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Evaluation of thermodynamic equations of state across
chemistry and structure in the materials project
Katherine Latimer1, Shyam Dwaraknath2, Kiran Mathew3, Donald Winston2 and Kristin A. Persson2,3

Thermodynamic equations of state (EOS) for crystalline solids describe material behaviors under changes in pressure, volume,
entropy and temperature, making them fundamental to scientific research in a wide range of fields including geophysics, energy
storage and development of novel materials. Despite over a century of theoretical development and experimental testing of
energy–volume (E–V) EOS for solids, there is still a lack of consensus with regard to which equation is indeed optimal, as well as to
what metric is most appropriate for making this judgment. In this study, several metrics were used to evaluate quality of fit for 8
different EOS across 87 elements and over 100 compounds which appear in the literature. Our findings do not indicate a clear
“best” EOS, but we identify three which consistently perform well relative to the rest of the set. Furthermore, we find that for the
aggregate data set, the RMSrD is not strongly correlated with the nature of the compound, e.g., whether it is a metal, insulator, or
semiconductor, nor the bulk modulus for any of the EOS, indicating that a single equation can be used across a broad range of
classes of materials.
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INTRODUCTION
Thermodynamic equations of state (EOS) for crystalline solids
describe material behaviors under changes in pressure, volume,
entropy and temperature; making them fundamental to scientific
research in a wide range of fields, including geophysics, energy
storage and development of novel materials.1–3 Despite over a
century of theoretical development and experimental testing of
EOS for solids,4,5 there is still a lack of consensus on the most
appropriate EOS under various conditions or even the metric to
evaluate appropriateness. Previous attempts6,7 have focused on
comparison with the experimental data, which limits the range of
the accessible data. By contrast, computational studies can span
chemical and structural space in a consistent and methodical
manner, and are often able to probe extreme conditions beyond
the range of current experimental techniques. Density-functional
theory (DFT) is gaining grounds as a first principles methodology
that can accurately and efficiently search material space for
complex functionality. In well-characterized systems, DFT calcula-
tions have been shown to be precise and reliable.8 In particular,
Lajaeghere et al. recently benchmarked results for DFT-calculated
thermodynamic properties of the elements, and found overall
satisfactory agreement between prediction and experiment
(excepting cases where magnetic, correlative, or relativistic effects
are significant; or in cases where van der Waals forces are
dominant).9 While direct calculations of systems under pressure
are possible in most DFT codes, the equations of state provide a
simple mathematical handle with minimum computational cost.
These considerations pave the way for high-throughput studies
that probe extreme conditions using DFT generated EOS.
There are three key questions to answer in order to utilize high-

throughput DFT-based EOS. Which EOS best encapsulates the
fundamental physics presented by DFT and are there rules or

metrics that define EOS applicability? Are the optimal DFT-based
EOS consistent with experimental values, and are therefore likely
to reflect our physical reality? What are the limitations of these
EOS?

RESULTS AND DISCUSSIONS
Equations of state
The equations investigated in this study are described in detail
below, and summarized in Table 1.

Birch (Euler and Lagrange)
Both forms of the Birch equation were derived by Francis Birch in
1947 for crystalline solids of cubic symmetry.10 The derivation was
based on Francis Murnaghan’s extensive tensor formalism for
analyzing finite strains.11 The first Birch equation uses the Eulerian
strain metric; the second form is based on the Lagrangian metric
(roughly the inverse of the Eulerian). As noted by both Birch and
Murnaghan, the Eulerian metric is generally considered to be a
more apt description of elastic behavior for non-infinitesimal
strains, since it treats the final (rather than initial) coordinates as
the independent variable. The energy–volume relation arising
from the Eulerian viewpoint is:

E ¼ Eo þ BVo ν�
2
3 � 1

� �2
þ C
2

ν�
2
3 � 1

� �3
� �

; (1)

where ν � V
Vo
, and Eo and Vo are the calculated equilibrium energy

and volume, respectively, at zero pressure and absolute zero
temperature. As for all subsequent formulations, the values of bulk
modulus (K) and its pressure derivative (K′) at ν= 1 may be
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expressed in terms of the fitting parameters B and C:

K ¼ 8B
9

(2)

K 0 ¼ C þ 4 (3)

Birch’s equation from the Lagrangian viewpoint is:

E ¼ Eo þ BVoC � BVoν
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where:

K ¼ 16B
9

(5)

K 0 ¼ C � 2 (6)

Mie–Gruneisen
The Mie–Gruneisen EOS is based on the well-established empirical
form of a general interatomic potential:4,5

E ¼ αrm þ βrn (7)

Setting m=−1 gives a reasonable representation of the
Coulombic interaction between two atoms;12 under the restriction
that E= Eo at r= ro reduces the four parameters in Eq. (7) to two
to give:

E ¼ Eo þ BVo
C

� BVo
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where:

K ¼ B
9

(9)

K 0 ¼ 7þ C
3

(10)

Murnaghan
Interestingly, the Murnaghan equation is based not on Francis
Murnaghan’s prodigious 1937 paper, but rather on a short
communication from 1944 in which he proposed a relatively
simple EOS based on a linear variation of the bulk modulus with

respect to pressure.13 This hypothesis leads to the equation:

E ¼ Eo þ BVo
ðC þ 1Þ

ν�C � 1
C

þ ν � 1

� �
; (11)

where:

K ¼ B (12)

K 0 ¼ C þ 1 (13)

Pack–Evans–James
Pack et al. posited an exponential variation of pressure with
respect to changes in volume (based on quantum mechanics), and
adjusted their expression to ensure proper limiting behavior as
pressure approaches zero or infinity:14

E ¼ Eo þ BVo
C

1
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e3Cð1�ν
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; (14)

where:

K ¼ B (15)

K 0 ¼ C þ 1 (16)

Poirier–Tarantola
Poirier and Tarantola proposed that pressure is best expressed in
terms of a logarithmic strain metric (as opposed to the Eulerian or
Lagrangian metrics of Birch’s equations).15 The resulting
energy–volume relationship is:

E ¼ Eo þ BVo lnðνÞð Þ2 3� C lnðνÞð Þð Þ; (17)

where:

K ¼ 6B (18)

K 0 ¼ C þ 2 (19)

Tait
The Tait equation was developed nearly 150 years ago based
entirely on the empirical observations of Peter Tait, who was
investigating the compressibility of seawater, and modified a few
decades later by Gustav Tammann from a linear average to a

Table 1. Theoretical isothermal EOS investigated in this study

Equation E(νa) K(ν= 1) K′(ν= 1) Ref
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, where Vo is the volume at zero pressure

bEo= E(ν= 1)
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differential form,16 leading to the relation:

E ¼ Eo þ BVo
C

ν � 1þ 1
C

eCð1�νÞ � 1
� �� �

; (20)

where:

K ¼ B (21)

K 0 ¼ C � 1 (22)

Vinet
The Vinet equation was shown by Stacey to be equivalent in
formulation to the Rydberg potential:7,17

E ¼ Dðar þ 1Þe�ar (23)

This leads to the following energy–volume equation:18
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9

(25)
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þ 1 (26)

The Jellium EOS,19 a third-order polynomial fit to energies, has
historically shown a high quality of fit when utilized with the DFT
data.8 The authors for this EOS motivate their equation (which is

essentially a polynomial expansion in powers of x � V
V0

� ��1=3
) by

arguing that each power of x corresponds to a contribution to the
energy of a crystal structure as a function of its cell volume.
However, it does not appear that these justifications are entirely
physical. For example, the x2 term in the Jellium model is aimed to
represent the kinetic energy of an electron gas surrounding the
atoms in the crystal. However, if the total energy varies roughly in

proportion to V
V0

� �2
� V

V0

� �
(as is the case with NaCl, for instance),

this coefficient is almost certainly negative if one examines the
Taylor expansion of E as a function of x. Hence, as the Jellium EOS
may in some cases revert to a non-physical polynomial function,
we did not include it in this study.

Optimal equation of state
Metrics and correlations were derived from the equation of state
and data compiled in the Materials Project. The relative root mean
square deviation (RMSrD) was used as the primary metric for
quality of fit, defined as:20

RMSrD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

EDFTi �EFITi
EDFTi

� �2

N � 1

vuuut
:

(27)

The RMSrD values for the fits of all EOS across the investigated
material set are shown for the elements (Fig. 1) (see Supplemen-
tary Fig. S1 in SI for data on the compound set). Noble gases have
been excluded from the elemental set due to drastic deviations
from ideal behavior for solids: in the most extreme case,
oscillations in the E–V curve of Kr lead to an RMSrD of 37%,
orders of magnitude larger than the mean values in Fig. 2. Other
studies have shown that it is necessary to incorporate the effects
of van der Waals forces in the calculations to adequately capture
the energy curve behavior of noble gases,21 however, these forces
were not included in our simulations. There is an interesting
periodic trend in the plot of Fig. 1, which indicates a correlation
between error in EOS fit and number of valence electrons for a
given element. We conjecture that this is due to the inability of the
simplified EOS models to capture the physics of systems with
greater numbers of interacting bodies (the implicit assumption
being that DFT is able to do so more accurately, although previous
comparison to experimental data has demonstrated that this

Fig. 1 RMSrD values for theoretical EOS fitted to DFT calculations of the elements

Fig. 2 Violin plots showing distribution of RMSrD values for each
EOS across the combined set of elements and compounds
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method is likely still prone to some error.9) It is clear from this plot
that the Lagrangian formulation of the Birch EOS (Eq. (5)) fares
significantly worse than the other EOS under consideration and for
this reason, it has been removed from subsequent plots in order
not to obscure other data. This property has been remarked by
previous authors,6,10 however, we do not believe any physical
interpretation has previously been offered. We therefore point out
that in approximately harmonic systems, where the E–V curve is
dominated by a quadratic strain term, the Eulerian metric more
closely resembles the true E–V relation for most solids (Fig. 3). This
observation might be taken into consideration for future
theoretical work.
There is a large degree of variability in RMSrD from material to

material, captured by the violin plot in Fig. 2 which displays the
distribution for the combined set of elemental and compound
materials. The average relative deviations are less than 1%
regardless of material or theoretical equation used to fit the E–V
data for most materials investigated, which suggests that for
general purposes of approximation, the particular choice of EOS is
not crucial. Because the mean RMSrD values for some of the
equations were quite close to each other, we also compared EOS
performance on the basis of a few other error metrics: maximum

relative deviation (MrD), the greatest magnitude of fractional
deviation for a given fitted E–V curve from DFT-calculated points;
statistical uncertainty for each of the fit parameters (E0, V0, K, K′) as
calculated from the least-squares. These analyses do not indicate a
clearly superior EOS (see for example, Supplementary Fig. S2 in the
SI), however, do suggest that the Birch (Eulerian), Tait, and Vinet
equations tend to show lower deviation from calculated data
points and less variability of fitting parameters than the other
equations investigated.
The RMSrD values did not exhibit strong correlation with the

bulk modulus or the band gap in the elemental and compound
sets (see Supplementary Tables S1 and S2 and Supplementary
Figs. S3 and S4 in SI). This suggests that neither the metallic/
insulating nature nor softness of the material are predictive of
error in the fitted EOS. The effect of structure within a fixed
chemical system was also investigated for several materials,
examples of which are shown in Figs. 4 and 5 for various
polymorphs of Al2O3 and Ga, respectively. Al2O3 shows essen-
tially no variation of quality of fit for any equation across a range
of crystal systems. This is especially notable in light of the fact that
both forms of the Birch equation were derived for media of cubic
symmetry,10 with the rest assuming an isotropic medium. In
contrast, Ga does exhibit noticeable variation in RMSrD between
different polymorphs. Similar trends were observed for other
chemical systems, with stiff metal oxides exhibiting low variability
relative to softer metals (see Supplementary Figures S5 and S6 in
SI). It is true that structures with different space groups may still
have similar physical properties; this typically occurs when one
structure is a slight distortion of another with higher symmetry.
We examined the supergroup/subgroup relations of the given
systems, and did not find this to be the determining factor in the
similarity or difference in error trends. For example, the only
relation of this type in the alumina polymorph set (besides the
trivial P1, which is a subgroup of every space group) is P21/c and
C2/m (numbers 14 and 12, respectively); whereas for gallium,
Cmce (number 64) is a subgroup of Cmcm (number 63) and I4/
mmm (number 139). These findings suggest that variations in
structure are not necessarily predictive of variations in error for
fitted EOS.

Benchmarking to Experiment
Given the overall quality of performance of the Birch (Eulerian),
Tait, and Vinet equations, these were selected further benchmark-
ing analysis. To verify the ability of DFT-based EOS to predict

Fig. 4 RMSrD values for theoretical EOS fitted to DFT calculations of
various polymorphs of Al2O3

Fig. 5 RMSrD values for theoretical EOS fitted to DFT calculations of
various polymorphs of GaFig. 3 Plot of the squared strain metrics ηEul and ηLag, which are the

bases for Eqs. (1) and (4), respectively. Note that the graph of η2Eul more
closely resembles a physical E–V relation for a solid with positive
coefficient of linear expansion
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experimentally observed behavior, we compared the values of the
bulk modulus (K) derived from the EOS for each material with
values found in the literature. All three equations yielded similar
results as determined by the mean unsigned percent error
between calculation and experiment, which was in every case
about 18% for the elemental set and 12% for the compound set.
Results are shown in Figs. 6 and 7 for the Vinet equation, which
had the smallest overall average error (by less than one percent).
Similar plots for the other two EOS are provided in Supplementary
Figs. S8–S11 of SI. There is limited experimental data on second-
order elastic constants (used to calculate K′), but a few systems are
compared in Fig. 8.
Agreement between experimental and calculated values of

elemental and compound bulk moduli is good, with regression
slope and R2 values for both sets very close to 1 (Fig. 6). Previous
studies have indicated that zero-point energy can lead to greater
discrepancy between 0 K calculations and experiment for lighter
elements,22 however, the error in bulk modulus values was not
correlated to atomic mass for the elemental data set in this study
(see Supplementary Figure S7). A few elements show variation
from experimental data of greater than 50 GPa, labeled on the
figure. Of these, Cr, Np, and Pa have been studied elsewhere by

both experiment and calculation, and have shown similar
systematic deviations as reported here. The discrepancy for Cr
arises from magnetic ordering,23 which was not considered in this
study. Previous experimental studies have shown that the bulk
modulus of this element increases considerably at lower
temperatures (nearly 20% from room temperature to 77 K).24

The variations for Np and Pa have been attributed to bonding in 5f
orbitals.25,26 Previous studies using exact and overlapping muffin
tin orbitals have been able to reproduce experimental elastic
properties of actinides, in particular plutonium.27 This all-electron
DFT method, while effective, is computationally expensive and
difficult to generalize, making it unsuitable for EOS generation in
high-throughput schemes.
Comparison to experimental values of K′ is more difficult, since

they are small dimensionless quantities (typically in the range of
1–10), and the combination of experimental uncertainties and
inherent variability due to different methods of fitting data lead to
a wide range of cited literature values even for a single material.
Figure 8 shows a few representative examples. Since the bulk
modulus pressure derivative can be used to derive other material
properties, such as behavior at finite temperatures,7 it is useful to
have an internally consistent method for deriving K′ (although it

Fig. 7 Comparison of EOS- and elastic tensor-derived values of bulk
moduli (K) for elements and compounds (using the Vinet EOS, Eq.
(24) to derive K). Dashed lines show least-squares linear regression

Fig. 6 Comparison of experimental and calculated values of bulk
moduli (K) for elements and compounds (using the Vinet EOS, Eq.
(24) to derive K). Dashed lines show least-squares linear regression.
References for experimental bulk modulus values are given in
Supplementary Tables S3 and S4 of SI
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should be noted that, since K′ is the highest-order fit parameter for
the EOS investigated here, it is subject to the largest statistical
uncertainty; see Fig. 9e). In light of their demonstrated accuracy in
predicting K values, we therefore propose that numerically-
derived EOS are valid avenues for analyzing and predicting
thermodynamic properties of solid crystalline materials.
Bulk moduli calculated from the EOS were also compared

against bulk moduli calculated from the elastic tensor using the
formation detailed in elastic tensor workflow for Materials
Project.28 For the most part, values are identical, with some
elements showing noticeably lower values from the elastic tensor
workflow (Fig. 7). This is likely due to higher order terms the E–V
curves, or asymmetries of the unit cell (e.g., in the cases of Tb and
Dy). The discrepancy in carbon is due to the nature of the ground
state structure, which is layered (graphite). This leads to a highly
anisotropic elastic tensor, and the Voigt-Reuss-Hill averaging
scheme is skewed by the low shear modulus of this structure.28 On
the other hand, the shear modulus is not accounted for by the
isotropic volumetric deformations employed in this study resulting
in a far less significant effect of the lack of inter-layer cohesive
forces on the calculated bulk modulus.
Since many applications for thermodynamic EOS involve

materials subjected to extreme pressures (e.g., in geophysical
research,29) it is natural to inquire whether there are pressure
limits beyond which the DFT-derived EOS are no longer valid. A
rough measure of these limits is given by comparing the maximal
value found in the literature for pressure exerted on a material to
that reached by the DFT simulation. Our findings, listed in
Supplementary Tables S5 and S6 in SI, indicate that in many cases
(e.g., AgCl), the latter of these limits is greater than or equal to the
former, so that no extrapolation of the EOS is necessary for
comparison with experimental results. However, in some cases,
extrapolation would still be necessary: for example, for BeO, a stiff
ceramic material, the maximum calculated volumetric compres-
sion of 15.7% corresponds to a calculated pressure of 127.5 GPa,
whereas pressures of up to 175 GPa have been achieved in
laboratory settings30 (see Supplementary Table S5 in SI). Because
computations are capable of pressurizing a material well beyond

the validity of the pseudopotential approximation, extrapolation
of the EOS may in some cases give a more physically valid (and
computationally cheaper) prediction than simply performing
higher-pressure calculations.
Many of the materials exhibit phase transformations far below

the pressure range of the DFT curves, in which case the question is
no longer whether a single DFT-derived EOS is valid at high
pressures, but whether we can use DFT-based EOS of multiple
polymorphs to predict these transitions. This analysis calls for
simulations at finite temperatures, and has not been included in
the present study.
In summary, the energy–volume curves of over 200 elemental,

binary, and ternary crystalline solids were calculated using DFT,
and the resulting data were fit to several theoretical EOS
commonly cited in the literature. Although the quality of fit, as
measured by RMSrD, did not vary greatly across the investigated
set of equations, the Birch (Eulerian), Tait, and Vinet equations
were found to give the best overall quality of fit to calculated
energy–volume curves as compared to the other equations under
examination. Band gap and bulk modulus were not found to be
useful indicators of EOS quality of fit for the aggregate set of
materials, although we observed that quality of fit does vary with
structure for polymorphs within certain chemical systems. Bulk
modulus values derived from the calculated EOS were bench-
marked against experimental data, and in general display good
agreement.

METHODS
The calculation of EOS is automated using self-documenting workflows
compiled in the atomate31 code base that couples pymatgen32 for
materials analysis, custodian33 for just-in-time debugging of DFT codes,
and Fireworks34 for workflow management. The EOS workflow begins with
a structure optimization and subsequently calculates the energy of
isotropic deformations, including ionic relaxation with volumetric strain
ranging from from −33 to 33% (−10 to 10% linear strain) of the optimized
structure. Density-functional-theory (DFT) calculations were performed as
necessary using the projector augmented wave (PAW) method35,36 as
implemented in the Vienna Ab Initio Simulation Package (VASP)37,38 within
the Perdew–Burke–Ernzerhof (PBE) Generalized Gradient Approximation
(GGA) formulation of the exchange-correlation functional.39 A cutoff for
the plane waves of 520 eV is used and a uniform k-point density of
approximately 7,000 per reciprocal atom is employed. Convergence tests
were performed for selected materials across a range of bulk modulus
values, with KPPRA values between 1,000 and 11,000; plots are provided in
the SI (Supplementary Figure S12). In addition, standard Materials Project
Hubbard U corrections are used for a number of transition metal oxides,40

as documented and implemented in the pymatgen VASP input sets.32 We
note that the computational and convergence parameters were chosen
consistently with the settings used in the Materials Project41 to enable
direct comparisons with the large set of available MP data.

Data availability
Numerical EOS for the data set investigated in this study have been
included as a Supplementary json File (see explanation of file structure in
SI). The equivalent data are also available for free to the public, via the
Materials Project online database.
Any additional data (compiled experimental values, calculated fitting

parameters, etc.) are available from the corresponding author upon
request.
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