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Predicting defect behavior in B2 intermetallics by merging
ab initio modeling and machine learning
Bharat Medasani1,2, Anthony Gamst3, Hong Ding4,5, Wei Chen6,7, Kristin A Persson4,5, Mark Asta4,8, Andrew Canning1

and Maciej Haranczyk1

We present a combination of machine learning and high throughput calculations to predict the points defects behavior in binary
intermetallic (A–B) compounds, using as an example systems with the cubic B2 crystal structure (with equiatomic AB stoichiometry).
To the best of our knowledge, this work is the first application of machine learning-models for point defect properties. High
throughput first principles density functional calculations have been employed to compute intrinsic point defect energies in 100 B2
intermetallic compounds. The systems are classified into two groups: (i) those for which the intrinsic defects are antisites for both A
and B rich compositions, and (ii) those for which vacancies are the dominant defect for either or both composition ranges. The data
was analyzed by machine learning-techniques using decision tree, and full and reduced multiple additive regression tree (MART)
models. Among these three schemes, a reduced MART (r-MART) model using six descriptors (formation energy, minimum and
difference of electron densities at the Wigner–Seitz cell boundary, atomic radius difference, maximal atomic number and maximal
electronegativity) presents the highest fit (98 %) and predictive (75 %) accuracy. This model is used to predict the defect behavior of
other B2 compounds, and it is found that 45 % of the compounds considered feature vacancies as dominant defects for either A or
B rich compositions (or both). The ability to predict dominant defect types is important for the modeling of thermodynamic and
kinetic properties of intermetallic compounds, and the present results illustrate how this information can be derived using modern
tools combining high throughput calculations and data analytics.
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INTRODUCTION
In crystalline compounds, point defects often play a central role in
governing a wide variety of physical properties. Whether one is
considering intrinsic carrier types in semiconductor compounds,
optical properties of insulators, or the resistance of an intermetallic
phase to high-temperature deformation processes, knowledge of
the type and concentrations of dominant point defects is essential
for understanding and controlling materials behavior. The
difficulties inherent in performing experimental measurements
of equilibrium point defect properties can thus present a
significant barrier to the accelerated development of materials
for targeted applications. In recent years, this situation has
benefited significantly from the development of computational
tools based on electronic DFT that provide a framework for
accurate prediction of the equilibrium concentrations, electronic
structure, and kinetic properties of point defects.1–4 While such
tools have advanced significantly, they remain relatively compu-
tationally costly, due to the need to employ supercell models,5

particularly when expensive functionals6 are employed. Thus the
use of such computational techniques in high throughput (HT)
calculations in the context of materials discovery and design7–9

has remained limited.

In the present work, we demonstrate a strategy for predicting
point-defect properties over a large composition space, employ-
ing machine-learning (ML) methods on a relatively small training
set. ML approaches have found rapidly increasing use in
computationally-assisted materials discovery and design in recent
years,10–17, but to the best of our knowledge the application
of such models for point defect properties has not yet been
undertaken. In this work, we present a general framework
for applying ML algorithms to the important problem of
predicting the dominant point-defect type in an inorganic
crystalline compound. This approach is demonstrated specifically
for equilibrium intrinsic point defects in binary intermetallic
compounds with the B2 crystal structure, but can be readily
generalized to multicomponent intermetallic systems, as well as to
semiconductors and insulators employing standard schemes for
charged point defect calculations.4 Further, the approach
described here provides a basis also for extending ML algorithms
to non-equilibrium defect properties such as those related to
diffusion in alloys.18

As mentioned above, we demonstrate the ML strategy for
defect types in this work by focusing on the modeling of
dominant intrinsic point defect types in intermetallic compounds
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displaying the simple cubic B2 crystal structure illustrated in Fig. 1.
B2-structured intermetallics have been extensively researched
for a range of applications, including as strengthening
precipitates19–21 in advanced alloys, and as lightweight materials
for high-temperature applications relevant to the aerospace
industry22,23. Considering the B2 crystal structure for an AB
compound (Fig. 1a) there are four types of point defects
commonly observed: a vacancy on the A-type sublattice (VA) or
on the B-type sublattice (VB), or antisite defects of A on the B
sublattice (AB) or B on the A sublattice (BA). Self-interstitials will
also form as an intrinsic point defect in B2 compounds, but in the
present work, we assume their formation energies in the relatively
close-packed B2 compound are significantly higher than those for
vacancies or substitutional antisites, such that their concentrations
will be sufficiently low so as not to influence the predicted
dominant defect type. We thus focus on the antisites and
vacancies in the present work. The equilibrium concentration of
point defects, and which type is dominant (i.e., has the highest
equilibrium concentration), is influenced by the temperature as
well as the overall composition of the compound: for example a
B2-AB compound that is slightly rich in A will tend to have either
AB antisites or VB vacancies as a dominant defect type, and
similarly for B-rich compositions, either BA antisites or VA vacancies
are the possible dominant defects. When the vacancies form as
the dominant defect to accommodate changes in composition,
they are typically referred to as constitutional vacancies.
The interest in understanding whether a compound will form

constitutional vacancies stems from the important role that these
defects play in mechanisms governing atomic transport, which
underlie high-temperature deformation and degradation pro-
cesses. To our best knowledge, even for simple B2 intermetallics,
the available experimental and computational data for their
defect properties is still limited, while for ternary and quaternary
system, the knowledge is even more limited. Due to the
importance of identifying whether an intermetallic will intrinsically
form high concentrations of vacancies, previous efforts have
aimed to develop empirical rules to predict such tendencies in B2
compounds. Specifically, in the work by Neumann,24 based on
data for 19 such compounds, it was shown that a threshold value
of the compound formation enthalpy (ΔEf, the difference in
energy between the ordered intermetallic compound and the
concentrated weighted average of the energy of the constituent
elemental solids) could be identified such that for ΔEf, more
negative than −0.31 eV/atom, the material would form antisites
as the dominant point defect type for both A and B rich
compositions. This empirical relationship ends up with about 80 %
classification accuracy for the 19 intermetallics considered, while

the predictive accuracy beyond this data set has not been
explored.
In what follows, we will classify B2 intermetallic compounds

according to whether the vacancies are a dominant defect type at
either A or B rich compositions, or whether the dominant defects
are always of antisite type. We employed HT DFT and subsequent
thermodynamic calculations to identify the dominant point
defects for 100 B2-type compounds over a wide range of
intermetallic chemistries. This established a minimal dataset
with proper sampling size for subsequent data mining work.25

To classify the B2 compounds with respect to the dominant
defects, we utilized three different ML models: a simple decision
tree (DT) model and two models that utilize the gradient boosting
technique. In the gradient boosting technique, the classification
result is derived by combining a forest of DTs obtained in an
iterative manner. While the performance of the DT model is found
to be lacking, one of the gradient boosting classifiers with minimal
model parameters resulted in a good fit and predictive accuracies.
This gradient-boosted classifier is further used to predict the
dominant defect types in other B2 compositions in order to
explore trends across a broad range of chemistries.

RESULTS AND DISCUSSION
From the Materials Project database,26 100 B2-type intermetallic
compounds (as listed in Supplementary Information (SI) Table 3)
were first selected for high throughput defect property calcula-
tions. At a representative temperature T = 1000 K, the equilibrium
defect concentrations in these B2-type intermetallic compounds
were computed using the grand-canonical, dilute-solution ther-
modynamic formalism27 as implemented in PyDII28 for composi-
tions deviating from stoichiometry by up to 1 %. The dilute
solution formalism allows us to predict dominant defect types at
off-stoichiometric compositions using DFT supercell calculations
based on the ideal stoichiometry of the B2 compound (with only a
single defect in each supercell calculation). The formalism is
applicable to multicomponent and multisublattice intermetallics
as well. The required DFT calculations were automated with a high
throughput FireWorks29 workflow. Based on the dominant defects
in the A and B rich compositions, the compounds are classified
into two groups: those that contain vacancies as the dominant
defect type at either A or B rich compositions (or both), and those
for which the antisites are the dominant defects at both
compositions. The classification of B2 compounds is illustrated
in Fig. 1b. For example, Be–Ni having antisites as dominant defects
in both composition regions are classified into the latter class, and
both Al–Co (having Co vacancies as dominant defects in Al-rich
compositions and Co antisites as dominant defects in Co-rich

A

B

(a) (b)

Fig. 1 a Illustration of B2 crystal structure and b the possible dominant defect configurations in B2 intermetallic compounds. BeNi is classified
as antisite dominant intermetallic, whereas AlCo and AlRh are considered as non-antisite dominant ones
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regions) and Al-Rh (having vacancies as the dominant defects in
both composition regions) are grouped into the former class.
Our calculations indicate that among the one hundred

compounds, half of them belong to the antisite dominant
category (labeled with 0 in the defect-type classification (DTC)
column of SI Table 3), in which antisite defects are the dominant
ones in both off-stoichiometric composition (A-rich and A-poor)
regions. The other half belong to non-antisite dominant type
(labeled with 1 in the DTC column of SI Table 3), as vacancy
defects are dominant in one side of off-stoichiometric composi-
tion region (41 compounds) or in both regions (9 compounds).
Henceforth, based on these computational results, we established
a basic B2-type intermetallic defect property database containing
these 100 compounds, which was used to evaluate the empirical
defect classification model developed by Neumann,24 as well as to
construct new machine-learning models to explore the underlying
DTC for B2 compounds.25

We first assessed the accuracy of Neumann's model in
classifying the defect types. In this model, Neumann assumed a
constant vacancy formation energy (ΔHv) of about 0.5 eV/atom for
all intermetallics, which leads to the classification rule that the
intermetallics with formation energy, ΔEf, less than −0.31 eV/atom
exhibit antisite dominant defects, whereas those with ΔEf greater
than −0.31 eV/atom will have non-antisite dominant defects.
When tested against the 100 B2 compounds considered in the
present calculations, Neumann's classification model yields an
accuracy of 61 %. This accuracy is statistically a good improvement
over the 50 % probable accuracy obtained with random guesses.
The confusion matrix pertaining to Neumann's classification
model displaying the number of correct and incorrect predictions
in comparison with the DFT-based classifications in the database is
shown in Fig. 2a. It can be noticed that this model is relatively
more accurate in identifying the non-antisite dominant type B2
compounds (38 out of 50), whereas its performance is poor (23 out
of 50) for the other type. Also, we find that Neumann’s model is
biased towards non-antisite defects as it predicts 65 compounds
belong to non-antisite dominant type.
To improve upon this model, we applied ML techniques on the

computed data. The classification problem in ML is to construct an
estimate of the function, which maps different properties
associated with each compound to discrete values representing
the possible classes of interest; in this case, the defect types. The
input properties, called “descriptors” here were chosen from
compound properties (CPs) and linear combinations of the
constituent elemental properties (EPs). Most prior studies used
either differences (denoted by Δ) between or averages (denoted
by subscript ‘avg’) of the EPs as descriptors,30–32 while in this work
we also considered the minimum and the maximum of the EPs as
potential descriptors. The initial set of CPs and EPs used to
generate the fit model, along with the corresponding univariate
predictive powers (explained later) can be found in SI Table 1.
The minimum, maximum, average, and differences can be

thought of as derived descriptors. The average and differences
are the linear combinations of the initial set of descriptors. These
in principle can be obtained from principle component analysis
(PCA), however minimum and maximum type of derived
descriptors are not obtainable from PCA. Derived descriptors are
found to often generate significantly improved ML models for a
broad set of applications.
According to Villars,33 the EPs used in machine-learning of

intermetallics can be classified into five main groups related to
atomic number, atomic size, electrochemical properties, valence
electron properties, and cohesive energy properties. The EPs
chosen for this work included one or more EPs from each of these
five groups. Among these, we note that Mooser and Pearson
used nav (the average of principle quantum numbers) and ΔX
(difference in Pauling electronegativities) to evaluate the structural
stability,30 and Miedema et al.31 developed Δn1=3WS (difference in

the cube roots of the electron densities at the Wigner–Seitz cell
boundary) to predict the heat of formation. In addition to the EPs,
we also considered a few CPs, such as alloy density, volume,
and formation energy, which are simple to evaluate based on DFT
calculations.
Many previous ML studies have been guided by heuristic

approaches in scrutinizing the potential descriptor space, in order
to include only the descriptors thought to be relevant to the
prediction of the target property.32,34,35 For example, Kong et al.
used 7 preselected descriptors to predict the crystal structure of
AB2 compounds32 and Seko et al. used 23 preselected descriptors
to predict the melting temperatures of binary solids.35 In this work,
we made no attempt to make any a priori selection for these
descriptors. However with only 100 data points, including all of
them in the analysis would result in a very large model space and
potentially reduced predictive accuracy. It becomes important to
identify the appropriate descriptors to develop a reliable model
with minimal data-sets.34

Dimensionality reduction—removing some descriptors before
applying a given ML algorithm—is an important pre-processing
step in many problems. For example, ML algorithms cannot
distinguish between two nearly perfectly correlated descriptors.
So, highly correlated descriptors should be removed (or averaged).
PCA could be applied to identify projections of the descriptor
data, which have the greatest variance and, therefore, possibly,

Fig. 2 Confusion matrices of calculated and predicted classification
results for 100 antisite (A) and non-antisite (¬A) type B2 inter-
metallics using a Neumann’s, b DT, c f-MART, and d r-MART models
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the most information. The problem with this approach is that,
because the outcome of interest is not taken into consideration,
the projections found by PCA might be (nearly) orthogonal to the
projections which are actually useful in predicting the outcome.
Two different techniques were therefore applied to reduce the

number of descriptors passed to the classification schemes. One is
Spearman’s’s correlation36 between pairs of descriptors and the
other is based on the predictive value of individual descriptors as
measured by the the Mann–Whitney–Wilcoxon (MWW) rank-sum
statistic.37 In the first case, we attempted to identify sets
of descriptors highly correlated with one another, allowing us to
select one element from each set for possible inclusion in the
fitted model with little or no reduction in predictive power. The
distance between two potential descriptors was computed as
dij¼ 1� ρ2ij , where ρij is the Spearman’s correlation between the
two descriptors. This distance takes values in the range [0,1], with
smaller values corresponding to higher correlation. Considering
that classification trees and other tree-based regression methods
used later in this work are invariant under monotone transforma-
tion of descriptors, this Spearman’s distance approach is well-
suited to dimensionality reduction. The Spearman’s’s distance
between any two potential descriptors, plotted in Fig. 3, reveals

several correlated descriptors. Among descriptors that are strongly
correlated with others based on computed Spearman’s correlation
values, only one of them was selected for use in classification.
For example, average Zunger pseudopotential radius (RZ,avg)

38 and
average atomic radius (Ravg) are highly correlated. In this case only
Ravg was retained for future data mining. Likewise, differences in
principle quantum numbers (Δn), atomic numbers (ΔZ), and
Clementi effective nuclear charges (ΔZeff)

39 are also highly
correlated, and thence only ΔZ was considered for further use.
The second technique is based on the Mann–Whitney–MWW

rank-sum statistic (or corresponding p-value),37 which is computed
by ranking the observations of a descriptor and then summing the
ranks corresponding to the observations belonging to only one
defect type (or the other). Very small or very large sums
correspond to very little or no overlap between the descriptor
distributions of the two defect types. A lack of overlap between
the two distributions implies that the corresponding descriptor
can be used to distinguish the defect types. Therefore, these
descriptors can easily be ranked according to the value of their
MWW statistic or, better yet, the corresponding p-value, with small
values indicating that a certain descriptor is useful in discriminat-
ing between the two defect types. By ranking the descriptors in

Fig. 3 Correlation between the predictors computed with Spearman’s rank correlation coefficient
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this way, we can eliminate those with the largest p-values;
i.e. those descriptors that are less diagnostically useful than the
others. The MWW rank sum values, shown in SI Table 1 for all the
descriptors, suggest that the “minimal” or “maximal” types of
various descriptors, together with “difference” types are the most
predictive. Only in specific cases, “average” type of descriptors,
carried along with “minimal” or “maximal” types of descriptors, are
predictive. Therefore, descriptors that are the average of various
EPs were dropped in favor of the maximum and minimum of the
descriptors. The dimensionality reduction based on Spearman’s
correlation and p-value analysis left us with 35 descriptors (listed
in SI Table 2) for further data mining studies.
Based on the retained descriptors, we fitted a classification

tree (described in detail in the Methods section) to the binary
outcome of the dominant point defects type using the recursive
partitioning routine rpart in R programming language.40 We also
applied a 10-fold cross-validation to obtain unbiased estimates of
the predictive accuracy of the fitted model. According to cross-
validation, the optimal DT has three splits as shown in Fig. 4, with
the corresponding three descriptors: the minimum of Miedema's
electron density parameter ðminðn1=3WS ÞÞ, formation energy per
atom (ΔEf) and normalized difference in Allred electronegativity
(ΔXA). The root classification rule in the DT is based on Miedema's
electron density parameter, which is the cube root of elementary
electron density at the Wigner–Seitz boundary, and is given as
minðn1=3WS Þ � 1:45. We classified all the metallic elements with the
corresponding n1=3WS values (can be seen in SI Fig. S1) and found
that almost all elements with n1=3WS � 1:45 are transition metal
elements (except Be). This makes intuitive sense as the EPs of
these transition metal elements are relatively similar and the
formation of antisite defects (BA or AB) will be favored as it does
not significantly change local intermetallic bonds in comparison
with bond breaking status in vacancy defects. The next-level
decision rule obtained from the classification, ΔEf≥ −0.502 eV/
atom, is based on the compound formation energy. This
descriptor is the same as what was chosen by Neumann for
his model. As shown in ref. 24, the nearest-neighbor interaction
approximation gives rise to the estimation of antisite defect
formation energy being proportional to ΔEf, where a larger
magnitude of ΔEf corresponds to larger antisite defect formation
energy, which tends to make the formation of vacancy defects
energetically more favorable. The last classification rule based on
elementary electronegativity difference between A and B is given
as ΔXA≥ −0.68. This also agrees with intuitive assumptions that a
smaller elementary electronegativity difference corresponds to
relatively similar properties between the two compositional

elements and thus antisite defects may be more preferred.
Overall, we can see that the classification rules proposed in this
DT model are in general consistent with intuitive assumptions and
analytical approaches.
The accuracy of the aforementioned DT model was again

evaluated with computed defect types of these 100 compounds.
The confusion matrix of the DT model is presented in Fig. 2b.
In contrast to Neumann’s model, the DT model exhibits a bias
towards antisite dominant type prediction, as it predicts
59 compounds to be antisite dominated, and the remaining
41 compounds to be non-antisite dominant types. This DT model
correctly predicts antisites as the dominant defects in 45 out of
the 59 compounds, indicating a 76% accuracy on predicting this
type, while for the non-antisite dominant type, the model
correctly predicted 36 compounds, indicating a 87 % accuracy.
For the other 14 antisite dominant and 5 non-antisite dominant
compounds, this DT model yielded the opposite (wrong)
predictions. Overall, this DT classifier correctly classified the defect
types with 81 % accuracy.
Unfortunately, while a single DT may be easy to interpret and

use, it tends to be unstable, with small changes in the input data set
producing large changes in the fitted tree. To ameliorate this and
other problems, we considered models based on large collections
of trees. There are several techniques for producing these
collections but the one we used is based on “gradient boosting”.41

Another technique, which also produces a collection of trees, called
bagging41 was recently used by Meredig et al. to predict formation
energies.42 The gradient boosting technique, fits trees of fixed
depth, one after the next; first, to the observed data, and then to
the residuals from the previous step. In this way, the observed
prediction error decreases as each new tree is added to the fitted
model, where k-fold cross-validation is used to compute unbiased
estimates of the prediction error as a function of the total number
of trees in the fitted model. The model with the lowest estimated
prediction error is finally selected as the optimal classifier.
In order to obtain a better model with improved predictive

accuracy, we applied the gradient boosting technique to generate
a MART model. Again, 10-fold cross-validation was used for model
selection and prediction accuracy estimation. The generated
MART model using all the 35 descriptors is called full MART
(f-MART), being composed of 997 DTs. It has a fit accuracy of 94 %
as shown by the confusion matrix given in Fig. 2c and a predictive
accuracy of 71 %. This f-MART model, though being relatively
accurate, may suffer from some critical problems. In particular,
gradient boosting assigns a value to each descriptor included in
the model, which measures that descriptor's influence on the
model. This assesses the magnitude of the effect that small
changes in each descriptor may bring to the final predictions of
the model: the higher the number is, the more important the
corresponding descriptor is to yield accurate predictions. When
the influence of the 35 descriptors on the f-MART model was
examined, we found many descriptors, e.g. min(X) and Δn, have
relatively small influence (≤1 %) on the predictive accuracy of the
f-MART model. Besides, larger number of descriptors passed to the
fitting procedure may give rise to higher variance in the MART
model, i.e. less stability. In addition, using a large number of
descriptors relative to the training set can lead to overfitting,
where the developed model becomes too tailored to the input
sample. An overfitted model can perform poorly against
compounds not used in the generation of the model, despite
high accuracies obtained during model generation. By limiting the
input descriptors to the MART model, more stable and accurate
models can often be produced.
In this context, we limited the descriptors in the f-MART model

using the “influence trimming” approach, where low-influence
descriptors were removed iteratively such that at each step, the
descriptor with the lowest relative influence factor was removed,
the model was refitted and the relative influence factor of

min (n      ) ≥ 1.45
1/3
W S

Antisites Δ Ef  ≥  −0.5 eV / atom

Δ X Allred  ≥ −0.68

Antisites Non-antisites

Non-antisites

Yes No

Yes

Yes

No

No

Fig. 4 DT- based classification scheme to predict the dominant
defect types in B2 compounds
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remaining descriptors was recalculated. We carried out this
procedure until further iteration would result in a model with
less accuracy in comparison with the previous ones. The resulting
MART model, called r-MART, is comprised of 2496 trees and retains
only six descriptors. The confusion matrix for the r-MART model is
given in Fig. 2d, and it shows that the r-MART model has a fit
accuracy of 98 % and predictive accuracy of 75 %. In comparison
with the f-MART model, both fit and predictive accuracies are
improved. In particular, the r-MART model correctly classifies 49 B2
compounds as antisite dominant and the other 49 ones as non-
antisite dominant intermetallics, except the two alloy systems, i.e.
RuAl and PdBe. It is also encouraging that the r-MART model does
not exhibit any bias in classification, in contrast to what has been
observed in both Neumann's and the simple DT models.
The systems for which the predictions of ML models do not

agree with the outcomes from the DFT calculations are given in
SI Table 4. It can be noticed that all three models wrongly predict
the dominant defects in BePd. Both the f-MART and DT models
wrongly predict the dominant defects in LiAg, TiFe, and NiZn.
To validate that the r-MART model is not biased by the input set

of B2 intermetallic compounds, the accuracy of the r-MART is
tested against fourteen additional B2 intermetallics (given in
SI Table 5) that are not used in the generation of the model. For
the selected fourteen compounds, DFT calculations were
performed to determine the dominant defect types and the DFT
computed dominant defect types are compared with the r-MART
predictions. For 11 of the 14 compounds, r-MART predictions
match with the results from DFT calculations giving a success rate
of 78.6 %, which is in agreement with the 75 % predictive accuracy
estimated from the 10-fold CV.
The six descriptors retained in the r-MART model and

corresponding relative influence factors are given in Table 1.
Within these six descriptors, all the five main groups of EPs as
defined by Villars33 are represented. Among these six descriptors,
the two descriptors present in the top nodes of the DT classifier in
Fig. 4, ΔEf and n1=3WS;min, are also having the two largest influence
factors of 22.89 and 12.37 %, respectively. However, the third
descriptor ΔXA in the DT classifier is replaced by ΔRZ, max(Z),
Δn1=3WS , and XA,max in the r-MART model. This shows that the r-MART
model, instead of being completely different from the simpler DT
model, can be considered as a refinement over the DT model.
The presence of Δn1=3WS and ΔRZ in the r-MART model implies that
the differences in the electronic properties and the sizes of the
constituent elements affect the nature of the dominant defects. It
can also be understood that max(Z) and XA,max are partitioning the
chemical space similar to n1=3WS;min and ΔEf. As a whole, the r-MART
model can be thought of as a function that maps a complex
combination of chemical space partitioning and electronic and
size differences between the constituent elements to the
dominant defects in the B2 intermetallics.
The occurrence of ΔEf and n1=3WS;min in both the DT and the

r-MART as the two most influential descriptors suggests that the DT

model can be used as a physically intuitive first order approxima-
tion for defect classification with reasonable confidence.
It is worth noticing that the three descriptor DT model and the

f-MART model with its 35 descriptors are both sensitive to any
errors or biases in the input data for the different reasons listed
earlier. On the other hand, the r-MART model containing only six
descriptors is a more robust model, and any small deviations in
the training set should not significantly affect the prediction
power of the r-MART model generated.
Taking advantage of its stability and predictive power, we

considered next the application of the r-MART model for
predicting the defect behaviors of other possible B2 compounds.
Here, a total of 44 common metallic elements were chosen to
form possible B2 composition space. It can be seen that the
present prediction covers (44 × 43)/2 = 946 B2 compounds.
Instead of performing relatively time-consuming defect property
computations, the unit cells of the rest of B2 compounds, 946
−100 = 846 in number, were simply optimized with DFT to obtain
the formation energies, ΔEf, and the resulting formation energy
values were fed to the current r-MART model to predict their
defect behavior. It should be noted that a comparison of the ΔEf
values with those for other compounds in the same systems in the
Materials Project database42 shows that only 44 of the systems
form stable B2 intermetallics, as indicated in Fig. S2 in the SI. The
predictions for the remainder of the systems are still relevant in
the sense that compounds that are not on the ground-state hull
can become stabilized at finite temperatures, or they can form as
metastable phases in materials processing.
The final prediction of the r-MART model, and its comparison

with the DTC based on DFT calculations for the 100 calculated
compounds are illustrated in Fig. 5. It can be seen that, among all
compounds considered here, 525 compounds are predicted to be
the antisite dominant type and the other 421 compounds are
classified as the non-antisite dominant type. For the compounds
consisting of only transition metal elements, 305 out of 378
compounds (81 %) are predicted to be antisite dominant defect
types, which is consistent with the trend drawn from the
classification rule derived from the DT model.
Figure 5 affords us to understand why the ML models failed for

the systems listed in SI Table 4. The failure systems are located at
either the top central region or in the lower middle region. The
dominant defect types rapidly change in the top central region,
and the lower middle region contains the complex shaped
boundary separating the regions that contain antisite forming
compounds with those that form vacancies. Making predictions
near a boundary/transition is inherently difficult. While the MART
models are able to capture these high frequency variations to a
maximum extent, DT model is not up to the task. The failure
systems of the f-MART and r-MART models also lie in the same
regions. Higher number of failures in f-MART model can be
ascribed to overfitting.
We would like to note that the methods and the approach

presented here are quite general and can be adapted for various
scenarios. The MART models presented here can be used for both
regression as well as classification, which makes them a suitable
choice to predict other properties of materials that are compu-
tationally intensive.
The dilute solution model is applicable to multi-component

systems with arbitrary crystal structure. By combining the
flexibility of the dilute solution model with the ML models based
on DTs, which are additive, one could extend the model to include
all binary systems by computing similar models for other binary
compounds with different crystal structures (phases) and combine
the generated models into a single model with a crystal structure-
based root-node partition at the top. Due to the above mentioned
advantages, we believe the approach presented here would
be particularly powerful when applied over much larger ternary
and quaternary configurational space. For compositions that

Table 1. The six descriptors in r-MART model and their relative
influence

Descriptor Relative influence (in %)

ΔEf 22.89

Δn1=3WS 20.92

ΔRZ 17.20

Zmax 15.12

n1=3WS;min 12.35

XA,max 11.52
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go beyond the dilute deviations from the stoichiometric compo-
sitions of various phases, where phase stability and structural
variations need to be accounted for, for situations involving
concentrated disorder, other models that account for defect-
defect interaction such as special quasirandom structures
approach should be applied.43

An interesting extension of the proposed approach would
be to predict the dominant defects over a broader range of
temperatures. Calculating the point defect concentrations at
different temperatures is straightforward with the thermodynamic
formalisms employed here. The results for different temperatures
could be incorporated into a unified model using temperature as an
additional descriptor during the ML model building stage. Another
interesting extension of the work would be the prediction of the site
preferences of the ternary solutes, such as those added to improve
low-temperature ductility in intermetallic compounds.44 In binary
B2 intermetallics, the solute atom can occupy either of the two
B2 sublattices. By ordering the sublattices based on the property of
the native element of the sublattice, such as atomic number, atomic
weight, or Mendeleev number, the site preference of solutes in
different intermetallics could be converted to a binary form (0/1) in a
consistent manner. These binary outcomes enable development of
simple yet robust ML models for solute site preference in
intermetallics in a manner similar to that employed in the present
work. For compounds exhibiting a different structure (i.e., beyond
the B2 structure), additional properties such as elemental composi-
tion, site multiplicity and site coordination number are appropriate
as descriptors to the ML models.

CONCLUSIONS
In this work, we demonstrated an approach combining the high
throughput DFT calculations with ML algorithms to predict
dominant defect types in inorganic compounds. The approach
was illustrated for the specific case of binary intermetallic
compounds with the cubic B2 crystal structure. We computed
intrinsic point defect properties for 100 B2 intermetallics using a
recently developed python tool for high throughput density
functional theory computations of dominant defect types. We
subsequently classified the compounds into two categories:
antisite or non-antisite defect dominating intermetallics, depend-
ing on the dominant defects in off-stoichiometric regions.
Neumann's classification model, the only empirical model avail-
able for identifying the dominant defects, when assessed with this
data set, shows a 61 % accuracy. To develop classification schemes
with better accuracy and understand the underlying principles, we
applied ML techniques on the computed data. In particular, with a
simple binary DT- based classification scheme we obtained a
better fit accuracy of 81 %. Besides the formation energy, ΔEf, used
in Neumann's model, two additional descriptors, minðn1=3WS Þ and
ΔXA, are found to be relevant for predicting the defect types more
accurately in the developed tree-based classification scheme. We
further introduced the MART classification models, and through
iterative removal of low-influence descriptors, we established a
robust r-MART model with only six descriptors, which yields a
much higher fit accuracy (98 %) and prediction accuracy (75 %).
The ML methods presented here are quite general and can be
used for either classification or regression of other properties of
interest in materials. Finally, the power of this predictive model is

Predicted Antisite Type 

Calculated & Predicted Antisite Type 

Predicted Non-Antisite Type 

Calculated & Predicted Non-Antisite Type 

Calculated & Predicted Types Disagree

Fig. 5 Dominant defect type predictions from r-MART model for 946 B2-type intermetallics. Colors indicates the relationship between
prediction and calculations as shown in the legend
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applied to classify the defect type of the other 846 possible B2
compounds as shown in Fig. 5. The approach presented here can
be extended to multicomponent and multisublattice intermetal-
lics, where the configuration space is much larger than that
considered here, as well as to charged point defects in
semiconducting and insulating compounds.

METHODS
Defect concentrations in a grand-canonical dilute-solution
formalism
The intrinsic point defect properties in B2 intermetallic compounds were
evaluated using the computational framework recently implemented in
the python code PyDI.I28 This framework uses the grand-canonical, dilute-
solution thermodynamic formalism described in Ref. 27 to predict intrinsic
point defect concentrations in ordered intermetallic compounds as a
function of temperature and composition deviating slightly from
stoichiometry. In this formalism, defect concentrations and therefore
dominant defect types can be computed at off-stoichiometric composi-
tions using DFT calculations for supercells based on the ideal stoichio-
metric compound, with only a single defect present. In the present work,
we computed the point-defect concentrations at the temperature of 1000
K, and limited the composition ranges to +\−1 % around the stoichiometric
50/50 composition. The resulting defect concentrations are much lower
than those required for the B2 intermetallic compounds to form a solid-
solution phase. For both concentration regions, i.e. A-poor (B-rich) and
A-rich (B-poor), the dominant defect type, which can be either vacancy or
antisite, are identified. In the remainder of this section, we briefly review
the computational formalism.
For binary B2-type intermetallic compounds, with the crystal structure

shown in Fig. 1a, each site p in the structure can be occupied by one
of two atom types (A or B) or a vacancy. The occupation at each site is
denoted by a local concentration variable ci(p) which takes a value of 1 if
atom type i is at site p and zero otherwise. In the current application, i = 1
or 2 denotes atom of type A or B, respectively. For a stoichiometric,
perfectly ordered B2 structure, c1ðpÞ � c0i ðpÞ ¼ 1 for all sites p on the
A-type sublattice, and zero otherwise, and c2ðpÞ � c02ðpÞ ¼ 1 for all sites
p on the B-type sublattice, and zero otherwise. More generally, for a
compound at finite temperature of off stoichiometry, the values of ci(p) will
differ from the values c0i ðpÞ due to the presence of nonzero equilibrium
point defect concentrations, and the total number of atoms of type i, Ni, is
given by the following sum: Ni ¼

P
p¼1;2ciðpÞ. The overall mole fraction of

atoms of type B is then defined as x2 = N2/(N1 + N2), and similarly for the
mole fraction of species 1 (x1 = 1−x2).
In the dilute-solution model, a first-order low-temperature expansion

of the grand potential, Ω, yields

Ω ¼ E0 �
X

i

μi
X

p

c0i ðpÞ � kBT
X

p

X

ϵ

expf�½δEϵðpÞ �
X

i

μiδc
ϵ
i ðpÞ�=kBTg:

ð1Þ
Here, E0 denotes the ground-state energy for a perfectly ordered

stoichiometric B2 compound, μi is the chemical potential of element i, kB is
Boltzmann's constant and T is temperature. The variable ε in the second
sum for the third term on the right hand side of Eq. (1) denotes a possible
point defect (i.e., an antisite or vacancy) leading to an energy change δEϵ(p)
and change in the site occupation variables δcεi . Following the terminology
used in ref. 27, hereafter, δEϵ(p) and δEϵðpÞ �P

iμiδc
ϵ
i ðpÞ will be referred to

as defect “excitation energy” and defect formation energy, respectively.
From Eq. (1), the following relation can also be derived:

hciðpÞi ¼ c0i ðpÞ þ
X

ϵ

δcϵi ðpÞ � expf�½δEϵðpÞ �
X

j

μjδc
ϵ
j ðpÞ�=kBTg; ð2Þ

where 〈ci(p)〉 denotes the ensemble averaged concentration of element i at
site p; note that by symmetry 〈ci(p)〉 will be equal for all sites p belonging
to a given sublattice. For any composition, by specifying the mole fractions
between the two constituent elements and by setting the grand-potential
Ω in Eq. (1) equal to zero (corresponding to thermodynamic equilibrium
relative to the number of lattice sites under zero stress conditions), we
obtain the two equations needed for determining the chemical potentials
of the two elements in a B2 compound. Substituting the resulting chemical
potentials into Eq. (2) yields the equilibrium defect concentrations for a
given temperature and input values of chemical potentials (which
determine the overall composition of the alloy).

Density functional theory (DFT) calculations
Periodic supercells were used to compute the defect energies arising in
Eqs. (1) and (2). In this approach, the defect excitation energy, δEϵ(p), for
either an antisite or a vacancy defect is given by

δEϵðpÞ ¼ EϵdefðpÞ � E0; ð3Þ
where EϵdefðpÞ is the energy of the supercell with defect ϵ at site p, and E0 is
the energy of the non-defected bulk supercell. Bulk and defect supercells
were generated with PyDII28 from the optimized structures in the Materials
Project database.26

The energies of supercells were computed within the framework of DFT
using the Vienna ab initio simulation package.45–47 We used the projector
augmented wave method48,49 and the Perdew, Burke and Ernzerhof50

generalized-gradient approximation (GGA) for the exchange-correlation
functional. For all the calculations, a cut-off value of 520 eV was used for
plane-wave basis set. Spin polarization with ferromagnetic spin ordering
was considered as the starting point for all calculations. Based on our tests
(the details are presented in SI Table 6), accounting for anti-ferromagnetic
ordering for those systems where it was energetically favorable, did not
lead to changes in the predictions for the dominant DTC.
The defect supercells were optimized by relaxing the atomic positions at

constant volume until the individual forces on each atom were minimized
to be less than 0.01 eV/Å. Based on convergence tests of defect energies
with respect to supercell size and k-point sampling mesh, we used 4 × 4 ×
4 B2 supercells (128 atoms) with 4 × 4 × 4 Monkhorst-Pack k-point grid for
all calculations. We tested the influence of the supercell size on dominant
DTC by computing the defect energetics of five B2 systems for different
supercell sizes given in SI Table 7. The selected five systems are on ground
state hull, and have large size differences between the host atoms which
helps us to check the effect of strain-induced interactions. In the
compounds considered, the difference in the excitation energies
of a defect in 4 × 4 × 4 supercell and the corresponding defect in larger
6 × 6 × 6 supercell was found to be much less than the differences in the
excitation energies of the defects. As an example, composition-dependent
defect concentrations in ScPt for the different supercell sizes listed in SI
Table 7 are plotted in SI Fig. S3. In all the systems considered, the dominant
defect types have been found to remain unaffected by increasing the
supercell size beyond the 4 × 4 × 4 setting used in this study. The first-
order Methfessel Paxton method51 with a smearing width of 0.2 eV was
used for electronic smearing.

Machine learning: Decision trees
To predict the defect types of B2 intermetallics, we developed three
classifiers, each of which uses binary DTs41 as base learners. A binary DT is
a function which maps descriptors X ≡ {xi} to classes {c}, which, in our case,
take only two values (c = 0 or 1): antisite or non-antisite types. The key
advantage of tree-based classification schemes is their interpretability,
because each non-leaf node in the tree corresponds to answering a simple
question of the form “is xi≤ s?”, where s is some value in the domain of xi. If
the answer to this question is yes, then one looks at the question posed by
the left-hand child node, assuming it is not a leaf, and if the answer to the
question is no, then one looks at the question posed by the right-hand
child node. Final predictions are simply read from the leaf nodes, where
each one specifies either c = 0 or c = 1.
Mathematically, each node m of the classification tree represents a

subset of the descriptor space Xm which contains Nm data points and the
corresponding outcomes, fym1; ¼ ; ymNm

g. Taking I(yi = c) = 1 if ith observa-
tion, yi, is of class c and 0 otherwise, we can define

p̂m;c ¼
1
Nm

X

i¼1;Nm

Iðyi ¼ cÞ ð4Þ

to be the proportion of class c observations in node m. The data points
in node m are then assigned to the majority class c� ¼ argmaxc p̂m;c .
Recursive partitioning is used to construct DTs. Starting with the root node,
which contains the entire data set, the data at each node is split by
splitting descriptor xj at a split point sj such that the resulting partition
defines two child nodes, m1 and m2, whose descriptor data is given by

Xm;m1 ðxj ; sjÞ ¼ fX 2 mjxj � sjg and Xm;m2 ðxj ; sjÞ ¼ fX 2 mjxj>sjg: ð5Þ
The objective at each node is to engineer the split such that the child

nodes are as homogeneous as possible. This homogeneity can be
measured in various ways, including entropy, the so-called Gini index
(which is another measure of entropy), and (raw) classification error. The
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splitting is stopped when any one of the following criteria is met: (a) no
descriptor can be found which produces a useful split of the data, in
which case splitting really cannot continue; (b) there are fewer than
some number of observations in the current node—here, we use the
number of 6; (c) the tree has reached a pre-specified depth so as to
minimize overfitting. To avoid overfitting, k-fold cross-validation is used to
identify the tree with the lowest estimated prediction error.
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