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We introduce atomate, an open-source Python framework for computational materials science simula-
tion, analysis, and design with an emphasis on automation and extensibility. Built on top of open source
Python packages already in use by the materials community such as pymatgen, FireWorks, and custodian,
atomate provides well-tested workflow templates to compute various materials properties such as elec-
tronic bandstructure, elastic properties, and piezoelectric, dielectric, and ferroelectric properties. Atomate
also enables the computational characterization of materials by providing workflows that calculate X-ray
absorption (XAS), Electron energy loss (EELS) and Raman spectra. One of the major features of atomate is
that it provides both fully functional workflows as well as reusable components that enable one to com-
pose complex materials science workflows that use a diverse set of computational tools. Additionally,
atomate creates output databases that organize the results from individual calculations and contains a
builder framework that creates summary reports for each computed material based on multiple
simulations.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Computational materials science methods are continually
growing in predictive power due to advances in theory, computing,
and software development. Today, there exists several examples of
new functional materials such as batteries [1,2], thermoelectrics
[3,4], and catalysts [5,6] that have been designed primarily through
such methods [7] and the use of computations has in some cases
proven to save significant R&D costs and time [8]. As computa-
tional methods become applicable to a greater span of problems,
the audience that could potentially benefit from their use grows.
However, computational softwares such as density functional the-
ory calculation codes typically require careful and manual setup of
many parameters. The interface for performing calculations is typ-
ically highly tuned for performing a few very detailed studies.
However, emerging applications efforts towards high-throughput
screening for functional materials and building libraries of materi-
als properties may involve thousands or even millions of calcula-
tions, for which it would be impossible to manually generate
input files or fix various error messages that occur during such cal-
culations. In addition, learning to correctly conduct multiple differ-
ent types of analyses is difficult: calculation procedures are
typically not well documented or even standardized, and certain
types of calculations involve multiple, labor-intensive steps prone
to errors. These difficulties can lead to inefficient and in some cases
incorrect usage of these tools, hampering user productivity and
data integrity. Thus, there have previously been multiple efforts
to build abstraction layers intended to facilitate the use of compu-
tational methods. Such efforts include commercial offerings such
as Medea [9], Materials Studio [10], and GoVasp (now part of
Medea) and academic codes such as AiiDA [11], MAST [12],
qmpy/OQMD [13], ASE [14], AFLOW [15], the Harvard Clean Energy
Project [16], iochem-bd [17], Quixote [18], and our own previous
efforts (MPWorks [19] and an earlier Java/SQL-based framework
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[20]). The common goals of these frameworks are multi-fold. First,
they enhance productivity by freeing researchers to focus their
attention on scientific aspects of the problem rather than the
minutia of calculation execution. Second, they create a set of easily
replicable and testable community standards for simulations.
Finally, they enable new applications such as high-throughput
computing by automating many tasks that are typically performed
manually.

In this paper, we introduce atomate, which facilitates auto-
matic and semi-automatic calculations of materials properties.
The goal of atomate is to collect knowledge about calculation pro-
cedure for various types of materials analyses into easily-usable
workflows and workflow components that can be modified and
recomposed as needed. Some of the workflows currently available
in atomate include the calculation of band structures, bulk modu-
lus and elastic tensors, Raman spectra, dielectric constants, ferro-
electricity, and multiple types of spectra calculation (XAS, EELS).
Atomate currently interfaces with the VASP software for density
functional theory calculations [21], the FEFF [22] code for spectro-
scopic properties, and has preliminary support for molecular
dynamics simulations with LAMMPS [23]. Support for additional
codes such as QChem [24] is planned for the future.

Atomate is a redesign of our previous Java/SQL based high-
throughput infrastructure [20] as well as our second-generation
Python/Mongo MPWorks effort [19], which powered the Materials
Project [25] database of over 1 million individual calculations. Ato-
mate aims to improve the extensibility, usability, and composabil-
ity of workflows over our previous efforts. One major
distinguishing feature of atomate versus many similar efforts is
that it is built on top of multiple powerful open-source tools
including pymatgen (software to generate/manipulate structures,
create input files and post process output files) [26], custodian
(software to recover from calculation errors) [27], and FireWorks
(a workflow library) [28]. It also makes use of external libraries
such as phonopy [29] for specialized calculations. This design
allows almost all the source code of atomate itself to be dedicated
to high-level specifications of calculation procedure. In addition,
atomate contains tools both for executing calculations as well as
managing the results within a well-structured database so that
one can not only perform calculations but efficiently analyze their
outputs.

Atomate is well-tested, with currently over 50 unit and integra-
tion tests that are run as part of continuous integration suites (Cir-
cleCI and TravisCI). The package is Python 2 and 3 compatible and
includes substantial documentation. The source code, distributed
under a modified BSD license, can be obtained at https://www.
github.com/hackingmaterials/atomate. We note that although ato-
mate itself is open-source, some of the software packages that it
interfaces with (e.g., VASP [30,21]) are not and require a commer-
cial license to use. Atomate can be easily installed using pip or ana-
conda package managers. The version of atomate at the time of
writing is v0.5.6; updates to the code are clearly documented in
the changelog, https://hackingmaterials.github.io/atomate/chan-
gelog.html.
Fig. 1. Atomate dependencies.
2. Overview and code design

In this section, we briefly discuss some of the programming
design decisions for atomate. Some of these design features, such
as integration with multiple queuing systems, are common to most
computational frameworks presented earlier. Other features, such
as a built-in database for querying calculation results, are present
in some form in other libraries (e.g., AiiDA) but currently absent
in others (e.g., MAST). Finally, some design choices, such as the
use of a noSQL document store (MongoDB) and a builders
framework to post-process results, are to our knowledge unique
to our design.
2.1. Modular code design and use of existing packages

The goal of atomate code is to document, codify, and automate
procedures and algorithms for performing various types of chem-
istry and materials science calculations. However, many aspects
of running such calculations are relatively mundane, such as cor-
rectly writing queue scripts for various types of queue managers
such as PBS or SLURM, correcting calculation errors by modifying
input files, and parsing various types of calculation file formats
to extract data. One major design decision of atomate is to focus
only on specifying materials workflows at a high level, i.e., at the
level of detail typical of the Methods section of a research manu-
script, and to use existing libraries for materials manipulation, file
I/O, error correction, and workflow management and execution.

In particular, we use:

� The pymatgen library [26] for structural manipulations, input
file generation, and output file parsing.

� The FireWorks [28] library, which is a general workflow man-
ager, as the language to define workflows and the mechanism
to execute and manage workflows.

� The custodian [27] library for detecting errors during the calcu-
lation and automatically fixing them.

The above listed library dependencies are pictorially depicted in
Fig. 1. Details of these three libraries can be found in their respec-
tive publications [26,28] as well as documentation [27]. All three of
these libraries are open-source under MIT or modified BSD
licenses.

Atomate benefits in two major ways from this type of modular
design. First, it greatly reduces the length of code needed for the
atomate library itself and keeps workflow specifications at a rela-
tively high level. Such high-level specifications tend to be more
general (e.g., not specific to a particular hardware) and easier to
read, compose, reuse, and debug. Second, these three libraries con-
tinue to grow and develop new features independently of ato-
mate’s development. For example, pymatgen currently includes
contributions from 71 developers and FireWorks from 28 develop-
ers. A non-materials scientist that contributes improvements to
the visual workflow dashboard of FireWorks or improves its per-
formance has in essence also contributed this functionality to ato-
mate’s user base. Similarly, new structural manipulation or
analysis routines coded in pymatgen [26] by its user base become
immediately available to atomate users. Thus, modularity serves as
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force multiplier for the developer base for atomate and improves
the rate at which users see improvements and new features.

2.2. Workflow model and reusable workflow components

A calculation workflow is composed of one or more calculations
to perform a particular type of analysis of a material. For example,
a band structure workflowmay consist of a structure optimization,
a charge optimization, and a non self-consistent run on a fine mesh
k-point grid. Examples of calculation workflows implemented in
atomate are provided in the next section; for example, Fig. 3
depicts the major workflow components for a structure relaxation
and band structure calculation. Here, we summarize the principles
behind the workflow model used in atomate, which are based on
the classes and structure of its underlying FireWorks workflow
library. More details about this model are presented in a previous
paper on the architecture of the FireWorks software [28].

A workflow can be represented as a directed acyclical graph in
which the nodes of the graph involve computational operations. In
FireWorks, the definition of a workflow is extended to include con-
trol operations such as branching, looping, and detours (inserting a
sub-workflow into workflow) based on conditionals that are eval-
uated during runtime. This is referred to in FireWorks as dynamic
workflows, i.e., workflows that can programmatically modify them-
selves based on the results of completed steps of the workflow.
Although each workflow in atomate is intended to be one complete
type of analysis of a material, workflows can be chained or
appended to one another within FireWorks.

An individual unit of work within a workflow is referred to as a
Firework (note: a capitalization difference helps distinguish this
object from the name of the FireWorks package). Thus, a workflow
consists of one or more Fireworks with various dependencies;
upstream Fireworks can pass data to downstream Fireworks
through a FWAction object. Examples of Fireworks in atomate
include performing a structure optimization calculation based on
an input structure or performing a charge optimization calculation
based on a structure. Splitting a workflow into Fireworks has both
organizational and operational consequences. From an organiza-
tional standpoint, Fireworks serve as a more atomic unit in which
to reuse workflow components. For example, the structure opti-
mization Firework is reused in multiple different workflows, thus
reducing the effort and required code needed to implement various
workflows. From an operational standpoint, each Firework can
have a shared space of parameters called the fw_spec that all oper-
ations within that Firework can use. When executing on a queue,
all operations within a single Firework are necessarily performed
as part of a single queue submission and will not be split across
compute resources. However, from a workflow standpoint, the dif-
ferent Fireworks in that workflow may be run across different
machines or across multiple queue submissions, depending on
the chosen execution mode. Finally, some features such as setting
priorities, overriding queue parameters, or setting custom variable
overrides (fw_env) are specific to each Firework.

Fireworks themselves are composed of smaller functions called
Firetasks. Within a Firework, Firetasks must run in sequence. Fire-
tasks can share parameters that are defined within their enclosing
Firework. For example, the most basic version of the structure opti-
mization Firework is made up of 4 Firetasks: one to write input
files given the structure and additional optional parameters, one
to run the VASP executable either directly or through custodian
error-correcting framework, one to parse the outputs and write a
summary report to the file system or database, and a final one to
pass results and the calculation location to the next Firework. Like
Workflows and Fireworks, Firetasks are reusable components and a
single implementation of a Firetask may be used in multiple types
of Fireworks and therefore multiple Workflows.
Atomate also introduces a concept called powerups to help cus-
tomize certain desired workflow behaviors. Powerups modify
workflows in a similar way that decorators are used to modify
functions in the Python language: namely, they take a workflow
as input and return a modified workflow as output. For example,
existing powerups can add prioritization rules to workflows, con-
trol whether a simulation software is run directly or through the
custodian library, add metadata tags to the database for user track-
ing of workflows, or write files that help in organizing the contents
of various calculation directories on a file system. Thus, the base
workflow implementations are kept as minimal and as general as
possible, aiming to contain only the necessary steps needed to
properly execute a series of calculations. The user is then free to
choose which modifications they desire by adding in the appropri-
ate powerups without these custom modifications being written
into the base workflow definition. A configuration file can be used
to avoid having to re-specify what powerups and workflow set-
tings the user chooses to use by default.

Because there are at least three levels at which self-sufficient
code can be reused (Firetasks, Fireworks, and Workflows), and
workflows can be modified by feeding them through one more
powerup functions, creating new workflows is in some cases no
more than complicated than assembling together previously-
coded Firetasks and Fireworks into new configurations or with dif-
ferent parameters.

2.3. Workflow tracking, execution, and provenance

Workflow execution is managed by FireWorks. This includes
interaction with various queue systems (currently, PBS, SLURM,
Sun Grid Engine, and IBM Loadleveler are supported), job packing
(multiple calculations executed one after one another within a
queue submission as well as weak parallelization across multiple
nodes), user prioritization of runs (at both the workflow and indi-
vidual Firework level), and control of reruns. We note that execu-
tion details can differ across machines: as a simple example, the
location of an executable or of the desired scratch directory might
be different at different supercomputing centers. FireWorks
includes a functionality called fw_env that allows user-defined
variables to be tailored for a particular compute resource. In ato-
mate, we extend this concept further, allowing variables to be
either explicitly set or overridden by the compute resource
through a concept called env_chk.

FireWorks includes a database that tracks the status of each run
and can also track the progress of user-defined output files (e.g., to
report back the last few lines of current OSZICAR file for all cur-
rently running VASP calculations). Users can quickly generate
reports summarizing statistics of completion, failure, and job start
as well as use a built-in web frontend to explore workflow status
(Fig. 2). FireWorks can even inspect the job specification parame-
ters of completed versus failed jobs and report what parameters
appear to be correlated with higher than usual failure rates. For
example, within atomate, this feature can help identify if runs con-
taining a particular element are more likely to fail. The FireWorks
database also serves as a source of provenance that, when taken
together with the version of the all the various codebases used in
the analysis, provides a comprehensive record of how the simula-
tion was run.

2.4. Calculation results database

Atomate includes routines for parsing the output files generated
by calculations and entering the results into a structured database.
Atomate uses the noSQL database MongoDB, which organizes the
information for a single calculation within a single document.
We note that in our experience, MongoDB is easier for non



Fig. 2. Fireworks dashboard for the Materials Project production workflow manager. A live version is hosted by the Materials Project at http://fireworks.dash.material-
sproject.org.
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specialized users to use, understand, and develop on versus
traditional SQL-style databases. This is because developing SQL
databases requires designing a specialized schema that must be
well-planned in advance, and querying SQL databases requires
intimate knowledge of the schema format across various tables
or requires the use of wrapper libraries to assist in querying. In
contrast, noSQL databases are easier to design and more open to
modification because they do not adhere to a rigid schema, and
they are easier to query because queries are conducted on explicit
documents. We have thus found it easier and more productive for a
distributed team of non-specialist scientist-programmers to work
with and develop noSQL-style databases.

In atomate, a collection of MongoDB documents called tasks
contains the output data for all calculations. This document
includes raw data (e.g., initial and final structures, input parame-
ters, energy, magnetic moments), processed data (e.g., band struc-
tures, maximum residual force experienced by any atom at end of
run), and metadata (time of completion, total calculation runtime,
automatically-generated structure metadata).

We note that a single material might have several calculations
or tasks associated with it (e.g., for various types of analyses). Sim-
ilarly, some properties of a material may require combining data
from multiple calculations on the same material or across different
materials (for example, evaluating thermodynamic stability
requires analyzing energies for all compounds in the same chemi-
cal system as a material). To combine information across multiple
tasks, atomate includes a set of builders whose role is to aggregate
and reduce data. For example, the materials builder combines and
summarizes information from all tasks for a particular material
(same composition and crystal structure). If a new type of calcula-
tion is later done on the material, the builder will add to that mate-
rial’s summary document. Similarly, the E_hull builder will run an
analysis of the thermodynamic stability of a material based on
the known energies of all materials in the same chemical systems.
The builders play similar roles to agents described in the
Computational Materials Repository [31]. The builders in atomate
are implemented as incremental wherever possible - i.e., they
minimize the amount of processing needed for execution by only
processing new information since the last builder run.

A rudimentary web interface to the calculation results is avail-
able through the pymatgen-db [32] codebase. The web interface
allows performing Mongo-like queries and exploring results in a
text format. Future work may develop more graphical presenta-
tions of the results, e.g., crystal structure representations as is
implemented in ase-db [33].
2.5. Usage modes

Common ways to interact with a software library include
graphical, file-based, and programmatic interfaces. Atomate cur-
rently includes both file-based and programmatic interfaces, but
does not include a rich graphical interface (which is typically only
a feature of commercial software). It is possible that atomate will
include a graphical interface in the future, although our current
emphasis is on expanding the breadth and usability of the other
two modes of interaction with atomate.

The file-based interface to atomate is through a shell script
named atwf that is installed with atomate. With atwf one can use
a combination of a structure file (e.g., in Crystallographic Informa-
tion File or CIF format, as a Materials Project id interacting through
the Materials API [34], or in one of several other supported formats
such as POSCAR) and a workflow template file (in Yet Another
Markup Language, or YAML format) to generate a workflow and
submit it for calculation. Further details of the workflow template
file are present in the atomate documentation [35]. However, we
mention here that such files are generally only 10–20 lines of short
text and thus are easy to read and modify. Because many of
the workflows are simply different arrangements of Fireworks
building blocks, using a file to define how these building blocks
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interconnect to form various workflows makes workflow imple-
mentation simple and transparent.

A second usage mode available to users is programmatic access,
which is the most powerful access mode. We have attempted to
make this mode as easily accessible as possible to new program-
mers. For example, the VASP subpackage of atomate includes mul-
tiple presetworkflow templates in which the user only needs to call
a function with a structure as input in order to generate a full
workflow. For small modifications to that workflow, one can use
powerups which are again a simple function call. Further modifica-
tions can be obtained by changing the parameters at the Workflow,
Firework, or Firetask level. Very fine-grained control is obtained by
implementing or modifying workflow components through inter-
actions with the pymatgen base library [26], which is also open-
source. Thus, simple operations are made simple through the pro-
grammatic interface, and more advanced modifications are always
possible. It is important to note that full customization of input
files, and thus access to all the features of underlying software
packages such as VASP, is always possible through the atomate
interface.

2.6. Testing and validation

A major consideration when using automated or semi-
automated workflow implementations is whether accuracy is
retained compared to manual tailoring of input files for each speci-
fic calculation. In general, calculations involve two distinct types of
accuracy. The first type is validation of the numerical approach -
i.e., whether the calculation was performed and executed correctly
(i.e., someone else would reproduce the same result using the same
physical model). For example, the choice of plane wave cutoff
energy or density of k-point grid in density functional theory calcu-
lations control numerical accuracy, but are not determining the
underlying physics of the model. The second type of validation is
the accuracy of the physical model itself. For example, the appro-
priate choice of functional that relates charge density to energy
is a major physical consideration for density functional
calculations.

The numerical parameters used in atomate are designed to
achieve a balance of accuracy and low calculation time. Typically,
this is done by performing convergence tests for a benchmark set
of common systems and then defining cutoffs and settings based
on those tests. Where possible, atomate uses parameters (e.g.,
pseudopotentials) that have already been tested by the Materials
Project [36] and for which results are available for tens of thou-
sands of compounds. A second method atomate employs is to
include numerical validation checks as part of the workflow. For
example, the workflow for elastic tensor includes explicit checks
to ensure that the symmetry of the final tensor is commensurate
with that of the lattice, and the workflow for ferroelectricity
includes checks for zero band gap mid-workflow and checks on
maximum atom displacement and polarization curve fit at the
end of the workflow.

Our experience indicates that issues in the numerical approach
are rarely the major issue because the error bar arising from these
settings are usually small compared to deficiencies and errors in
the physical model. Thus, one must take care to validate the accu-
racy of the physical model itself when using automated workflows.
The default behavior of atomate is to again balance accuracy with
calculation time. Many of the workflows in atomate have been pre-
viously and extensively benchmarked against experimental results
[20,37–39]. However, the user must still decide what is the best
course of action for their study. For example, atomate by default
uses the GGA-PBE [40] functional for computing band structures,
which is known to severely underestimate band gaps. Switching
the functional to a more accurate Heyd-Ernzerhof-Scuseria (HSE)
[41] hybrid functional is straightforward via a powerup, but
requires the user to actively call the powerup function. Rather than
always attempt to guess what the user should be doing for a par-
ticular system, atomate’s goal is to make it simple for the user to
choose between different frameworks.
3. Workflows

The majority of workflows currently included in atomate uti-
lize the Vienna Ab-initio Software Package (VASP) [21,42–44],
which enables plane wave density functional theory (DFT) calcu-
lations of periodic systems. This package is widely used in the
computational research community to conduct first-principles
calculations of materials properties such as electronic bandstruc-
ture, charge density, elastic tensors, and piezoelectric tensor. In
addition to the properties that can be directly obtained, proper-
ties like energy, volume, forces and its derivatives can be pro-
cessed further to compute other important properties such as
phase diagrams, phonon bandstructure, thermal expansion coef-
ficients, bulk modulus, Grüneisen parameters, thermal conduc-
tivity and Raman spectral intensities. In the following
subsections we go through in detail selected VASP-based work-
flows available in atomate that can be used to compute direct
and indirect properties of materials. In our final workflow sub-
section, we also outline a workflow used to simulate X-ray spec-
troscopies of materials using an effective scattering amplitude
software (FEFF).
3.1. Crystal and electronic structure

A common workflow implemented in atomate is designed to
determine optimized crystal structure and bandstructure from
density functional theory calculations. This type of workflow may
also be used to determine the structural stability of compounds
using the potential energy as collected in VASP output and closely
mimics the production workflow used in the Materials Project that
has been used to collect structure and stability data on over 68,000
materials.

The standard workflow proceeds via an initial structure opti-
mization. Following this, the optimized structure is passed to a
Firework representing a static VASP calculation that determines
the potential energy and density at a higher k-point mesh.
From this, two non-self-consistent bandstructure calculations
are performed in separate Fireworks, one in line-mode, in which
a bandstructure is calculated along a high-symmetry k-path,
and another in uniform-mode, in which the bandstructure is cal-
culated with a uniform k-point grid. For each of the static Fire-
works, structure and charge density determined from previous
Fireworks is passed to the current Firework. In addition, in each
step, a task document is created that stores VASP output infor-
mation in a JSON-style document that may either be inserted
into a Mongo database or output to disk as a JSON file. Fig. 3
depicts the workflow diagram along with a sample plot of the
bandstructure and the density of states obtained from the
workflow output.

The standard bandstructure and structure optimization work-
flow may be also be modified or enhanced based on user prefer-
ences. For example, atomate contains variations on the standard
workflow that determine semi-classical transport coefficients via
the BoltzTraP code [45], that add an additional step to calculate
the bandstructure or bandgap with the more accurate HSE func-
tional [41,46], or that include spin-orbit coupling in a final calcula-
tion. A simpler workflow that only performs the initial structure
optimization but bypasses the fine mesh and special k-point elec-
tronic structure may also be chosen in the standard preset library.



Fig. 3. Top: Workflow diagram for standard structure relaxation and bandstructure calculation. Structure is the only required input, but parameters may be customized using
pymatgen VASP input set objects. In addition, users may supply custom VASP commands (e.g. for a custom compiled binary) and db credentials. Bottom: A plot (generated
using pymatgen and matplotlib [47]) of a sample electronic bandstructure and density of states obtained from the atomate workflow.
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3.2. Elastic tensor

To determine the elastic tensor of a given structure, we imple-
ment a workflow (shown in Fig. 4) that perturbs a structure by
independent deformations corresponding to each of the 6 unique
strain modes (i.e., 3 normal modes and 3 shear modes). This work-
flow is constructed via the use of several Transmuter Fireworks that
transform structures according to a supplied pymatgen Transfor-
mation object, which in this case represents the application of a
deformation gradient to the structure. The remaining Fireworks
calculate the stress of the deformed structures and pass the stress
and strain data to a final Firework, which analyzes the results. This
final analysis Firework performs a linear least-squares fitting for
each element of the elastic tensor and inserts the resultant elastic
tensor and various derived properties (e.g., Voigt-Reuss-Hill aver-
aged shear and bulk moduli) into a separate MongoDB collection.
The default operation of the elastic workflow in atomate is
equivalent to that which has been used to generate data on the
Materials Project website [25]. This preset uses a relatively high
number of deformations, 4 for each mode, and adds parameters
for the plane-wave cutoff and k-point mesh density appropriate
for the high-throughput methodology outlined by de Jong et al.
[37] However, users may also choose to customize the number
and magnitude of the normal and shear deformations, and a preset
workflow that uses the minimal number of perturbations for a gen-
eral material is also available.

3.3. Bulk modulus, equation of state, and thermal properties

Atomate includes a standard procedure modeled after the Auto-
matic Gibbs Library (AGL) [48] workflow for fitting energy-volume
data to equations of state and the subsequent computation of



Fig. 4. Workflow diagram for the elastic tensor workflow. Structure is required as an input to the preset workflow, which creates Fireworks for each of 24 deformations
corresponding to 4 perturbations to the 6 linearly independent strains in Voigt notation. These strain states and perturbation stencils may be further customized, and a
minimal workflow which uses the fewest possible deformations by symmetry is also optional.

146 K. Mathew et al. / Computational Materials Science 139 (2017) 140–152
various thermal properties. This enables a user to efficiently deter-
mine the bulk modulus, estimate temperature-dependent free
energies and various thermal properties such as thermal conduc-
tivity, Grüneisen parameter, etc. The structure of the standard
workflow for equation of state closely mirrors that of the elastic
workflow, in which deformations corresponding the isotropic vol-
ume expansion and compression are constructed and applied in
Transmuter Fireworks. However, the specific deformations and
the analysis procedure are different. The default operation of the
equation of state workflow uses a set of 21 deformations ranging
from ±10% of the structure’s equilibrium lattice constant. For the
equation of state and bulk modulus calculations the post-
processing step uses the equation of state models available in
pymatgen. For the other thermal properties the default post-
processing step of the workflow is to feed the generated energy-
volume data to the quasi-harmonic Debye approximation [49,50]
as implemented in pymatgen to compute the thermal properties
of interest. Also supported is the capability to run the workflow
in the phonopy mode so that phonopy [29] can be used in the final
post-processing step to compute the thermal properties using their
phonon-based quasi-harmonic approximation [51]. We note that
various thermal parameters derived from detailed equations of
state (e.g. Grüneisen parameters, etc.) might require higher-order
elastic constants, which are significantly more expensive and
require more numerous calculations than either of the standard
elastic or bulk modulus workflow.
3.4. Piezo and dielectric tensors

The piezoelectric tensor workflow uses VASP’s internal density
functional perturbation theory routines to determine the piezo-
electric constants. The preset settings have been tested with
respect to cutoff and k-point convergence for a variety of materials
that are consistent with a previous high-throughput study, which
contains more details on this calculation workflow and its
parameter choices [38]. A visual depiction of the workflow is
shown in Fig. 5.
3.5. Ferroelectricity

Ferroelectrics are materials with a spontaneous polarization
switchable by an applied electric field. To determine the sponta-
neous polarization of a polar material, we implement a workflow
that calculates the change in polarization from a nonpolar high-
symmetry reference structure to the given polar structure. The
polarization value extracted from this workflow is directly compa-
rable to the change in polarization measured experimentally due
to ferroelectric switching.

This workflow takes a polar ferroelectric candidate structure
and a nonpolar reference structure transformed to the polar low-
symmetry setting as input. These structures must have their atoms
ordered so intermediate structures between the nonpolar and
polar endpoints can be created using linear interpolations. Deter-
mining an appropriate nonpolar reference structure for a given
polar structure and transforming the nonpolar structure to the
polar setting is non-trivial and is currently not included in the
workflow.

The workflow relaxes the nonpolar and polar structures, per-
forms a static calculation of the band gap, and if both endpoints
are insulating, calculates the dipole moment of the endpoints.
The workflow also calculates the polarization of several linearly-
interpolated structures between the endpoints, which must also
be insulating. Note that the polarization for a metallic system is
ill-defined because metals screen electric fields and VASP calcu-
lates the Berry phase of all occupied bands to determine the polar-
ization of the system. As such, the workflow halts upon any static
calculation that yields a metallic bandstructure (in either the initial
or interpolated polar or nonpolar structures).

The outputs from the calculation of the polarization of all struc-
tures along the distortion are post-processed using the Polarization



Fig. 5. Workflow diagram for Piezoelectric/Dielectric workflow: calculations begin with a structure optimization followed by a static run with the LEPSILON flag set to true.
This static Firework uses VASP’s internal routines for calculating the piezo and dielectric tensors and stores the result in the working directory of the Fireworks or in the task
document inserted into a database.
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and EnergyTrend classes in pymatgen to extract the spontaneous
polarization and trends in total energy. Polarization is a lattice vec-
tor, meaning it is only defined modulo a quantum of polarization
defined by the electron charge, lattice vectors and unit cell volume
[52]. Because of this, we must adjust the polarization values from
our calculations which may be on different branches (including dif-
ferent integer multiples of the quantum of polarization) to the
same branch. Once the polarization values are on the same branch,
we can simply subtract the polar and nonpolar polarizations to
extract the spontaneous polarization. The PolarizationToDbTask
performs this processing with the Polarization class and stores val-
ues to the database such as the raw electronic and ionic polariza-
tion, adjusted total polarization, change in polarization along the
lattice vectors, and magnitude of polarization change. The Polariza-
tion and EnergyTrend classes are also used to store information rel-
evant to the smoothness of the polarization and energy trends
using splines. Fig. 6 depicts the overall ferroelectric workflow
diagram.

Further details on the ferroelectric workflow, including obtain-
ing valid nonpolar - polar structure pairs in an automated fashion,
Fig. 6. Workflow diagram for a ferroelectric workflow: Inputs to this workflow must incl
these, polarization is calculated for both structures. Using similar calculations of the p
spontaneous polarization of the material may be determined. This workflow halts if any
post-processing polarization calculations to extract the sponta-
neous polarization, and scientific results from this workflow will
be the subject of future publications.

3.6. Kinetic barriers from NEB calculations

Climbing-image nudged elastic band (CI-NEB) approach has
been widely employed to study the kinetics of materials such as
the migration barriers of the mobile ions [53]. Compared to the tra-
ditional NEB approach [54], CI-NEB can accurately determine the
transition state along the migration path (and hence the associated
migration barrier) with less computational effort. A standard CI-
NEB calculation consists of five major steps (see the NEB workflow
diagram 7):

1. initial relaxation of the parent structure that does not contain
any impurities/defects.

2. construction of the initial and final structures of the migration
path (also known as end-point structures) from the parent
structure.
ude a polar structure and a non-polar structure in the polar structure’s setting. From
olarization of structure interpolated between the polar and non-polar setting, the
given LcalcpolFW finds a non-insulating bandgap.
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3. relaxation of the two end-point structures.
4. construction of the initial guess of the intermediate structures

(also known as the image structures) along the migration path.
5. CI-NEB calculation that yields the minimum-energy migration

path between the two end-point structures, in which the tran-
sition state is also identified.

In atomate, we implement a CI-NEB workflow that can be
launched through three different methods (see Fig. 7). As a first
method, the user can provide a parent structure along with a pair
of atomic indices that define the migration path under the single
vacancy diffusion mechanism. Alternatively, the user can provide
two end-point structures under different diffusion mechanisms.
Note that the construction of the image structures is required in
both scenarios. This can be achieved by using either the traditional
linear interpolation of the atomic coordinates between the
Fig. 7. Workflow diagram for Nudged Elastic Band (NEB) workflow: NEB workflows proce
intermediate reaction path is estimated and a CI-NEB calculation conducted. The CI-NEB
exceed allowed walltimes on supercomputing resources. CI-NEBs may also be calculatin

Fig. 8. Workflow diagram for Raman tensor: Raman tensors are calculated using a si
relaxation. The material is perturbed with respect each normal mode to calculate the fi
end-point structures or the image dependent pair potential (IDPP)
approach [55]. The former is implemented in pymatgen itself
whereas the latter is implemented in pymatgen-diffusion, an
add-on to the pymatgen package [26,56]. The IDPP approach has
been shown to substantially improve the convergence speed of
CI-NEB calculations and is thus set as the default approach for ini-
tial path construction. In the third scenario, the user provides a
complete migration path comprising both end-point and image
structures. To further accelerate the convergence speed of CI-
NEB, the default workflow performs two rounds of CI-NEB calcula-
tions, wherein looser input parameters are used in the first round
and tighter input parameters are used in the second round of cal-
culations. All the preset settings in the CI-NEB workflow have been
tested and tend to improve the overall efficiency in CI-NEB calcu-
lations, although the user can tune these parameters as needed
for their study.
ed via optimization of an initial parent structure and two end points. From these, an
workflow also features automatic restart functionality since NEB calculations often
g using two images, rather than a single parent structure with specified sites.

ngle LepsFW to calculate the normal modes for a given material after structural
nite difference derivatives corresponding to the Raman tensor.



Fig. 9. Top: Workflow diagram for FEFF: site-specific X-ray spectra are generated from individual FEFF FWs in this workflow, which may simulate either EELS or XAS spectra.
Bottom: Comparison of experimental K edge eels spectrum with the simulation obtained by the atomate workflow.
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3.7. Ab-initio molecular dynamics

Molecular dynamics (MD) can simulate complex dynamic
experiments (such as melt and quench routes for liquid and non-
crystalline materials) and can provide structural, thermodynamic
and kinetic properties [57–59,42]. MD workflows often require
case-by-case structuring and specific post-processing and there-
fore in atomate, we only provide a generic ab initio MD (AIMD)
Firework (MDFW) that can either be run by itself or chained
together by the user into a multi-step procedure. The essential
input parameters for the MDFW are the initial structure, start
and end temperatures, and number of MD steps, accompanied by
time step with a default of 2 femtoseconds. In the current default
input settings, we use gamma-point only, the default kinetic
energy cutoff for plane-waves (the maximum among the con-
stituent elements), and normal precision for other VASP settings,
but the user can customize these settings as needed. By utilizing
the high-throughput capabilities of FireWorks, one can for example
run multiple different conditions in parallel.
3.8. Raman spectroscopy

Solid state Raman spectroscopy has emerged as a powerful tool
for characterization of materials [60], particularly for verifying
structural characteristics of complex or two-dimensional poly-
morphs [61,62]. The Raman workflow (Fig. 8) begins with a struc-
tural optimization following by a static run with the LEPSILON
setting enabled in VASP. From this, the normal modes are collected
and the structure is perturbed along each mode for a positive and
negative value of a user-supplied step size (default 0.005 Å). The
Raman tensor for each mode is then calculated by determining
the finite difference derivative of the dielectric tensor with respect
to the mode perturbation and scaling the resulting tensor accord-
ing to the structural volume. The results from this procedure are
ultimately stored in a database or local JSON file.
3.9. XAS and EELS from FEFF

Various X-ray spectroscopies provide detailed information
about local and bulk electronic structure, making them essential
characterization tools in modern materials science. As such, ab ini-
tio software frameworks to simulate the results of such character-
ization techniques based on theoretical structures have also grown
in popularity as they can help in interpreting these experimental
results [63]. One such software is FEFF [22]. FEFF implements the
real space Green’s function (RSGF) approach for the calculation of
X-ray absorption spectra (XAS). It provides a parameter free ab ini-
tio framework to compute the near edge (XANES) and extended
(EXAFS) spectra. It also enables the calculation of other spectra
such as X-ray Raman scattering (XRS) and electron energy loss
(EELS). Atomate includes a framework for running and analyzing
results from FEFF for the various spectroscopic simulations it sup-
ports. In its current form, preset workflows for the collection of
XAS and EELS are included in the package.

For both sets of workflows, required inputs include the absorb-
ing atom, which can either be chosen as a site index corresponding
to the input pymatgen structure or an elemental symbol for the
chemical identity of sites to include. Fireworks are generated for
FEFF analysis of each absorbing site. For the XAS workflow, either
of the XANES or EXAFS modes of FEFF may be chosen. Similarly,
for the EELS workflow, either ELNES or EXELFS spectra may be gen-
erated. Named keywords are also included in the workflow con-
structors for commonly specified parameters, including but not
limited to adsorption edge (K, L1, etc.), cluster radius, and incident
beam energy (for EELS).
FEFF workflows behave similarly to VASP workflows in that
they include a Firetask to write a set of files, run the FEFF binary,
and store the generated spectrum into a MongoDb database or a
local JSON file. Functionality for running EXAFS with customized
scattering paths are also included. In addition to the database
insertion of the computed spectrum, it is also possible to insert
the FEFF generated density of states to the MongoDB GridFS with
a simple modification to the default workflow, making it easy to
search and retrieve density of states across multiple calculations.
Fig. 9 depicts the FEFF spectra workflow diagram along with a sam-
ple plot of the EELS spectrum obtained from the workflow output.
4. Conclusion

In this work, we outline an infrastructure for performing ato-
mistic simulations of materials. The purpose of this infrastructure
is twofold. Firstly, atomate is intended to make simulations, partic-
ularly in high-throughput mode, simpler to execute and analyze.
This is achieved by providing built-in workflows that are simple
to set up yet highly customizable and by providing direct access
to important calculation outputs in an easy-to-use database for-
mat. The ability to construct and execute an entire workflow from
structural and parameter inputs significantly reduces individual
researchers’ time spent on manual file management, data collec-
tion, and code debugging. Secondly, atomate is intended to serve
as a repository for standardized methods of materials simulation.
A sensible structure, unit-testing framework, and community of
maintainers ensure that results from a given workflow may be
easily examined, reproduced, and extended for new applications,
which reinforces the consistency and reliability of computational
materials science results generated using atomate.

We also note here that atomate’s potential can be even further
enhanced with a larger user base. To this end, we intend to grow
the community of individual researchers and research groups
using atomate by encouraging contributions, collaboration, and
modification where appropriate. It is our hope that atomate may
serve as a repository of methods for researchers seeking to provide
the research community with a transparent view of their method-
ology and simplified procedures for result validation.
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