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Computational materials discovery efforts utilize hundreds or thousands of density functional theory calcu-
lations to predict material properties. Historically, such efforts have performed calculations at the generalized
gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computa-
tional reliability. However, high-throughput calculations at the higher metaGGA level of theory are becoming
feasible. The strongly constrained and appropriately normed (SCAN) metaGGA functional offers superior
accuracy to GGA across much of chemical space, making it appealing as a general-purpose metaGGA functional,
but it suffers from numerical instabilities that impede its use in high-throughput workflows. The recently devel-
oped r2SCAN metaGGA functional promises accuracy similar to SCAN in addition to more robust numerical
performance. However, its performance compared to SCAN has yet to be evaluated over a large group of solid
materials. In this paper, we compared r2SCAN and SCAN predictions for key properties of approximately 6000
solid materials using a newly developed high-throughput computational workflow. We find that r2SCAN predicts
formation energies more accurately than SCAN and PBEsol for both strongly and weakly bound materials and
that r2SCAN predicts systematically larger lattice constants than SCAN. We also find that r2SCAN requires
modestly fewer computational resources than SCAN and offers significantly more reliable convergence. Thus,
our large-scale benchmark confirms that r2SCAN has delivered on its promises of numerical efficiency and
accuracy, making it a preferred choice for high-throughput metaGGA calculations.
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I. INTRODUCTION

Density functional theory (DFT) has emerged as one of
the most widely used computational methods for predicting
material properties in recent decades [1,2]. Hundreds of thou-
sands of DFT calculations now populate materials databases,
such as the Materials Project [3], Novel Materials Discovery
Repository (NOMAD) [4], or the Open Quantum Materials
Database (OQMD) [5,6], laying the foundation for a new era
of data-driven materials discovery [7].

The vast majority of these calculations employ the
Perdew-Burke-Ernzerhof (PBE) [8] generalized gradient ap-
proximation (GGA) [9] functional, due to its popularity
among researchers and its efficient compromise between
high accuracy and high performance across a wide vari-
ety of chemistries and properties. However, as a semilocal
GGA functional, PBE and its variants, such as PBEsol [10]
have well-documented and systematic errors related to elec-
tron self-interaction [11] and fail to capture medium- and
long-range dispersion [12]. These errors compromise their
predictive accuracy for many properties of interest. Specif-
ically, PBE systematically underpredicts the magnitude of
formation energies (i.e., underbinds) [13], slightly overpre-
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dicts lattice parameters [13,14], and severely underpredicts
semiconductor band gaps [13,15,16]. In principle, higher
levels of theory such as metaGGA DFT functionals can cap-
ture medium-range dispersion interactions and should exhibit
smaller self-interaction errors than GGA functionals such as
PBE [11]. However, metaGGA functionals have historically
been either too specific to selected properties or chemistries
and/or too computationally demanding to be feasible
for high-throughput calculations across the entire periodic
table.

The challenge of generality was addressed by Sun and
co-workers via development of the strongly constrained and
appropriately normed (SCAN) [17] functional. This nonem-
pirical metaGGA functional has been shown to be substan-
tially more accurate than PBE for predicting lattice constants
and ground-state structures of solids [14,18–21] and mod-
estly more accurate for semiconductor band gaps [13,16,22].
SCAN predicts formation energies more accurately than PBE
for strongly bound compounds but less accurately than PBE
for weakly bound compounds (e.g., intermetallics) [13]. Re-
searchers have also noted that SCAN underpredicts some
lattice parameters compared to experiment [13,22] and iden-
tified shortcomings in SCAN’s predictions of the magnetic
moments of ferromagnetic systems [13,22–26], the ground-
state polymorphs of selected binary compounds [14], and
the bulk moduli of crystalline solids and water ice [22,27].
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FIG. 1. Automated workflow for metaGGA calculations. The input structure is relaxed using a GGA functional to construct an initial guess
of the charge density. A high k-point density is used in this step. The output charge density from the GGA optimization is used as the initial
guess in the subsequent metaGGA optimization using either r2SCAN or SCAN. The band gap estimated from the GGA calculation is used to
refine the k-point density for the metaGGA optimization, where metals have the highest k-point density and semiconductors or nonmetals have
lower k-point density. Automated error correction routines adjust settings and restart calculations that fail for well-defined reasons, improving
reliability.

Nevertheless, the generally superior accuracy of SCAN com-
pared to PBE across many chemical systems and properties
makes it appealing as a general-purpose functional for solids.
However, it has a higher computational cost than PBE (by
a factor of about 5 [13,28]) and suffers from numerical
instability. This numerical instability, in particular, makes
it impractical to reliably and efficiently perform automated
high-throughput calculations with SCAN.

To mitigate the computational challenge, Furness and co-
workers recently introduced r2SCAN [29], a modification of
the original SCAN functional with substantially improved
numerical stability, allowing calculations to converge much
more reliably than in the original SCAN functional. This
improved stability is achieved by utilizing a smoother switch-
ing function to interpolate between the slowly varying and
single-orbital density limits, and by relaxing one of the
17 theoretical constraints satisfied by the original SCAN
functional (specifically, the fourth-order gradient expansion
constraint for exchange GE4X [29,30]). These changes result
in a smoother potential-energy surface free of discontinuities.
Compared to previous efforts to mitigate numerical difficul-
ties in SCAN [28,31], r2SCAN satisfies a greater number
of theoretical constraints and was shown to largely preserve
the accuracy of SCAN when benchmarked against several
hundred molecular properties and 20 solid lattice constants
[29]. Hence, it would appear that the arrival of r2SCAN
has, at last, created a general-purpose numerically robust
metaGGA functional. However, its accuracy compared to
SCAN has yet to be demonstrated for a large group of solid
materials.

To further promote progress towards high-throughput
metaGGA DFT calculations for solids, in this paper, we
compare the formation energies, cell volumes, and electronic
structures of approximately 6000 solid materials calcu-
lated in r2SCAN and SCAN by means of an automated
high-throughput workflow. We show that r2SCAN achieves
comparable or even improved accuracy compared to SCAN
and reaches convergence much more reliably for this large and
diverse set of calculations.

II. METHODOLOGY

A. Automated workflow for metaGGA calculations

DFT calculations were carried out using a two-step
workflow comprising an initial GGA structure optimization
followed by a structure optimization with the SCAN [17] or
r2SCAN [29] metaGGA functionals, coupled with automatic
error correction logic (see Fig. 1). The purpose of the initial
GGA structure optimization was to generate an initial guess
of the structure and charge density at lower computational
cost, thereby speeding up the subsequent metaGGA calcula-
tion. Performing two optimizations in series also makes the
calculation more robust to changes in the size or shape of the
unit cell as elaborated further in Sec. S1 of the Supplemental
Material [32]. SCAN calculations used PBE [8] for the initial
GGA optimization, whereas r2SCAN calculations employed
the PBEsol [10] functional, which is a variant of PBE tuned to
predict solid lattice constants with greater accuracy. Since the
purpose of the initial GGA calculation is simply to accelerate
the metaGGA optimization, the final metaGGA result should
not be particularly sensitive to the choice of GGA functional.

We employed the Vienna ab initio simulation package
(VASP) [33,34], version 6.1.1 with custom patches for
r2SCAN, in conjunction with projector augmented-wave
(PAW) pseudopotentials [35] and a plane-wave energy cutoff
of 680 eV. Note that r2SCAN is officially available in VASP as
of version 6.2. k-point grids were generated automatically by
VASP using KSPACING values ranging from 0.22 to 0.44 Å−1,
which were determined from the GGA-estimated band gap of
each material based on the work of Wisesa et al. [36]. Plane-
wave energy cutoff and k-point density settings were selected
such that formation energies converged within approximately
1 meV/atom for a benchmark set of 21 materials (listed in
Sec. S1 of the Supplemental Material [32]) and were selected
to be conservatively high. All calculations used pseudopoten-
tials from the “PBE PAW datasets version 54” set released in
September 2015; a list of the specific POTCAR symbols used
for each element is provided in Sec. S9 of the Supplemental
Material [32]. Although these pseudopotentials were
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developed for use with the PBE functional, their use with
SCAN is common practice because no SCAN-specific
pseudopotentials are available for use in VASP. Additional
details related to development of our computational workflow
are provided in the Supplemental Material [32] and supporting
Refs. [37,38].

B. Selection of materials

The dataset we analyze below includes 6 307 distinct ma-
terials, comprising 412 elements, 5 297 binary materials, and
598 ternary materials whose elemental compositions cover the
majority of the periodic table (see Fig. S24 of the Supple-
mental Material [32]). We first screened the Materials Project
Database [39] for materials that were within 20 meV of the
convex energy hull and had 20 or fewer sites, resulting in a set
of approximately 45 000 materials. We retrieved PBE-relaxed
structures for each of these from the Materials Project REST
API [39], which we used as starting structures in our com-
putational workflow. From this set, we prioritized elements,
ground states, and materials close to the convex energy hull
and performed metaGGA calculations for as many materials
as possible within the computational resources available to
our project. We were able to complete approximately 8 000
and 25 000 materials using SCAN and r2SCAN, respectively.
We observed considerably more reliable convergence with
r2SCAN than with SCAN (as discussed further below), which
allowed us to complete calculations for more materials with
this functional. Among these SCAN and r2SCAN calcula-
tions, there are 6 307 materials (including 5 895 nonelemental
solids) for which both SCAN and r2SCAN calculations were
completed. Some 5 466 of these materials correspond to struc-
tures reported in the Inorganic Crystal Structure Database
[40], indicating that they represent experimentally confirmed
structures. We use this set of materials to compare the proper-
ties predicted by the two functionals. We note that the ≈1 700
materials for which we completed SCAN but not r2SCAN
calculations do not indicate cases where r2SCAN failed to
converge. Rather, after completing our SCAN calculations,
we chose to prioritize calculations slightly differently for
r2SCAN, and, hence, some materials originally completed in
SCAN were not attempted in r2SCAN.

III. RESULTS AND DISCUSSION

A. Relative comparison of r2SCAN vs SCAN

1. Formation energy

Computed formation energies predicted by r2SCAN and
SCAN are summarized in Fig. 2(a). In an extensive bench-
mark of the original SCAN functional, Isaacs and Wolverton
[13] observed that SCAN formation energies were some-
what more accurate for strongly bound compared to weakly
bound materials, where strongly bound materials are those
with formation energies �−1 eV/atom and weakly bound
materials are those with formation energies between 0 and
−1 eV/atom. We adopt the same categories here to facilitate
comparison with this prior work. By this definition, our data
contain 1 428 and 4 317 strongly and weakly bound mate-
rials, respectively. We exclude any materials containing U,
Np, or Pu (150 materials) because many exhibited exception-
ally large differences in formation energy between the two

FIG. 2. Changes in (a) formation energy, (b) band gap, (c) cell
volume, and (d) formation electron localization function (�ELF f ;
see Sec. S5 of the Supplemental Material [32]) when computed
in r2SCAN vs SCAN. Note that the y axis is logarithmic. Dashed
and dotted vertical lines represent the median differences and two-
sided 95th percentile differences, respectively, across both material
categories.

functionals. For these cases, we found that r2SCAN-predicted
formation energies were substantially more accurate than
SCAN-predicted energies compared to experiment. However,
since these calculations were performed without spin-orbit
coupling, the results must be interpreted with caution, and
we do not consider them in detail here. Further discussion is
provided in Sec. S4 of the Supplemental Material [32] and
supporting Refs. [13,41].

Overall, r2SCAN and SCAN predicted similar formation
energies for most materials within both the strongly and
weakly bound categories, as indicated by the fact that the me-
dian difference in formation energy was only −5 meV/atom.
Nevertheless, there were substantial differences for many
materials. For 95% of strongly bound materials, �H r2SCAN

f

differed from �HSCAN
f by ≈−135 to +170 meV/atom,

whereas for weakly bound materials, the 95th-percentile dif-
ference in formation energy was ≈−105 to +115 meV/atom.
Although the absolute differences in formation energy were
similar for strongly and weakly bound materials, in rela-
tive terms they are much more significant for weakly bound
materials since the magnitude of �Hf for weakly bound
materials is smaller by definition. Reassuringly, we find that
despite these apparently large relative differences in predicted
�Hf for weakly bound materials, r2SCAN has a lower av-
erage error compared to experiment by every measure (see
Sec. III B 1).
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In Sec. S7 of the Supplemental Material [32] we analyze
how differences in r2SCAN and SCAN formation energies
relate to specific chemistries. Among strongly and weakly
bound materials, the largest positive differences (i.e., mate-
rials for which �H r2SCAN

f was less negative than �HSCAN
f )

were materials containing Pt or Au, while Co-, Ni-, Rh-,
and Pd-containing materials also tended to have less negative
�H r2SCAN

f . On the other hand, the largest negative differences
in formation energy were observed for Cs-, Pa-, Br-, and
Bi-containing materials. It is unclear why the largest dif-
ferences in formation energy are associated with materials
containing these particular elements. The major difference
in construction between r2SCAN and SCAN (the change in
switching function and in the formulation of the gradient
expansion for exchange) have the greatest effect in regions of
slowly varying electron density which would be encountered
in metallic compounds [42]. Since the compounds with large
positive differences tend to contain (transition) metals, it is
possible these elements happen to be particularly sensitive to
the different formulation of exchange. For the negative differ-
ences, a possible explanation may be that intermediate van der
Waals interactions in the elemental Cs, Pa, Br, and Bi phases
are less captured by r2SCAN than SCAN [42]. In general,
however, differences in elemental energies do not explain our
observations. For pure elements, the difference in electronic
energy between r2SCAN and SCAN grows systematically
larger with the atomic number (Fig. S28 of the Supplemental
Material [32]), hence, one might expect materials containing
heavier elements to exhibit the largest differences in formation
energy. This is not what we observed: formation energies
of materials show no such systematic trend (Figs. S29 and
S30 of the Supplemental Material [32]). Since the formation
energy of a material is calculated by subtracting the energies
of elemental references from that of the material, it would
appear that the sometimes substantial differences in formation
energy predicted by r2SCAN and SCAN are attributable to
different energies of the materials rather than the elemental
references.

2. Band gaps

GGA DFT functionals are known to systematically and
significantly underestimate band gaps, and this shortcoming
is only slightly mitigated by SCAN [13]. Nevertheless, it is
instructive to examine whether r2SCAN-predicted band gaps
differ substantially from those predicted by SCAN [Fig. 2(b)].
For strongly and weakly bound materials, r2SCAN band gaps
were within ±0.15 eV of SCAN-predicted band gaps for 95%
of materials studied. r2SCAN was slightly more likely to
predict a smaller band gap than SCAN for strongly bound
materials and a larger band gap than SCAN for weakly bound
materials.

Qualitative agreement in the metallic character of ma-
terials predicted by r2SCAN and SCAN is arguably more
relevant than the quantitative band gap predictions. Out of
5 895 materials for which we computed band gaps, there
were 73 cases (≈1%, listed in Table S4 of the Supplemental
Material [32]) in which r2SCAN predicted metallic character
(zero band gap) when SCAN predicted nonmetallic character
or vice versa. In six of these cases, the predictions differed

by �1 eV. Manual inspection of the density of states (see
Sec S2 of the Supplemental Material [32] and supporting
Ref. [43]) for the materials with the largest discrepancies
indicates that they represent rare cases in which the band
occupancies are particularly sensitive to the exchange energy.
For example, the material Sb2F13 was a notable outlier where
r2SCAN predicted a metallic material rather than the large-
gap insulator predicted by SCAN, due to a small amount
of ferromagnetism in the r2SCAN case shifting the Fermi
level into the valence band. Thus, the subtle differences in
construction between r2SCAN and SCAN can occasionally
result in large differences in predicted band gaps. However,
this example represents a fictitious unphysical material since
the originating crystal structure file was found to have omitted
hydrogens when compared against the original publication.
We emphasize that we observed these large discrepancies in
only ≈0.1% of materials in our dataset and that they may be
partially attributable to recently identified changes in the way
VASP computes the Fermi level.

3. Lattice volumes

r2SCAN systematically predicted larger lattice volumes
for many materials than SCAN, and this systematic differ-
ence was observed to a similar extent across both material
categories [Fig. 2(c)]. Specifically, the median volumes per
atom predicted by r2SCAN were 1.4% and 1.8%, (0.2–
0.3 Å3/atom) larger than the SCAN predicted volumes for
strongly bound and weakly bound materials, respectively. The
systematically larger lattice volumes predicted by r2SCAN
compared to SCAN may be fortuitous since SCAN was pre-
viously shown to underpredict experimental lattice volumes
by an average of 0.11 Å3/atom [13]. We will examine the
accuracy of SCAN and r2SCAN lattice volumes compared to
experiment in a later section.

4. Electron localization

To evaluate the consistency between r2SCAN and SCAN
in a more general way, we next present differences in
the electronic structure predicted by the two functionals.
Both r2SCAN and SCAN incorporate information about the
kinetic-energy density into their calculation of the exchange
and correlation energies by means of the iso-orbital indicator
α = τ−τW

τunif
or ᾱ = τ−τW

τunif+ητW
for SCAN and r2SCAN, respec-

tively, where τ is the positive kinetic-energy density, τW and
τunif are the limiting kinetic energies of a single orbital and
uniform electron gas, respectively, and η=0.001 is a regu-
larization parameter [11,17,29]. The calculated value of the
exchange and correlation energies depends on the value of
the iso-orbital indicator and, hence, on the bonding regime
(e.g., localized/covalent or delocalized/metallic). This ability
to adjust for different local electronic environments is a major
reason for the superior accuracy of r2SCAN and SCAN com-
pared to GGA [13] and explains why SCAN requires much
smaller Hubbard U values than GGA functionals to accurately
predict formation energies of transition-metal oxides [44].

r2SCAN differs from SCAN primarily in that: (1) it uses
ᾱ instead of α as the iso-orbital indicator (see the definitions
above), and (2) it uses a different switching function to adjust
the value of the exchange-correlation enhancement factor Fxc,
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for different values of ᾱ [29]. The iso-orbital indicator is
closely related to the electron localization function (ELF),
which is equal to (1 + α2)−1 [17,29] and ranges from 0 to
1 where a value of 0.5 corresponds to an electron gas, and 1
corresponds to highly localized (covalent) bonding [45,46].
Since both α and ᾱ and, hence, the value of Fxc are di-
rectly related to ELF, in Fig. 2(d), we present the difference
in the “formation ELF,” �ELF f , predicted by r2SCAN and
SCAN. �ELF f is calculated by analogy to the formation
energy (see Sec. S5 of the Supplemental Material [32]) and
represents the degree to which the average amount of electron
localization around each atom in a material differs from that
in the corresponding elemental references, as determined by
Bader analysis [47,48]. By construction, the formation ELF
must fall between 0 and 1. However, because high electron
localization occurs only in a relatively small fraction of the
volume occupied by a crystal (e.g., near the nuclei or along
a covalent bond), average values for an entire atomic basin
are typically small. An example illustrating the local value
of ELF in a crystal structure is provided in Sec S5 in the
Supplemental Material [32]. In our dataset, the median val-
ues of �ELF f were 0.034 and 0.036 (dimensionless) for
r2SCAN and SCAN, respectively. These values are 10–20%
larger than the median �ELF f calculated by PBEsol (0.030),
indicating that the two metaGGA functionals predict larger
changes in electronic structure during compound formation
than GGA.

Figure 2(d) shows that broadly speaking, �ELF f values
predicted by r2SCAN and SCAN are similar for both cat-
egories of materials (as indicated by the differences being
centered around 0). There is a slight skew towards r2SCAN
predicting smaller �ELF f (i.e., less change in localization be-
tween elements and compounds) than SCAN with differences
of −0.033 to +0.028 defining the 95th percentile of all ma-

terials. However, in relative terms (i.e., |�ELFr2SCAN
f −�ELFSCAN

f

�ELFSCAN
f

|)
these changes were quite large with a median relative change
of 16% and a 95th percentile relative change of 82%. Hence,
whereas r2SCAN and SCAN predict similar �ELF f in aggre-
gate, subtle absolute differences in their respective prediction
of ELF may result in large relative changes for specific mate-
rials.

By definition, the difference in DFT energy between the
two functionals when evaluated on the same density (and
Kohn-Sham orbitals) is equal to the difference in their ex-
change and correlation energies, which is a complex function
of not only the ELF, but also the density, density gradient, and
kinetic-energy density [11,29] which are themselves products
of previous self-consistent iterations. Hence, it is difficult
to relate changes in �ELF f directly to changes in DFT or
formation energy. Figure 2(a) suggests that the large relative
shifts in �ELF f that we observe between r2SCAN and SCAN
do not lead to commensurately large shifts in �Hf . For com-
parison, the median and the 95th percentile relative changes
in the electronic energy (i.e., the DFT energy) from SCAN
to r2SCAN were 26% and 32%, respectively, whereas the
median and the 95th percentile changes in �Hf were 6.5%
and 54%. Nevertheless, Figure 2(d) shows that differences
in �ELF f tended to be larger for weakly bound materials
compared to strongly bound materials, and this fact could be

related to the larger relative changes in formation energy that
we observed for weakly bound materials (see above).

B. Experimental benchmarks

1. Formation energy

Having examined how material properties predicted by
r2SCAN differ from those of SCAN, we now turn our
attention to how accurately r2SCAN and SCAN predict
experimental formation energies, volumes, and band gaps.
Predictions by the PBEsol GGA functional [10], executed
with the same settings as the metaGGA step of the auto-
mated workflow (see Sec. II A) are shown as an additional
point of comparison. We note that since experimental bench-
marking was not the primary objective of this paper, the
materials we evaluate in this section are dictated primarily
by the calculations we generated rather than through delib-
erate selection. Complementary efforts are underway by other
research groups [42] to benchmark r2SCAN against experi-
mental data using carefully curated sets of materials presented
in previous studies [13,18].

Figure 3(a) shows the mean absolute error (MAE)
in formation energy for 986 materials. Experimental
energies for these materials were obtained from the
expt_formation_enthalpy_kingsbury dataset dis-
tributed with Matminer [49], which associates formation
energies compiled from Refs. [50–54] with specific crystal
structures from the ICSD [40], allowing us to match our
computed data with high confidence. Additional details about
the dataset are provided in Sec. S8 of the Supplemental
Material [32].

For the majority of materials studied, the MAE in for-
mation energy predicted by metaGGA functionals was ≈
80–120 meV/atom. Strikingly, r2SCAN formation energies
had approximately 20% and 15% lower MAEs than SCAN
for strongly and weakly bound materials, respectively, even
though r2SCAN is less theoretically exact (i.e., r2SCAN
relaxes the fourth-order gradient expansion constraint for ex-
change that is satisfied by SCAN [29]). Although surprising
from a theoretical standpoint, other recent studies have also
reported greater accuracy of r2SCAN compared to SCAN. For
example, r2SCAN was found to predict cohesive energies and
bulk moduli of solids more accurately than SCAN [55].

We observed in Sec. III A that despite many materi-
als having similar formation energies, there were a number
of outlying materials for which |�H r2SCAN

f − �HSCAN
f | �

100–200 meV/atom or more. To evaluate the implications of
such large differences, we examined the accuracy vs exper-
iment of all strongly or weakly bound materials for which
|�H r2SCAN

f − �HSCAN
f | � 50 meV/atom. There are 665 such

materials in the entire dataset of which we have experimental
data for 345. Among this group of outliers, �H r2SCAN

f is
more accurate than �HSCAN

f . Specifically, the mean error for
r2SCAN was −43.8 meV/atom, wheres the mean error for
SCAN was −55.8 meV/atom, and the MAEs were 90.2 and
134.9 meV/atom for r2SCAN and SCAN, respectively.

In addition, we find that for strongly bound materials,
both r2SCAN and SCAN predicted formation energy much
more accurately than PBEsol. This finding is similar to the
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FIG. 3. Mean absolute error compared to experiment in (a) formation energy (n = 986 materials), (b) cell volume (n = 4 974 materials),
and (c) band-gap (n = 582 materials) computed with r2SCAN, SCAN, or PBEsol.

previous observation by by Isaacs and Wolverton [13] that
SCAN outperforms PBE for strongly bound materials. For
weakly bound materials, however, SCAN was slightly less
accurate than PBEsol (also consistent with previous findings
[13]), whereas r2SCAN was more accurate. Hence, r2SCAN
predicted formation energy more accurately than SCAN or
PBEsol for all material categories. This is a fortuitous result:
in addition to enhancing numerical stability, it appears that the
greater smoothness of the r2SCAN potential energy surface
improves accuracy in one of the few areas in which SCAN
was less accurate than PBE, as elaborated by Furness et al.
[30] and Kaplan et al. [42].

2. Lattice volume

Figure 3(b) summarizes the performance of the three
functionals for predicting cell volume using experimental
data obtained from the Inorganic Crystal Structure Database
[40]. For strongly bound materials, PBEsol has the lowest
MAE of 0.89 Å3/atom, followed by r2SCAN (0.97 Å3/atom)
and SCAN (1.0 Å3/atom). For weakly bound materials,
PBEsol and SCAN predict volume with a similar MAE of
0.97 Å3/atom, whereas r2SCAN has a slightly higher MAE of
1.0 Å3/atom. Overall, neither metaGGA functional shows a
clear and significant improvement in lattice volume prediction
compared to PBEsol. Although surprising considering that
SCAN lattice constants were shown to be more accurate than
PBE (albeit underpredicted, whereas PBE lattice constants
were overpredicted) [13], it is important to remember that
PBEsol was developed specifically to reproduce solid lattice
constants with high accuracy.

3. Band gap

The errors in predicted band gap are shown in Fig. 3(c)
for 582 materials that were present in both our dataset and
the experimental expt_gap_kingsbury dataset in Matminer
[49]. Compilation of the band gap data is described in more
detail in Sec. S8 of the Supplemental Material [32].

For strongly bound materials, the MAE in the predicted
band gap was nearly identical between r2SCAN and SCAN
at 1.078 and 1.081 eV, respectively. The same was true for
weakly bound materials; although, in this case, the MAE
was much lower at ≈0.28 eV. Although the MAEs for both
metaGGA functionals were considerable, they were ≈0.21
and 0.04 eV lower than the PBEsol MAE for strongly and
weakly bound materials, respectively.

C. Computational performance and reliability

Finally, we used the large amount of computed data we
generated to develop a qualitative understanding of the rel-
ative computational demands and reliability of r2SCAN and
SCAN. In Figure 4(a) we present the relative performance of
r2SCAN, SCAN, and PBEsol in terms of: (1) total CPU time,
(2) total number of ionic steps, and (3) total number of self-
consistent field (SCF) cycles (summed over all ionic steps)
required to reach convergence. We note that this was not a
rigorous computational benchmark because the starting struc-
tures for the GGA and metaGGA stages of the workflow were
not identical. As described in Sec. II A, each starting structure
was optimized using equivalent VASP settings with both: (1)
PBE followed by SCAN and (2) PBEsol followed by r2SCAN.
All calculations were carried out on the Cori supercomputer
at the National Energy Research Scientific Computing Cen-
ter (Berkeley, CA); however, the parallelization settings (i.e.,
number of nodes, cores, and multiprocessing tasks) varied
slightly among calculations. As such, the information in Fig. 4
should not be considered a definitive representation of the
relative computational demands of these functionals but rather
a qualitative representation of their performance over a large
and diverse set of materials.

As shown in the figure, r2SCAN required approximately
0.5-2× the CPU time to converge as SCAN, and 0.5-1× the
number of ionic and electronic steps. Compared to PBEsol,
r2SCAN required 2-4× the CPU time, 1-3× the number of
ionic steps, and 1-2× the number of total SCF cycles. Our
results here are largely consistent with a previous rigorous
benchmark for CPU time based on single-point calculations,
which showed that r2SCAN required approximately 0.9×
the CPU time as SCAN and approximately 4× as much as
PBE [56]. Our finding that fewer ionic steps are required is
consistent with a study by Ning and co-workers [57] which
found that the smoother potential energy surface of r2SCAN
facilitated convergence compared to SCAN. Thus, modestly
fewer ionic steps and modestly less CPU time are required to
converge r2SCAN than SCAN, but both functionals require
considerably more computational resources than PBEsol.

Time required for convergence does not tell the whole
story, however, because the data in Fig. 4(a) reflect only
successful calculations, and, hence, mask the much more re-
liable convergence of r2SCAN. Among approximately 11 000
and 25 000 total calculations we attempted with SCAN and
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FIG. 4. (a) Relative computational performance of r2SCAN compared to SCAN (blue) or PBEsol (orange), demonstrating that computa-
tional time required for r2SCAN is smaller than SCAN but larger than PBEsol. Each variable is plotted as the ratio of the value in the r2SCAN
calculation divided by the value in the corresponding SCAN or PBEsol calculation. Dashed lines inside each violin represent the quartiles of
the distribution. (b) Completion rate of calculations carried out using each density functional.

r2SCAN, respectively, we observed a completion rate of 96%
for r2SCAN but only 69% for SCAN [Fig. 4(b)]. Among the
incomplete SCAN calculations, we estimate that at least 25%
failed due to unrecoverable errors, whereas the remaining
calculations may have simply run out of wall time, which
was limited to 48 h in our work. Again, although these failure
statistics do not represent a rigorous comparison of the two
functionals (for example, the SCAN convergence rate may
improve somewhat with very long wall time), they qualita-
tively highlight the generally much more reliable convergence
of r2SCAN compared to SCAN, which was a key objective
of its development [29]. Furthermore, it is noteworthy that
for weakly bound compounds, PBEsol consumed less than
half the computational resources of r2SCAN, while predict-
ing only modestly less accurate formation energies. Hence,
PBEsol may still be considered an excellent choice for com-
puting many properties of interest.

IV. SUMMARY AND OUTLOOK

To summarize, we have compared r2SCAN and SCAN
predictions for key properties of approximately 6 000 solid
materials. We find that r2SCAN predicts substantially sim-
ilar formation energies, band gaps, and degrees of electron
localization as the original SCAN functional, but predicts
systematically larger lattice constants. r2SCAN is found to
predict formation energies more accurately than SCAN and
PBEsol for both strongly and weakly bound materials, while
r2SCAN and SCAN calculated band gaps are virtually iden-
tical and modestly more accurate than those predicted by
PBEsol. For materials containing U, Np, or Pu, r2SCAN
predicts formation energies that are substantially different
from and considerably more accurate than those predicted by
SCAN. The reason for this is not clear and could arise from
a fortuitous cancellation of errors related to the lack of spin-

orbit coupling in our calculations and/or as a consequence of
the smoother potential-energy surface generated by r2SCAN.
With respect to computational reliability, we find that r2SCAN
requires modestly fewer computational resources than SCAN
but offers much more reliable convergence. Thus, our large-
scale benchmark confirms that r2SCAN has delivered on its
promises of numerical efficiency and accuracy [29], making it
an ideal choice for high-throughput metaGGA calculations.

V. DATA AVAILABILITY

All data referenced herein are publicly available on
FIGSHARE [58] and will be integrated into the Materials
Project database [39] in the near future. Our computational
workflow has been implemented into the PYMATGEN [59],
CUSTODIAN [59], and ATOMATE [60] packages as of versions
2020.12.3, 2021.1.8, and 0.9.6, respectively, for readers wish-
ing to utilize it in their own work.
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