering
probability current densities in spin-polarized systems, even under no applied field. We analyze the XC torque
as well, in order to provide theoretical and computational analyses of the net XC magnetic torque induced by
the source-free constraint. Along these lines, we highlight the importance of properly considering the real-space
integral of the source-free local magnetic XC field. Our analyses on probability currents, net torque, and constant
terms draw additional links to the rich body of previous research on spin-current density functional theory
(SCDFT), and pave the way for future extensions and corrections to the SF corrected XC functional.
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I. INTRODUCTION

It is a well-known physical fact that Maxwell’s
equations preclude the existence of unphysical magnetic
monopoles. It is less conventional to apply this divergence-
free constraint to density functional theory functionals for ab
initio calculations. It has recently been a topic of exploration
to apply this constraint to the exchange correlation component
of the effective internal magnetic field Bxc [1,2]. Previous
studies have shown that applying this physically inspired
constraint to Bxc results in improved agreement with the
majority of a small test set of over twenty experimentally
measured magnetic structures, both in terms of magnetic
moment magnitudes [1] and noncollinear ground states [2],
which can be challenging to accurately match experiment
with conventional DFT approaches.

There are two primary approaches for incorporating mag-
netism in density functional theory (DFT). The first approach
is spin-density functional theory (SDFT), in which a func-
tional is defined with respect to spin-up and spin-down elec-
tron densities, ρ↑(r) and ρ↓(r), respectively. The extension of
SDFT to noncollinear magnetism motivates a spinor represen-
tation of the functional, inspired by the Pauli matrix spin-1/2
formalism. Under this reformulation, functionals of ρ↑(r)
and ρ↓(r) can be expressed in terms of total electron den-
sity ρ(r) = ρ↑(r) + ρ↓(r), and magnetization, which in both
collinear and noncollinear formulations obeys the relationship

|m(r)| = |ρ↑(r) − ρ↓(r)|, under a local diagonalization of the
spinor 2 × 2 representation [3]. Details on the connection
between the spinor and density/magnetization formulation of
noncollinear DFT is touched on in Eqs. (S2), (S4), and (S5) in
Sec. S2 B within the Supplemental Material (SM) [4].

The second DFT formulation that incorporates non-
collinear magnetism is current density functional theory
(CDFT). This methodology is commonly used to incorporate
electrodynamic effects in time-dependent density functional
theory (TDDFT) [5,6]. The “current” in CDFT conveys the re-
formulation of the functional to be minimized with respect to
the spin-current density js(r) ∝ ∇ × m(r), rather than m(r),
the magnetization field itself [1]. Depending on the physical
setting, in addition to js, other current densities enter into the
functional [7,8], which we will return to in Sec. I B.

Several studies have explored the theoretical justification
for reformulating SDFT functionals within the CDFT setting
[1,7,9]. In particular, Sharma and coauthors show through
variational calculus that applying a divergence-free constraint
to Bxc is equivalent to redefining the exchange correlation
energy functional Exc[ρ, m] in terms of ∇ × m(r), Exc[ρ,∇ ×
m], which is consistent with CDFT methodology [7].

In conventional SDFT [3], the exchange correlation local
potential fields can be expressed as follows:

vxc(r) = 1
2 (v↑

xc(r) + v↓
xc(r)),

Bxc(r) = 1
2 (v↑

xc(r) − v↓
xc(r))m̂(r), (1)
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which are the complementary local potential fields for total
electron density ρ, and magnetization density m, respec-
tively, and m̂(r) is the unit vector in the direction of the
magnetization.

The source-free constraint is applied by projecting the orig-
inal exchange-correlation magnetic field onto a divergence-
free field. Consistent with the paper of Sharma and others,
we use the fundamental theorem of vector calculus, the
Helmholtz identity, to reformulate our equations in terms of
vector and scalar fields. This theorem states that any once-
differentiable, C1, vector field can be decomposed into a
divergence free and a curl free component,

B(r) = −∇φ(r) + ∇ × A(r) + B (2)

where φ is a scalar field, and A is a vector potential field. The
identity is conveniently written in this way because of two
important mathematical properties: the curl of a gradient is
zero everywhere in the domain ∇ × ∇φ = 0 and likewise for
the divergence of the curl of a vector field ∇ · (∇ × A) = 0.
For a magnetic field B, such that ∇ · B = 0, we can de-
fine B = ∇ × A, where A is the well-known magnetic vector
potential.

One may ask why we include a constant B, which is
not included in most statements of the Helmholtz identity.
This comes down to the fact that under periodic boundary
conditions, ∫

�

dr ∇φ(r) = 0, (3)∫
�

dr ∇ × A(r) = 0, (4)

by Eqs. (S12) and (S13) in Secs. S2C within the SM
[4]. Therefore, we must include a constant term, such that∫
�

dr B(r) need not be the zero vector.
By taking the divergence of both sides of Eq. (2), we see

that, for the exchange-correlation magnetic field,

∇ · Bxc = −∇ · (∇φ) = −∇2φ. (5)

Therefore, solving for φ requires the solution to the Poisson
equation above, which is the method suggested by Sharma
et al. for applying the source-free constraint [1]. It is inter-
esting to note that B′

xc(r) must be noncollinear, as we show in
Sec. S2A within the SM [4].

Equation (2) can be employed rigorously, because while
the Helmholtz decomposition is not unique, it can be under
the correct constraints. The uniqueness of the gradient of the
solution to the Poisson equation (e.g., ∇φ) can be used to
prove this. In summary, each field in Eq. (2) can be uniquely
solved for under periodic boundary conditions (PBCs), as
follows:

(1) The curl-free term:

∇2φ = −∇ · Bxc. (6)

Therefore, ∇φ is unique under PBCs.
(2) The divergence-free term:

∇2Axc = −∇ × Bxc, (7)

subject to the Coulomb gauge constraint, ∇ · Axc = 0 (see
Appendix C). Under this constraint, ∇Axc,i are unique under
PBCs.

(3) The constant term:

Bxc = 1

V�

∫
�

dr Bxc(r). (8)

Therefore, in order to compute B′
xc, the source-free projec-

tion of Bxc, one simply needs to compute ∇φ,

B′
xc(r) = Bxc(r) + ∇φ(r)

= Bxc(r) + Hxc(r)

= ∇ × Axc(r) + Bxc. (9)

In other words, we leave Bxc untouched from SDFT, to be
consistent with Ref. [1]. In Secs. III F and II B, we explore the
justifications and implications of this, and lay some potential
groundwork for future studies to employ in a more careful
treatment of the constant term, B′

xc. In a concrete sense, we
explore the role of B′

xc on the converged magnetic ground
states in Sec. III F.

In the following sections, we examine some of the details
of CDFT, and SCDFT by extension, which are important to
the study of the source-free constraint on SDFT, and possible
future directions of this paper. The topics of the following
subsections of the introduction are outlined below:

(i) In Sec. I A, we explore the possible theoretical justifi-
cations for the degeneracies of noncollinear SDFT, based on
the statements put forth by earlier studies.

(ii) Section I B provides an introduction to the probability
current, and its contributions to Exc, which are not explic-
itly accounted for in SDFT. Next, we explore extensions to
metaGGA functionals. This extension will require the explicit
treatment of the probability current, which enters into the ki-
netic energy density. Therefore, we do not include source-free
metaGGA in our implementation.

(iii) In Sec. I C, we explore the zero torque theorem,
and extensions thereof. We demonstrate that local magnetic
torques can arise without violating conservation laws.

(iv) Finally, Sec. I D provides an overview of the relation-
ship between the orbital magnetic moment and probability
current, to further illustrate where these additional currents
could play a more crucial role.

Next, following the Methods section, we highlight the re-
sults of this study, which include the following subsections:

(i) Section III A provides a quantitative analysis of the
monopole density that arises in an SDFT description of
Mn3ZnN, and the effect of the source-free correction.

(ii) In Sec. III B, we examine the improved convergence
properties of the source-free functional for a representative
test set of noncollinear magnetic structures.

(iii) We also interrogate the improved convergence speed
using the source-free functional in Sec. III C. The well-known
hexagonal manganite YMnO3 was chosen as a material test
case [10].

(iv) In Sec. III D, we explore the computed orbital mo-
ments and probability current that arises in UO2 to provide
material grounds for future studies to examine the coupling
between the probability current and XC vector potential.

(v) Since the net XC torque induced by the source-free
correction has not been examined by other studies, to the best
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of our knowledge, we provide a analysis of the net XC torque
in Sec. III E, based on the theory presented in Sec. I C.

(vi) In addition to global XC torque, in Sec. III F we pro-
vide computational evidence for the importance of properly
considering B′

xc, which will be the subject of future studies.

A. The comparative degeneracies of Exc for SDFT versus CDFT
with respect to m

Capelle and Gross (CG) show that within SDFT, the
exchange-correlation energy, Exc only depends on the mag-
netization via the “spin vorticity” [7]

νs(r) = ∇ ×
(

js(r)

ρ

)
= c

q
∇ ×

(∇ × m(r)

ρ(r)

)
, (10)

where c and q are the speed of light and elementary charge,
respectively. Therefore, transformations of the magnetization
density, m(r) �→ m′(r), of the form

m′(r) = m(r) + ∇α(r) + �(r) + m0

where ∇ × �(r) = ρ(r)∇γ (r) (11)

will have no effect on XC contributions to the SDFT func-
tional, ES

xc, i.e., ES
xc[ρ, m′] = ES

xc[ρ, m]. α(r) and �(r) are
arbitrary functions, which are only subject to the relevant
aforementioned constraints, and m0 is a spatially uniform
vector.

By comparison, in CDFT, EC
xc depends on m via the spin

current, js = c
q ∇ × m [1,7]. Therefore, EC

xc is invariant to
transformations of the form, m(r) �→ m′(r),

m′(r) = m(r) + ∇α(r) + m0, (12)

for arbitrary ∇α(r) and m0. Therefore, �(r) of the form
in Eq. (11) provides the additional degree of freedom that
introduces ambiguity into the noncollinear magnetic ground
state obtained using SDFT compared with CDFT. While our
implementation, and that of Sharma et al. [1], possesses a
degeneracy closer to that of Eq. (12), we note that B′

xc =
∇ × Axc(r) + Bxc, from Eq. (9). Therefore, the SF XC mag-
netic field does not depend on the curl of the vector potential
alone, but also the integral of the original SDFT magnetic
field Bxc. To address these modified conditions, we propose
the following ansatz, Exc[ρ,∇ × m, M], where a dependency
on the net magnetization, M = ∫

�
dr m(r), enters into the XC

functional. Under this dependency, the SF XC magnetic field
becomes

B′
xc(r) = δ

δm(r)
Exc[ρ,∇ × m, M]

=
∫

dr′ δExc

δ(∇ × m(r′))
δ(∇ × m(r′))

δm(r)
+ ∂Exc

∂M
δM

δm(r)

= ∇ × Axc(r) + ∂Exc

∂M

= ∇ × Axc(r) + Bxc, (13)

where the functional derivatives with respect to ∇ × m are
rigorously explored in Refs. [1] and [7]. Therefore, we have
shown that a functional dependence on the net magnetization
M results in a nonzero integral of B′

xc(r). It is straightforward
to show that the converse statement must also be true. This

means that Exc[ρ,∇ × m, M] becomes gauge invariant only
with respect to an arbitrary gradient field, i.e.,

m′(r) = m(r) + ∇α(r). (14)

Compared to Eq. (14), the new dependence on M removes
the invariance to an arbitrary constant vector m0. M is still
invariant to gradient fields, by the fact that gradients disappear
while integrating over the periodic cell (see Sec. S2C within
the SM [4]). We explore the practical ramifications of the
dependence on M in Sec. III F. As a side note, the invariance
of SDFT implementations to constant shifts to the magnetiza-
tion by m0, Eq. (11), as stated in Refs. [1] and [7], should
be carefully reconsidered through the lens of the modified
Helmholtz decomposition under PBCs, Eq. (2), which has
been put forth in this paper.

Again, we emphasize that the functions α, �, γ , and m0

in the above equations are completely arbitrary, we have in-
troduced these variables to illustrate the gauge invariance of
noncollinear SDFT [7]. The arbitrary nature of �(r) provides
an explanation for the highly degenerate energy landscape
in noncollinear SDFT compared to the source-free func-
tional. The additional gauge invariance explains why the
site-projected magnetic moments—related to m—rotate very
little during convergence, compared with the source-free func-
tional, which is in fact a current density functional, to reiterate
[1,7]. This is the core computational exploration of the present
study.

B. Consideration of additional currents arising in CDFT

We have explored how the SF constraint provides a theo-
retical and computational link between the SDFT and SCDFT
family of functionals. Thus far, we have only considered the
spin-current density js. However, there are other current den-
sities that can arise, which we explore in the following section.

Within the framework of current density functional the-
ory (CDFT), we can introduce the probability (denoted with
subscript p) current density [7,11]. The classical field of the
probability current, (also known as the “paramagnetic cur-
rent”) can be expressed as the expectation of the quantum
mechanical operator

j p(r) = 〈 ĵ p(r)〉

= h̄

2mi
〈	̂(r)†∇	̂(r) − ∇	̂(r)†	̂(r)〉

= h̄

2m
〈�(	̂(r)†∇	̂(r))〉. (15)

The probability current can be motivated by expressing the
Schrödinger equation as a conservation law ∂ρ/∂t = −∇ · j p
[12]. Therefore, j p is directly related to the probability flux of
an electron in real space. It is also known as the “paramagnetic
current,” because j p couples in a Zeeman-like manner to the
external vector potential in a similar fashion to Eq. (20).
Therefore, the magnetization induced by j p will preferentially
align with the external magnetic field.
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Capelle and Gross explore the form of j p within Kohn-
Sham (KS) SDFT [7],

jKS
p = ih̄

2m

N∑
k=1

(φk∇φ∗
k − φ∗

k ∇φk ), (16)

where φk are Kohn-Sham orbitals, and the sum is over the N
lowest-energy bands. h̄ is the familiar reduced Planck con-
stant, and m is the electron mass. Any complex function,
and therefore φk , can be expressed as φk (r) = |φk (r)|eiS′

k (r).
Letting Sk (r) = h̄S′

k (r), it is possible to show that [12]

jKS
p (r) =

N∑
k

1

m
|φk (r)|2∇Sk (r). (17)

Next, we consider the case in which all ∇Sk are equal to the
same function, ∇S. In this case, the following simplification
can be made

j̃
KS
p (r) = 1

m
ρ(r)∇S(r). (18)

We have drawn on the fact that ρ(r) =∑N
k |φk (r)|2, and

are reminded that ∇S is linked to classical momentum [12].
Therefore, jKS

p (r) = j̃
KS
p (r) only in the case when these ∇Sk

momenta are equal across all ground-state KS orbitals, φk (r).
In their original seminal study, Vignale and Rasolt (VR)

consider the physical constraint that the current density func-
tional should be invariant to gauge transformations of the
external magnetic vector potential A′ �→ A + ∇
, where

(r) is an arbitrary function [13]. Under this gauge invariance
constraint, VR demonstrate that Exc depends on j p through
the probability/paramagnetic current vorticity alone, which is
defined as such [13]

νp(r) = ∇ ×
[

j p(r)

ρ(r)

]
. (19)

This result is a foundational pillar of CDFT, and provides a
basis for useful results in other key papers, such as Ref. [7].

Interestingly, in the hypothetical case in which jKS
p (r) =

j̃
KS
p (r) [Eq. (18)] we see that νp(r) = 0 everywhere, and there-

fore we may neglect any j p contributions to Exc entirely.
However, this is not the case for differing ∇Sk . We presume
that, among other effects, the inhomogeneity across ground
state ∇Sk is accentuated by spin-orbit coupling (SOC) [14],
which will introduce an angular-momentum dependence on
φk . This hypothesis can most likely be further explored by the
machinery proposed in Ref. [15], which provides a framework
for rigorously incorporating SOC within SCDFT. However, on
a more elementary level, even a noninteracting homogeneous
electron gas will obey Fermi statistics. Therefore, the electron
gas will possess a distribution of momenta, which can be
directly related to single-electron ∇Sk [12,16].

Under no external magnetic field, i.e., a curl-free A, j p
enters into the exchange-correlation component of the CDFT
functional in the following form [7,11,13],

Ep ≡ −
∫

�

j p(r) · Axc(r) dr. (20)

In VR’s extension of SCDFT to noncollinear magnetism, a
set of spin-projected currents, j p,λ (see Sec. S2B within the

SM [4]) and their associated Axc,λ are introduced as additional
quantities. As we will see later, j p,λ play a crucial role in the
extension of the zero-torque theorem, Eq. (27). Furthermore,
in Ref. [15], Bencheikh demonstrates that Axc,λ become es-
sential in the inclusion of SOC effects in SCDFT. However,
because SOC is treated differently in VASP [14], we will not
explore this further here.

The probability current j p has been introduced as the
gauge-invariant kinetic energy density in the metaGGA ex-
tension of SCDFT [5,17]. Following from Ref. [17],

τ̃σ = τσ − m
| j p,σ |2

ρσ

, (21)

where σ denotes the different spin channels, σ ∈ {↑,↓}. Start-
ing from the definitions of VR [8], it is straightforward to
show that the squared magnitude of the spin probability cur-
rents | j p,σ |2 in Eq. (21) can be related to | j p,λ|2, which we
explore in Sec. S2B within the SM [4]. Therefore, we hope it
to be the subject of future studies to explore the extensions of
this study to metaGGA functionals.

Furthermore, in Appendix E, we abstract from the def-
inition in Eq. (15), and consider a separation of j p,λ into
divergence and curl-free contributions. We provide these
small derivations to the reader in the hope that may be useful
for the reformulation of SDFT metaGGA functionals to their
SCDFT counterparts. We conclude this section by emphasiz-
ing that the SF constraint opens the door to SCDFT more
broadly. Therefore, the importance of the probability current
density j p and its treatment, especially in the context of ex-
tensions to metaGGA functionals, will be a topic for future
explorations.

C. Zero torque theorem and τxc

Within full magnetostatic spin-current DFT (SCDFT), the
additional spin currents arise subject to the following continu-
ity equation:

∇ · [ j p,λ + mλAxc] = (m × Bxc)λ, (22)

where λ = 1, 2, 3 and corresponds to the three components of
the noncollinear magnetic fields. Some SCDFT formulations
include additional Axc,λ fields as well [8]. Equation (22) is an
extension of the zero-torque theorem (ZTT), in which local
torques may arise without violating conservation laws.

The magnetic torque owing to the XC component of the
functional can be expressed as τxc = m × Bxc [18]. We call
on the definition of Bxc in Eq. (1), as defined in conventional
SDFT, to show that τxc = m × Bxc = 0. This is simply be-
cause of the fact that Bxc ‖ m everywhere in � (the periodic
domain) at every self-consistency step. The zero-magnetic
torque theorem [18],∫

�

τxc dr =
∫

�

m × Bxc dr = 0 (23)

states that “a system cannot exert a net torque on itself.” Since
τxc = m × Bxc = 0, then Eq. (23) is trivially satisfied at every
step of the DFT minimization algorithm.

By comparison, within the source-free implementation, lo-
cal torques may arise [1], in which case, from Eq. (9) we see
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that

τ ′
xc = m × B′

xc

= m × Bxc + m × Hxc

= m × ∇φ

= φ(∇ × m) − ∇ × (φm). (24)

Under periodic boundary conditions on �, we may show that∫
�

τ ′
xc dr =

∫
�

τxc dr +
∫

�

m × ∇φ dr =
∫

�

φ(∇ × m) dr.

(25)

Again, we have used the property that the surface integral van-
ishes under periodic boundary conditions,

∫
�

dr ∇ × (φm) =
0, via Eq. (S13) in Sec. S2C within the SM [4]. It is not
apparent why Eq. (25) should be zero, and therefore why
ZTT should be obeyed for the source-free functional. From
Eq. (25), it is clear that the net XC torque possesses the same
gauge invariance of ESF

xc [Eq. (14)], and therefore it cannot
be eliminated via the addition of a gradient field to m. In
Sec. III E, we explore the adherence to the ZTT computation-
ally, and possible ways to maintain the zero-torque condition
in Appendix B.

Several previous studies have sought to address adherence
to the ZTT with various proposed XC noncollinear function-
als. For example, in Ref. [19], the authors rigorously explore
the dependence of Bxc on m that would result in satisfying
the ZTT for all m. Additionally, Ref. [18] proposed a way to
maintain the zero global torque constraint in Sec. III of their
Supplemental Material [4]. While their approach is promising,
the method that we propose in Appendix B leverages the con-
venient property that volume integrals of derivatives disappear
under PBCs. Therefore, in comparison to Ref. [18], we are
able to ensure that

(1) The resultant B′
xc is indeed source free, i.e., ∇ · B′

xc =
0, by solving for the auxiliary vector potential A′ rather than
the magnetic field itself.

(2) Our least-squares solution only requires solving three
linear equations, whereas Ref. [18] requires solving 3P − 3
linear equations, where P is the size of the real-space grid
[18].

(3) We treat all points on the real-space grid on the same
footing. In other words, we do not solve for the field to
maintain ZTT on “boundary” grid points separately from the
bulk, as proposed in Ref. [18]. In our setting of PBCs, there is
no notion of “edge” versus “bulk” to begin with.

We emphasize again that our proposal to maintain the ZTT
in Appendix B is not currently implemented in our VASP code
patch. We hope that this will be the subject of subsequent
studies.

All this being said, ZTT may not be a strict constraint on
the spin-current density functional. We see this by starting
from Eq. (33) of Ref. [15], which is also Eq. (6.10b) of
Ref. [8],

∇ · j p,λ + 2

h̄
∇ · (mλAxc) + q

mc
∇ · (ρAxc,λ)

= −2

h̄
[m × Bxc]λ + 2q

h̄c

∑
μ,ν

ελμν j p,ν · Axc,μ, (26)

where j p,λ are defined in Sec. S2B within the SM [4], and
q
c Axc,λ = δExc/δ j p,λ. Additionally, ελμν is the Levi-Civita
symbol. In the spirit of Ref. [19], we see that by taking
the integral of both sides, and imposing periodic boundary
conditions on the region of integration �, we arrive at∫

�

dr [m × Bxc]λ = q

c

∫
�

dr
∑
μ,ν

ελμν j p,ν · Axc,μ. (27)

There is no reason for the right hand side of this equation to
be zero. Therefore, the above continuity equation provides an
extension of the “zero-torque theorem.” In other words, in or-
der to satisfy the steady state conservation law, it is no longer
necessary for the net torque to be zero, i.e.,

∫
�

dr m × Bxc = 0
need not be obeyed.

Therefore, we have touched on an important consideration
for the SF implementation put forth by Ref. [1], and pursued in
this study. As we will show, while this method improves con-
vergence to the correct noncollinear magnetic ground state,
the ZTT is not guaranteed to be upheld. However, we demon-
strate in Sec. III E that the net torque is still near to the order of
energy convergence at the point of DFT self-consistency. Fur-
thermore, to lay the groundwork for future work, we propose
a fix to guarantee that the ZTT is upheld in Appendix B.

D. Orbital magnetic moments

Having explored the connections to CDFT, we will now
turn our attention to the orbital magnetic moments, which
are a measurable link to the probability (or orbital) current
density j p. The orbital character of the magnetic moment
can be teased out using x-ray magnetic circular dichroism
(XMCD) [20,21], and sometimes in combination with other
x-ray spectroscopy techniques, such as resonant inelastic x-
ray scattering (RIXS) [21].

It is possible to express the orbital magnetic moment in
terms of the orbital current [22], or probability current in this
context,

morb
i =

∫
�i

ri × j p(ri ) dri, (28)

where �i is a region surrounding the magnetic site i, such
as a PAW sphere, and ri is the position vector relative to the
center of the sphere. The orbital magnetic moment is directly
associated with the expectation value of the orbital angular
momentum at an atomic site. Consequently, the magnitude
and direction of the orbital moment relative to the spin mo-
ment can be influenced by factors such as Hund’s rules, crystal
field splitting (CFS), and spin-orbit coupling (SOC) [16]. SOC
primarily determines the orientation of the orbital moment,
while CFS can significantly reduce or quench the orbital
moment, a phenomenon particularly notable in 3d transition
metal species [16]. In contrast, CFS has a lesser impact on the
orbital moments in uranium and other f -block elements, as
the partially filled f states are more effectively shielded from
crystal fields by outermost electrons [16]. We will explore the
effect of the source-free constraint on the ground-state orbital
moments in the UO2 test case explored in Sec. III D.
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FIG. 1. PBESF vs PBE comparison plot of ground-state magnetization density m(r) (vector field) and Bxc(r) (streamlines) viewed along
[111] direction for Mn3ZnN.

II. METHODS

A. Hubbard U , Hund J, and neglect of the exchange
splitting parameter

In our implementation of the source-free correction [23],
we leave out the exchange-splitting scaling parameter s in-
cluded in the study of Sharma and coworkers. In other words,
s = 1 in our implementation. There are two primary reasons
that we neglected this scaling parameters. The first reason for
not including this parameter is that while s is not material spe-
cific in theory, it requires fitting to the magnetic structure of
a finite set of material systems. In addition to this ambiguity,
it has been shown that Hubbard U and Hund J values have a
significant effect on the magnitude of magnetic moments, as
well as noncollinear magnetic structure [2]. For this reason,
we utilize precomputed, and/or custom-computed, U and J
values for the magnetic systems that we explore in this study.

That is not to say that the inclusion of s is unjustified—its
inclusion maintains the variational nature of the XC functional
with respect to the magnetization field m [1]. However, we
choose to not include this feature, owing to its ambiguous na-
ture, and the fact that it has nothing to do with the source-free
constraint itself [24]. In our implementation and test cases, we
did not find a need for s �= 1.

B. Source-free implementation

In Appendix A, we provide the details of the source-free
Bxc implementation in VASP [25], which, generally speaking,
should be consistent with both Refs. [1] and [26]. As stated
in Eq. (A7), we do not modify the q = 0 component of B′

xc.
In other words, we set B̂′

xc(q = 0) = B̂xc(q = 0), which still
satisfies the divergence-free constraint. Our choice appears to
be consistent with the implementation of Ref. [1] in the Elk
source code [27,28].

Our justification for leaving B′
xc = Bxc is the arbitrary

choice of B̂′
xc(q), which is apparent from the singularity with

respect to |q|2 in Eq. (A7). However, one can entertain possi-

ble physically motivated constraints on B′
xc. For example, B′

xc

will enter into the net torque expression, Eq. (23). Therefore,
one may consider a least-squares constraint on B′

xc, based
on the ZTT, as well as a possible term that preserves the net
XC energy expression from SDFT. An in-depth and rigorous
treatment of B′

xc, the real-space integral of B′
xc, will be left to

future studies.

III. RESULTS

These magnetic structures were obtained from the Bil-
bao MAGNDATA database [29]. All structures in this study
contained less than sixteen atoms in their unit cell. The ma-
terials contained in this data set include metallic systems, i.e.,
Mn3Pt [30] and MnPtGa [31], as well as insulators, i.e., MnF2

[32]. We take an in-depth focus of Mn3ZnN [33], because
its noncollinear ground state is accommodated by a relatively
small unit cell comprised of only three symmetrically distinct
magnetic Mn ions.

Furthermore, for Mn3ZnN (Figs. 1–4) it is clear that the
curl of the magnetization ∇ × m varies by a much larger
relative magnitude than that of Mn3Pt (Fig. 5) and MnPtGa
(Fig. 6). This can be ascertained by the circulation of spins
around the [1 1 1] direction in Mn3ZnN, which can be seen
in Figs. 1 and 2 [33]. We care about a large variance in the
spin current for multiple reasons. The first reason has to do
with the gauge symmetries of SDFT and CDFT, as explored in
Ref. [7]. After all, our goal in this study is to computationally
explore these degeneracies. The second reason is that the curl
of the magnetization enters into the expression for the net
XC torque, as stated in Eq. (25). Hence, we surmise that
the magnetic structure of Mn3ZnN will test the limits of the
ZTT, and to what degree it is, or is not upheld at the point of
self-consistency.

A. Quantifying the effects of monopoles

We found that for the Mn3ZnN calculations,
the PBE+U+J calculation yielded |∇ · Bxc(r)|∞ ≈
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FIG. 2. Computed ground-state magnetic configurations for two input structures (trials I and II) randomly perturbed from the experimen-
tally measured magnetic structure for Mn3ZnN; Comparisons are provided for the computed structures for PBESF vs PBE.

104 eV/(μB Å4), and for the source-free PBE+U+J
counterpart, |∇ · Bxc(r)|∞ < 10−13 eV/(μB Å4), where
|∇ · Bxc(r)|∞ = maxr∈R3 |∇ · Bxc(r)|. This numerical
comparison confirms that the source-free constraint is
working as expected, and draws attention to the large
density of magnetic monopoles that form in conventional
noncollinear PBE+U+J. A visualization of the monopole
density in the Mn3ZnN test case is provided in Fig. 3. We
hone in on this material for reasons of computational cost
and clear visualization. Namely, Mn3ZnN exhibits a highly
noncollinear spin texture, describable with a commensurate
unit cell of only three magnetic atoms. Furthermore, this
magnetic antiperovskite is known to exhibit exceptionally

large and exotic magnetostriction effects [34], which is
relevant to magnetostructural phase transitions and therefore
magnetocalorics [35].

B. Local convergence test

In order to compare the convergence of GGA-PBESF to
conventional noncollinear GGA-PBE, we performed tests on
the set of commensurate magnetic structures containing tran-
sition metal elements. To test the convergence of all structures,
we apply a random perturbation from the experimental struc-
ture to all magnetic moments. The rotations of local moments
are performed by an implementation of the Rodrigues’ rota-
tion formula within a cone angle of 45◦.
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FIG. 3. Isosurface VESTA plot of PBE ground state ∇ · Bxc(r)
viewed along [111] direction for Mn3ZnN. Positive isosurface is
indicated in violet, and negative counterpart in orange, at a fixed iso-
surface level. Manganese, zinc, and nitrogen atoms are color-coded
in magenta, gray, and light blue, respectively.

To compare the performance of the source-free func-
tional versus its SDFT counterpart, we illustrate the con-
trast between the converged magnetic structures for GGA-
PBESF+U+J versus GGA-PBE+U+J for the aforemen-
tioned manganese-containing material test cases: Mn3ZnN,
Mn3Pt, MnPtGa, MnF2, Mn3As, and YMnO3 in Figs. 2 and 5–
9, respectively. Additionally, we provide a magnetic moment
comparison (in Fig. 10) as well as a symmetry comparison (in
Fig. 11) for a wider set of over twenty material test cases.
For the magnetic moment comparison, we plot the mean
difference across magnetic moments computed using GGA-
PBESF+U+J versus GGA-PBE+U+J . We observe that for
all of these magnetic systems, the source-free functional pre-
dicts a moment that is slightly smaller than its source-free
counterpart, bringing it in closer agreement with experiment,
for most systems.

In order to probe the comparison between noncollinear
ground states themselves, we show a symmetry met-
ric comparison between converged structures from GGA-
PBESF+U+J and GGA-PBE+U+J in Fig. 11. For this study,
we used the findsym program from the ISOTROPY soft-
ware suite developed by Stokes et al. [36,37]. We define
this symmetry metric to be the minimum tolerance (in μB),
normalized by the absolute maximum magnitude of the indi-
vidual magnetic moments within the structures, and scaled as
a percentage value. Therefore, 0% implies perfect agreement
with experimentally resolved magnetic space group (MSG),
whereas 100% implies poor agreement. Numerically, the tol-
erance is set according to the expression � = �0α

−δ(N−n),
where n is incremented as n = 0, . . . , N , until the MSG num-
ber from findsym agrees with the symmetry from neutron
diffraction measurements [29]. The symmetry tolerance at

which the MSG numbers agree �∗ is designated as the mini-
mum symmetry tolerance. We use the exponential expression
in order to sample lower tolerances at higher precision. For
the results in Fig. 11, we chose the following parameters,
�0 = 10 μB, N = 16, δN = 2, and α = 10.

We emphasize that for this study, we use mean U and J
values taken from Ref. [38]. In principle, one should calcu-
late these U and J values for each structure, as U and J
are very sensitive to local chemical environment, and there-
fore oxidation and spin states [38]. However, to reduce
immediate computational cost, we save this exploration for
future studies.

Figures 2 through 9 show improved agreement with ex-
perimentally measured magnetic ground states using PBESF +
U+J compared to PBE+U+J , as well as better consistency
of the output computed spin configuration. Improved perfor-
mance of the SF functional is achieved in Figs. 7 and 8, but
with a higher sensitivity to geometry relaxation. In the case of
MnF2 and Mn3As, we performed structural relaxations, with
the spins initialized in the symmetric and/or experimental
configuration. We explored the effect of structural optimiza-
tion in these two materials, because without allowing for
spin-lattice relaxation, a ground state with a strong ferromag-
netic component was stabilized, as was the case for MnF2,
which is shown in Fig. 7. Most crystal structures in this study
were visualized using the VESTA software [39].

C. Convergence case study: YMnO3

To examine whether a tighter energy convergence thresh-
old improves the converged structure for GGA, we imposed
a 10−8 eV energy cut off to YMnO3, comparing the conver-
gence behavior between GGA and it source-free counterpart.
The convergence behavior of GGA compared to GGASF is
shown in Fig. 12. In this plot, the absolute relative energy
between subsequent self-consistency steps is plotted on a
logarithmic scale. For the source-free functional, it is inter-
esting to note that there appears to be a slight energy barrier
that the algorithm climbs, only to descend to the symmetric
experimentally reported ground state [10], just before 200
self-consistency steps.

To the reader, this may seem to be a long convergence time;
however, we direct the attention to the conventional GGA
counterpart. While convergence to 1 µeV is achieved rather
rapidly, we see that the magnetic spins move very little in
the convergence process. Furthermore, with the tighter energy
cut off, the DFT calculation does not converge within the
600 electronic self-consistency step limit. At one point, the
energy does dip below the tolerance energy threshold, but this
is not simultaneously true for the band-structure convergence
metric, which stays above the 0.01 µeV energy cut off.

It is worth noting that to improve convergence for this
particular calculation, we used a “sigma” value smearing of
0.2 near to the Fermi level. This is standard practice, and
a different smearing can be used by continuing the DFT
calculation with a smaller “sigma” value, and a different
smearing method. Additionally, we used Gaussian smearing,
which is known to be more robust across different material
chemistries, such as between insulators and conductors, ac-
cording to VASP documentation.
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FIG. 4. PBESF vs PBE comparison plot of ground-state magnetic torque vector field τxc = m(r) × Bxc(r) (vector field) viewed along [111]
direction for Mn3ZnN. The units are in (μB eV)/(μB Å3).

D. Augmented orbital moments in UO2

Thus far, we have focused on the spin component of the
magnetic moment. However, in reality, there is an orbital
component to the magnetic moment that supplements the spin
contribution [40,41], especially in materials with strong spin-
orbit coupling (SOC). In many 3d transition metal oxides, it
can be theoretically and experimentally shown that the orbital
moment is “quenched” [16,42], in which case it is fair to
neglect the orbital contributions. However, in f -block species,
SOC can become much more prevalent. Additionally, we have
explored the connections between the orbital moment and
the paramagnetic current density, j p in Sec. I D. Therefore,
it would be sensible for us to explore how the source-free
functional affects the orbital magnetic moments.

UO2 has become the archetype of correlated oxides with
strong spin-orbit coupling, which gives rise to the strongly
noncollinear ground state of UO2 [43]. Therefore, we apply
the source-free functional towards UO2, which we found to
exhibit exceptionally large orbital magnetic moments. Specif-
ically, we report the computed spin and orbital magnetic
moments in Table I using GGA+U+J and GGASF+U+J .
Because of the connection between orbital moments and j p
in Eq. (28), we plot j p(r) in Fig. 13. We see that in this visu-
alization, there is strong circulation of j p around the uranium
atoms, shown in gray. It is interesting to note that we achieve
this improved agreement with experiment, even without the
direct coupling to Axc in the form of Eq. (20).

E. Local and global torques arising
from the source-free constraint

In Fig. 4(a) we observe that it is indeed not the case that
τ ′

xc = 0 ∀ r ∈ �. However, for the systems we tested, we
found the net (integrated) torque, as stated in Eq. (25), to
be orders of magnitude smaller than the largest local torque,
i.e., maxr∈�{|τ ′

xc(r)|}. We found that for our Mn3ZnN test
case, the self-consistent τxc obeyed the following inequality∫
�

τxc dr < 5 × 10−5 eV, even though max�{τxc} ≈ 5 eV.

The energy convergence tolerance for this calculation was
1 × 10−6 eV. Therefore, the net torque could simply be an
artifact of numerical convergence.

Despite the “small” net torque relative to the energy con-
vergence tolerance, it is nontrivial to determine whether the
right-hand side of Eq. (25) will be “small enough” in general.
Additionally, further investigation should examine the effects
of enforcing the ZTT at every self-consistency step. In Ap-
pendix B, we propose possible approaches to ensure that the
ZTT is upheld at every self-consistency step. The method in
Appendix B should be the most general and robust, with added
computational cost. We have not implemented these ZTT
corrections at this time. However, we imagine that a careful
adherence to the ZTT will be important for the calculation of
magnetocrystalline anisotropy energy (MAE), which is on the
order of µeV, and therefore this additional physical constraint
should be considered.

F. Importance of the constant, q = 0, component of B′
xc

In Fig. 14, it is clear that when applying the B′
xc = 0

constraint for MnF2, the SF functional converges to the cor-
rect collinear AFM ground state [32]. For B′

xc = Bxc, the
canted FM configuration is erroneously stabilized, which is
remedied by structural relaxations, as shown in Fig. 7. On
the other hand, for MnPtGa, if one applies the additional
B′

xc = 0 constraint, we see that the ground state is a structure
with much stronger AFM character. This differs significantly
from the canted ferromagnetic configuration obtained using
B′

xc = Bxc. This canted FM spin configuration is much closer
to the magnetic ordering resolved using neutron diffraction
[31].

To generalize this behavior, B′
xc = Bxc erroneously sta-

bilizes ferromagnetism in antiferromagnetics, and B′
xc =

0 stabilizes antiferromagnetism in ferromagnets, which is
equally problematic. Because of the obvious importance of
carefully considering B′

xc, we plan to address this in the
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FIG. 5. Computed ground-state magnetic configurations for two input structures (trials I and II) randomly perturbed from the experimen-
tally measured magnetic structure for Mn3Pt; Comparisons are provided for the computed structures for PBESF vs PBE.

future. For all other test cases in this study, we simply set
B′

xc = Bxc, in order to maintain consistency with Refs. [1]
and [26]. As we mention in the Introduction, it would be
possible to solve for B′

xc that mitigates the net XC torque,
while preserving the XC spin-splitting energy from SDFT, in
accordance with Eq. (1). We plan to explore this rigorously in
a follow-up study.

IV. CONCLUSIONS

Significantly improved convergence to the noncollinear
magnetic structure has been achieved with the application
of the source-free constraint to Bxc [1] to the PAW DFT
formulation implemented in VASP. With the use of paral-

lel three-dimensional FFTs as the basis for the fast Poisson
solver, it is possible to apply this constraint with little ad-
ditional computational cost, and no reduction of the parallel
scalability of the DFT code. While we have focused on GGA-
PBESF+U+J in this study, this constraint is generalizable
to other SDFT functionals in noncollinear implementations,
such as meta-GGA.

Subsequent studies will combine the improved local con-
vergence of DFTSF with global optimization algorithms
in order to achieve a unified and robust determination of
noncollinear ground states without any prior experimental
knowledge.

We hope that the augmented magnetoelectric coupling pre-
dicted using the source-free functional lays the groundwork
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FIG. 6. Computed ground-state magnetic configurations for two input structures (trials I and II) randomly perturbed from the experimen-
tally measured magnetic structure for MnPtGa; Comparisons are provided for the computed structures for PBESF vs PBE.

for future studies to perform an in-depth investigation of the
magnetoelectric figures of merit calculated using this mod-
ified functional, especially considering that the Berry phase
provides a convenient and rigorous theoretical link between
the modern theory of polarization and the modern theory of
magnetization [40,41], which can be explicitly expressed in
terms of the spin current [44]. Additionally, the unified theory
provides a robust and solid theoretical description of the or-
bital magnetic moment [40], which extends the semiclassical
theory touched on in Sec. I D. Future studies are encouraged
to further examine the role of spin and orbital currents as they
pertain to magnetoelectric coupling.

ACKNOWLEDGMENTS

We would like to thank Dr. S. Sharma and Dr. J. K.
Dewhurst for taking the time to discuss the source-free
implementation over video conference call. We appreciate
their support and encouragement. G.C.M. acknowledges sup-
port from the Department of Energy Computational Science
Graduate Fellowship (DOE CSGF) under Grant No. DE-

SC0020347. Computations in this paper were performed
using resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231. Expertise in high-throughput
calculations, data, and software infrastructure was supported
by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering
Division under Contract No. DE-AC02-05CH11231: Materi-
als Project Program KC23MP.

G.C.M.: Conceptualization, methodology, software, val-
idation, formal analysis, investigation, data curation, writ-
ing original draft, review and editing, and visualiza-
tion. M.K.H.: Conceptualization, writing, review, and edit-
ing, visualization, supervision, and project administration.
A.D.K.: Methodology, validation, formal analysis, writing,
review, editing. O.A.A.: Investigation, software, writing,
review, and editing. S.M.G.: Formal analysis, writing, re-
view, and editing. K.A.P. : Conceptualization, writing,
review, editing, supervision, project administration, and
resources.

094417-11



GUY C. MOORE et al. PHYSICAL REVIEW B 111, 094417 (2025)

TABLE I. Tabulated magnetic moment components of the four uranium atoms in the magnetic unit cell of UO2. The spin and orbital
contributions to the total computed moments by VASP are included below, computed using both PBESF+U+J and PBE+U+J . The on-site
corrections of U, J = 3.46, 0.3 eV were applied to U- f states to maintain consistency with Ref. [47]. Additionally, we compare to U, J =
4.5, 1.0 eV, which is the largest U value reported in Ref. [47], and a “rounded-up” J value of 1.0 eV to examine the effect of a larger Hund J
parameter on the spin and orbital uranium magnetic moments.

Spin Orbital Total

Functional Atom mx my mz |m| mx my mz |m| mx my mz |m|
PBE+U+J I −0.577 −0.583 −0.581 1.01 1.764 1.783 1.778 3.07 1.19 1.20 1.20 2.07
U, J = 3.46, 0.30 eV II −0.584 0.576 0.581 1.01 1.787 −1.763 −1.776 3.08 1.20 −1.19 −1.20 2.07

III 0.578 −0.568 0.594 1.00 −1.769 1.739 −1.817 3.07 −1.19 1.17 −1.22 2.07
IV 0.599 0.571 −0.57 1.00 −1.831 −1.747 1.744 3.07 −1.23 −1.18 1.17 2.07

PBE+U+J I −0.19 −0.19 −0.20 0.34 1.41 1.42 1.43 2.46 1.22 1.23 1.23 2.12
U, J = 4.5, 1.0 eV II −0.20 0.20 0.19 0.34 1.43 −1.43 −1.40 2.46 1.24 −1.23 −1.21 2.12

III 0.19 −0.19 0.20 0.34 −1.40 1.39 −1.47 2.46 −1.21 1.20 −1.27 2.12
IV 0.21 0.19 −0.18 0.34 −1.51 −1.40 1.35 2.46 −1.30 −1.21 1.16 2.12

PBESF+U+J I 0.21 0.17 0.24 0.36 0.73 0.73 0.81 1.31 0.93 0.90 1.04 1.66
U, J = 3.46, 0.30 eV II 0.21 −0.23 −0.19 0.36 0.73 0.73 −0.67 1.23 0.94 0.50 −0.86 1.37

III −0.18 0.19 −0.24 0.36 −0.66 −0.66 −0.83 1.25 −0.84 −0.47 −1.07 1.44
IV −0.21 −0.21 0.21 0.36 −0.73 −0.73 0.74 1.26 −0.93 −0.93 0.94 1.62

PBESF+U+J I 0.08 0.08 0.09 0.14 0.95 0.91 1.04 1.68 1.03 0.98 1.13 1.82
U, J = 4.5, 1.0 eV II 0.08 −0.08 −0.08 0.14 0.99 −0.99 −0.92 1.68 1.07 −1.07 −1.00 1.82

III −0.08 0.08 −0.09 0.14 −0.96 0.91 −1.03 1.68 −1.04 0.99 −1.12 1.82
IV −0.08 −0.08 0.08 0.14 −0.94 −1.01 0.96 1.68 −1.01 −1.09 1.04 1.82

DATA AVAILABILITY

The data that support the findings of this article are openly
available [45].

APPENDIX A: NUMERICAL DETAILS
OF SOURCE-FREE CONSTRAINT

Because plane-wave DFT is defined on periodic boundary
conditions, we can start with the definition of the inverse
discrete Fourier transform, because the density fields lie in
regular three-dimensional grids,

φn = 1

M

∑
k

φ̂k exp(i2πkT D−1n)

= F−1φ̂

where D =
⎛⎝Nx 0 0

0 Ny 0
0 0 Nz

⎞⎠,

M = NxNyNz, (A1)

and ni, ki ∈ [0, 1, . . . , Ni], and Nx, Ny, Nz are the dimensions
of the 3D grid. If we define the real-space position vector
as r = LD−1n, where L has columns as lattice vectors L =
[a b c]. Therefore, kT D−1n = kT D−1DL−1r = kT L−1r. From
here, we can apply the convenient “scaling” property de-
scribing how differential operators commute with the inverse
discrete Fourier transform, where l = x, y, z is the dimension
of the partial derivative,

∂

∂rl
φ(r) ≈ i2π · F−1(ql φ̂)

where ql =
∑

j

L−1
jl k j, q = L−T k. (A2)

To obtain the (discrete) spectral approximation of the diver-
gence of the B field,

∇ · Bxc = ∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z

≈ i2π · F−1(qxB̂x + qyB̂y + qzB̂z )

≈ i2π · F−1(qT B̂xc). (A3)

In order to solve the Poisson equation, as posed in Eq. (5), we
apply a similar reasoning as before, and see that

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2

≈ −(2π )2 · F−1
((

q2
x + q2

y + q2
z

)
φ̂
)

≈ −(2π )2 · F−1(|q|2φ̂). (A4)

Therefore, combining Eqs. (5), (A3), and (A4), we find that
the discrete Fourier transform of φ can be expressed as

φ̂(q) =
{

i
2π

q·B̂xc (q)
|q|2 , |q| �= 0

0, |q| = 0
. (A5)

We are interested in ∇φ. Which we can approximate as

−∇φ ≈ F−1

(
qT B̂xc(q)

|q|2 q

)
. (A6)
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One of five trials to ensure consistent results....

Input structure generatred 
using perturbation of 

collinear experimental 
magnetic structure using 

Rodrigues' rotation 
formula

a: 4.87 Å b: 4.87 Å c: 3.30 Å
α: 90.0° β: 90.0° γ: 90.0°

a: 4.87 Å b: 4.87 Å c: 3.30 Å
α: 90.0° β: 90.0° γ: 90.0°

a: 5.04 Å b: 5.04 Å c: 3.13 Å
α: 90.0° β: 90.0° γ: 90.0°

a: 4.96 Å b: 4.96 Å c: 3.35 Å
α: 90.0° β: 90.0° γ: 90.0°

FIG. 7. Computed ground-state magnetic configurations for ran-
domly perturbed input structure from the experimentally measured
magnetic structure for MnF2. Comparisons are provided for the
computed structures for PBESF vs PBE.

Therefore, the source-free correction is achieved by perform-
ing the following:

B̂′
xc(q) = B̂xc(q) −

{
q·B̂xc (q)

|q|2 q, |q| �= 0

0, |q| = 0
(A7)

and as a result, ∇ · Bxc
′ = 0 is obtained in the discrete numer-

ical sense.

APPENDIX B: A GENERAL APPROACH TO SATISFY THE
ZERO TORQUE THEOREM

Our goal is to solve for an auxillary field A′ such that the
zero torque condition is obeyed∫

�

dr m × B =
∫

�

dr m × (∇φ + ∇ × A′) = 0. (B1)

The trivial solution, ∇ × A′ = −∇φ, can only hold if ∇φ =
0. Therefore, we recast the problem as such∫

�

dr m × (∇ × A′) = −
∫

�

dr m × ∇φ = −τ ′. (B2)

By expanding the triple product, we see that

m × (∇ × A′) = [mj∂iA
′
j − mj∂ jA

′
i]êi

= ∇A′ (m · A′) − (m · ∇)A′. (B3)

At this step, we can apply the product rule, u∂xv = ∂x(uv) −
v∂xu, to show that integrals of the form

∫
dr ∂x(uv) vanish un-

der periodic boundary conditions (PBCs) by Eq. (S12) within
the SM [4]. Having leveraged this convenient property of the
PBCs, it is possible to transfer the derivatives from A′ to m
such that we can restate Eq. (B2) as∫

dr m × (∇ × A′) =
∫

dr [A′
i∂ jm j − A′

j∂im j]êi

= −τ ′. (B4)

Now, we will introduce the following discretized approxima-
tion for the L2 inner product on regular grids

〈u, v〉 =
∫

�

dr u(r)v(r) ≈ 1

�V
uT v, (B5)

where �V = �x�y�z. We introduce this shorthand for the
purposes of this study; however, it is just as applicable to
continuous functions. With this definition, we can recast the
problem in Eq. (B4) as a matrix-vector system

Ma = −τ ′, (B6)

where a = [A′T
x A′T

y A′T
z ]T , and the matrix M is defined as

M = 1

�V

⎡⎢⎢⎣
mT

y,y + mT
z,z −mT

y,x −mT
z,x

−mT
x,y mT

z,z + mT
x,x −mT

z,y

−mT
x,z −mT

y,z mT
x,x + mT

y,y

⎤⎥⎥⎦,

(B7)

in which case mi, j = ∂mi
∂x j

. Because the system of equations is
underdetermined (i.e., M is “short and fat”), we can solve for
a using a least-squares approach,

a = −M+τ ′, (B8)

which solves for the solution a with minimal L2 norm,

||a||2 =
⎧⎨⎩ ∑

i=x,y,z

∫
�

dr |A′
i(r)|2

⎫⎬⎭
1/2

. (B9)

M+ is the corresponding Moore-Penrose right-hand pseudoin-
verse M+ = MT (MMT )−1 such that MM+ = I , as long as the
rows of M are linearly independent. We note that MMT is
diagonally dominant, because it contains L2 norms (which are
guaranteed to be positive) of the spatial partial derivatives of
m along the diagonal. Therefore, MMT should be invertible,
so long as the magnetization varies in all spatial directions
over the domain, which it should for spin-polarized systems.
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Trial I

Random perturbation
from experimental
magnetic structure:

(a) Initial perturbed
structure, trial I

Converged structure:
PBE

(b) PBE, trial I
viewed along [001]

(c) PBE, trial I
viewed along [100]

Converged structure:
Source-free PBE

(d) PBESF, trial I
viewed along [001]

(e) PBESF, trial I
viewed along [100]

Trial II

Random perturbation
from experimental
magnetic structure:

(f) Initial perturbed
structure, trial II

Converged structure:
PBE

(g) PBE, trial II
viewed along [001]

(h) PBE, trial II
viewed along [100]

Converged structure:
Source-free PBE

(i) PBESF, trial II
viewed along [001]

(j) PBESF, trial II
viewed along [100]

FIG. 8. Computed ground-state magnetic configurations for two input structures (trials I and II) randomly perturbed from the experimen-
tally measured magnetic structure for Mn3As. Comparisons are provided for the computed structures for PBESF vs PBE. For PBESF and
PBE runs, input atomic positions and cell shape were first determined by performing structural relaxations, with moments initialized in the
symmetric orientation.

In conclusion, by applying both source-free and ZTT cor-
rections to the exchange-correlation magnetic field Bxc,

Bxc �→ B′
xc,

B′
xc = Bxc + ∇φ + ∇ × A′, (B10)

we can simultaneously satisfy:
(I) The source-free constraint

∇ · B′
xc = 0.

(II) The zero-torque theorem

∫
�

dr m × B′
xc = 0.

However, we should stress that the second ZTT constraint
is not implemented in the code at present. In other words, we
set A′(r) = 0 in the context of this study.

APPENDIX C: CHOICE OF Axc GAUGE

It is worth noting that two gauge choices of Axc have
been presented in the literature. Within the original studies
of Vignale and Rasolt [8,11,13], the ∇ · (ρAxc) = 0 arises
naturally. However, by comparison, in [7], the Coulomb gauge
∇ · Axc = 0 is implied by the Helmholtz decomposition.

Under the ∇ · Axc = 0 gauge, it is possible to solve for Axc

using the following Poisson equation:

∇ × (∇ × Axc) = ∇ × Bxc,

−∇2Axc + ∇(∇ · Axc) = ∇ × Bxc,

∇2Axc = −∇ × Bxc. (C1)

In order to solve for Axc subject to ∇ · (ρAxc) = 0, we can
employ another Helmholtz decomposition

Axc = A′
xc + ∇ξ, (C2)

where ∇ · A′
xc = 0 and is solved using Eq. (C1), and ξ is

determined from the following elliptical equation:

∇ · (ρ∇ξ ) = −∇ · (ρA′
xc). (C3)

However, the spatial dependence of ρ in Eq. (C3) makes the
equation more difficult to solve using a single spectral solve
step. Instead, an iterative spectral solver could be used to solve
this elliptical equation, using the subtractive solver presented
in Ref. [46], for example.

APPENDIX D: CONSIDERATIONS FOR j p · Axc ENERGY
CONTRIBUTIONS UNDER PERIODIC BOUNDARY

CONDITIONS

We will use the following result, Eq. (D1), to draw a few
conclusions. Let us start by considering two differentiable
functions α(r) ∈ R and L(r) ∈ R3. The following integral can
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Trial I

Converged structure:
PBE

(a) PBE, trial I
viewed along [001]

(b) PBE, trial I
viewed along [010]

Converged structure:
Source-free PBE

(c) PBESF, trial I
viewed along [001]

(d) PBESF, trial I
viewed along [010]

Trial II

Converged structure:
PBE

(e) PBE, trial I
viewed along [001]

(f) PBE, trial I
viewed along [010]

Converged structure:
Source-free PBE

(g) PBESF, trial I
viewed along [001]

(h) PBESF, trial I
viewed along [010]

FIG. 9. Computed ground-state magnetic configurations for two input structures (trials I and II) randomly perturbed from the experimen-
tally measured magnetic structure for YMnO3. Comparisons are provided for the computed structures for PBESF vs PBE. For PBESF and
PBE runs, input atomic positions and cell shape were first determined by performing structural relaxations, with moments initialized in the
symmetric orientation.

−0.5

0

0.5

1

Source-free PBE
PBE

FIG. 10. Comparison plot of magnetic moment differences with experiment for PBE+U+J and PBESF+U+J for a selected number of
experimental structures from the MAGNDATA Bilbao Crystallographic Server [29]. The y axis is the difference metric (1/N )

∑
i(m

i
DFT −

mi
exp), where mi

DFT and mi
exp are the magnetic moment magnitudes for site “i” from the DFT-computed and experimental magnetic structures,

respectfully. The error bars represent the standard deviation over each random initialization of magnetic moments.
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0

50

100

Source-free PBE
PBE

FIG. 11. Comparison plot of minimum symmetry tolerance agreement with experimentally resolved magnetic space group PBE+U+J
and PBESF+U+J for a selected number of experimental structures from the MAGNDATA Bilbao Crystallographic Server [29]. The y-axis is
the minimum symmetry tolerance (in μB) at which the experimental magnetic space-group is identified, normalized by maxi{mi

exp}. We use
ISOTROPY’s findsym to identify the magnetic space-group [36,37]. Zero percent indicates perfect agreement with experimentally determined
symmetries, whereas one hundred percent indicates large disagreement. The error bars represent the standard deviation over each random
initialization of magnetic moments.

be expressed as∫
�

∇α(r) · L(r) dr

=
∫

�

{∇ · [α(r)L(r)] − α(r)[∇ · L(r)]} dr

=
∮

∂�

[α(r)L(r)] · dS −
∫

�

α(r)[∇ · L(r)] dr (D1)

If � obeys periodic boundary conditions, then
∮
∂�

[α(r)L(r)] ·
dS = 0.

We can start by considering the Coulomb gauge ∇ · Axc =
0. If this gauge is chosen, charge conservation should still be

FIG. 12. Convergence of GGASF compared against GGA for
YMnO3, with moments randomly perturbed from the symmetric
ground-state structure. Snapshots of the magnetic configuration at
each self-consistency step are shown to convey the improved con-
vergence characteristics of the source-free functional. The y axis is
the absolute energy difference between subsequent self-consistency
iterations, plotted on a logarithmic scale.

obeyed through the following:

∇ · ( j p + ρAxc) = 0. (D2)

By the Helmholtz identity, we can decompose j p into the
following:

j p = ∇η + ∇ × �. (D3)

Therefore, we may rewrite Eq. (D2) as

∇2η = −∇ · (ρAxc). (D4)

Here, it is interesting to note that while η can satisfy
charge conservation, by Eq. (D1), under periodic bound-
ary conditions and the ∇ · Axc = 0 gauge, the following

FIG. 13. Vector field visualization of the probability current den-
sity j p within UO2. Strong circulation of j p is observed surrounding
the uranium atoms, in gray.
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FIG. 14. Comparison between the different choices of B′
xc for

antiferromagnetic MnF2 (top) and canted ferromagnetic MnPtGa
(bottom). Treatment of B′

xc alone can dictate the FM or AFM charac-
ter of spin-polarized systems. As the inclusion of a q = 0 component
changes the Kohn-Sham effective potential, the absolute energies
computed with or without Bxc are not directly comparable.

is true: ∫
�

∇η · Axc dr = 0. (D5)

Therefore, η will not enter into the energy term, Eq. (20),
allowing us to conclude that

Ep

∣∣
∇·Axc=0 =

∫
�

(∇ × �) · Axc dr

∀ { j p, Axc|∇·Axc=0

}
. (D6)

Equation (D6) states that while the curl-free projection of j p,
∇η, maintains local charge conservation, only the divergence-
free projection, ∇ × �, enters into the expression for Ep.

APPENDIX E: CONSIDERATIONS FOR j p,λ

Starting from a Helmholtz decomposition of the probabil-
ity current density

j p,λ = ∇ηλ + ∇ × �λ. (E1)

We see that the following conservation law:

∇ · [ j p,λ + mλAxc] = (m × Bxc)λ (E2)

only places a constraint on the curl-free contribution to j p,λ,
similarly to Eq. (D4),

∇2ηλ = −∇ · [mλAxc] + (m × Bxc)λ. (E3)

Therefore, only the divergence-free component ∇ × �λ is in-
dependent from this conservation law, and will contribute to
the energy in an analogous form of Eq. (D6).
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