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Abstract

Tungsten has been suggested as a material in applications where it is irradiated by neutrons and undergoes trans-

mutation to rhenium. Pure W has the bcc lattice structure. According to the equilibrium phase diagram about 30 at.%

Re can go into a bcc W±Re solid solution. However, ab initio electronic structure calculations show that the bcc lattice

becomes dynamically unstable at high Re concentrations. Through a detailed calculation of the phonon spectrum, we

®nd that bcc W1ÿcRec does not become dynamically unstable until c J 0:7, i.e., well above the equilibrium solubility

limit of Re in bcc W. Concentration ¯uctuations of Re in irradiated W will therefore not lead to any signi®cant number

of regions where the bcc lattice collapses due to a dynamical instability. Ó 2000 Published by Elsevier Science B.V. All

rights reserved.

PACS: 41.Qb; 81.30.-t; 81.30.Bx; 63.20.-e

1. Introduction

Tungsten is of interest as a shielding material in fu-

sion reactors and other systems with nuclear reactions

[1±3]. Under neutron irradiation, tungsten may trans-

mute to rhenium. In certain applications and after long

service as many as 25% of the W atoms have been

transmuted [1]. This is still within the region of a bcc

solid solution of Re in W (Fig. 1(a)). However, ab initio

electronic structure calculations performed by us [4]

show that the bcc lattice structure of pure Re is dy-

namically unstable against several di�erent lattice dis-

tortions, leading to fcc, hcp, dhcp and x-phase lattice

structures. For instance, the elastic shear constant

C0 � �c11 ÿ c12�=2 is negative in bcc Re. Hence, there is a

critical concentration c � c� of Re atoms at which a bcc

W±Re solid solution would become dynamically unsta-

ble. It is the purpose of this paper to discuss the

consequences of such an instability when tungsten is

used as a material subject to heavy neutron irradiation.

The paper is organized as follows. In Section 2 we give

the Helmholtz energy of bcc W±Re. The implication for

the W±Re phase diagram is dealt with in Section 3, and

Section 4 considers the possibility of local concentrations

c > c� in an irradiated material for which the overall Re

concentration is less than c�. The paper ends with a dis-

cussion in Section 5 and conclusions in Section 6.

2. The Helmholtz energy of bcc W±Re alloys

The details of our ab initio electronic structure cal-

culations of lattice energies and phonon frequencies are

reported elsewhere [4]. Here we summarize those results

that are necessary for our discussion of the phase dia-

gram. The Helmholtz energy F �c� � U�c� ÿ TS�c� of a

W1ÿcRec alloy with a certain lattice structure has three

important contributions:

Ftot�c� � Fconf�c� � Fel�c� � Fph�c�; �1�

where Fconf (c) is the Helmholtz energy of a static lattice

in which the atoms take an equilibrium con®guration,
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and the electrons are in their ground state. Fconf for an

element (here W or Re) is easily calculated and can be

identi®ed with the cohesive energy of a static lattice at

0 K. When 0 < c < 1 we use a standard cluster-expansion

technique [5,6] to obtain the energy U of various atomic

con®gurations of W and Re atoms. The entropy is ob-

tained by using the cluster-variation method [7]. At the

high temperatures of interest for the equilibrium phase

diagram (typically T > 1000 K) the entropy is found to

be well described by Srandom � ÿkB�c ln c� �1ÿ c� ln
�1ÿ c�� per atom, showing that there is negligible short

range order. Therefore, Fconf�c� �Urandom�c�ÿTSrandom�c�,
where Urandom(c) refers to a random bcc W±Re substi-

tutional solid solution.

The contribution from electronic excitations, Fel(c), is

in our case well represented by the Sommerfeld-type

expression

Fel�c� � ÿ p2

6
N�EF; c��kBT �2; �2�

where N(EF) is the electron density of states at the Fermi

level EF. N�EF; c� is obtained by a linear interpolation in

the concentration c between N(EF) for pure bcc W and

bcc Re, respectively. This approximation, of rigid-elec-

tron-band type, is reasonable since W and Re are

neighbours in the Periodic Table.

The most di�cult part to account for, and of central

interest here, is the contribution Fph from lattice vibra-

tions. It requires the calculation of individual phonon

frequencies x�q; s� of wave vector q and mode s (longi-

tudinal and transverse) for enough q-points such that a

representative phonon density of states can be formed.

This is a straight-forward task for elemental bcc W and

bcc Re, but not feasible for a random W1ÿcRec solid

solution. Tungsten in the observed bcc structure of

course has all x2�q; s� > 0. However, as mentioned in

the introduction, there are large regions of q-vectors

in the ®rst Brillouin zone for which the phonon modes in

bcc Re have x2 < 0, implying a dynamically unstable

lattice.

The following interpolation procedure is now used to

estimate x2�q; s; c� for bcc W1ÿcRec. For the disordered

system the virtual crystal approximation [8] (VCA) is

applied. The phonon dispersion curves are calculated for

a set of di�erent concentrations �c � 0:25; 0:50; 0:75�
and ®tted to a standard Born±von K�arm�an force con-

stant model. The force constants are then interpolated

by a cubic spline in the concentration c, from W (i.e.,

c � 0) to Re �c � 1�. This is a reasonable procedure

because the force constants re¯ect changes in the elec-

tronic structure, and W and Re are neighbours in the

Periodic Table.

On the basis of these force constants, we solve for

x2�q; s; c� and ®nd the highest concentration c � c�

for which all x2�q; s; c� > 0, i.e., the critical composition

for dynamical lattice instabilities. In bcc W±Re this

procedure yields c� � 0:71. When c < c� our set of force

constants easily gives the phonon frequencies for any

phonon state (q, s) and concentration c. We then calcu-

late the Helmholtz energy. Its essential features can be

seen from the leading high-temperature term (per atom;

T > hD where hD is a characteristic Debye temperature

�320 K for W)

Fph � ÿ3kBT ln
kBT

¤x log

� �
: �3�

Here x log �c� is the logarithmically averaged phonon

frequency.

3. Phase diagram considerations

To determine the true phase diagram one must con-

sider the Helmholtz energy of all competing phases.

Because our main concern is the dynamical instability of

the bcc phase, we consider the competition between a

bcc W±Re solid solution as described above and a ref-

erence phase which we choose to be fcc W±Re. (The

observed structure of pure Re is hexagonal close-packed,

but fcc Re is dynamically stable and choosing the fcc

phase instead will not a�ect the conclusions of this pa-

per.) Thus, using the formalism in Section 2, we study

DFbcc � Ftot�bcc W1ÿcRec� ÿ �1ÿ c�Ftot�bcc W�
ÿ cFtot�fcc Re�; �4�

Fig. 1. The upper panel (a) shows the experimentally deter-

mined phase diagram. The lower panel (b) shows the Helmholtz

energy di�erence DF at T � 1500 K, as derived from our ab

initio electron structure calculations and used here in a con-

ventional `tangent' construction for phase diagrams.
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DFfcc � Ftot�fcc W1ÿcRec� ÿ �1ÿ c�Ftot�bcc W�
ÿ cFtot�fcc Re�: �5�

As an illustrating example, the contributions to DFbcc for

W29Re71 are (in mRy/atom) DFconfig � �5:36; DFph �
ÿ7:47 and DFel � ÿ0:43; cf. also Fig. 6 in Ref. [4]. To

illustrate the possible e�ect of the bcc lattice instability

on the equilibrium W±Re phase diagram, we show DF in

Fig. 1(b) for T � 1500 K. Fig. 1(a) gives the phase dia-

gram as determined in the experiments [9,10]. The

function DFbcc ends at c � c� � 0:71, where in our model

the bcc lattice becomes dynamically unstable. Beyond

this concentration, the vibrational entropy of the hy-

pothetical bcc structure has no meaning and hence the

Helmholtz energy is unde®ned. (Quantities like S and F

are de®ned for phases in stable or metastable thermo-

dynamic equilibrium, but not for a dynamically unstable

phase.)

As expected, in Fig. 1(b) the critical concentration

c� falls beyond the observed range of the bcc W±Re

solid solution. The question now arises if there are any

precursors to be seen in the phase diagram when

c < c�. The dashed line is drawn in analogy to the

standard technique of a `common tangent' construction

in curves of Ftot versus c that is used to ®nd the limiting

concentrations of the phase-®eld boundaries. As drawn

in the ®gure, it de®nes a concentration clim that has the

following interpretation. In a thermodynamic compe-

tition between bcc and fcc W±Re, the phase diagram

shows a bcc solid solution up to c � clim and is fol-

lowed beyond that concentration by a two-phase ®eld

with bcc and fcc W±Re. In the actual W±Re system,

the two-phase ®eld contains bcc W±Re and the r-

phase; cf. Fig. 1(a) and Ref. [11]. The corresponding

concentration clim would result if we had known Ftot of

the r-phase and made the tangent construction. We

conclude that the dynamical instability in the bcc phase

at c � 0:71 falls well beyond the observed solubility

limit of Re in bcc W, and therefore has no signi®cant

precursor e�ect on the bcc phase ®eld in the equilib-

rium W±Re phase diagram. This is in agreement

with analogous conclusions for W±Pt and other al-

loys [12,13]. However we note that undercooled liquid

W±Re alloys with 50 at.% W may solidify in a meta-

stable bcc structure [14].

4. Local ¯uctuation in the alloy composition

We assume that the transmutation of W to Re leads

to a truly random substitutional bcc solid solution of a

certain average composition c0. Thus we disregard, e.g.,

the creation and in¯uence of lattice defects, and an-

nealing e�ects caused by the di�usion of atoms. Given

the average composition c0, there will be local ¯uctua-

tions of a statistical nature. It is of interest to ®nd the

probability that in a small region the concentration c is

so large that the bcc lattice becomes dynamically un-

stable there, in spite of the fact that c0 is well within the

range of a bcc phase in the phase diagram. Our calcu-

lation of the critical composition c� � 0:71 referred to a

macroscopically large system. We now consider a small

region in the bcc W±Re lattice, approximately cubic in

shape and containing N atoms �N � 1�. Let c0 be the

probability that a lattice site is occupied by a Re atom.

P �N ; c�; c0� is the probability that at least c�N of the N

sites are occupied by Re atoms, i.e., the local concen-

tration in the considered region is c P c�. P �N ; c�; c0� is

obtained from binomial coe�cients as

P �N ; c�; c0� �
XN

n�Nc�

N
n

� �
cn

0�1ÿ c0�Nÿn
: �6�

We next want to calculate how many such regions,

R�c�; c0�, of high local Re concentration there are in a

certain macroscopic specimen. In its general formulation

this is a very di�cult statistical problem. For our pur-

pose it su�ces with an estimate of R (in fact, a lower

bound) obtained as follows. Let the macroscopic volume

be divided into s cubes, each containing N atomic sites.

Then R � sP �N ; c�; c0�. Fig. 2 shows the number, R, of

overcritical regions per 1 cm3, as a function of the size N

of the small regions (cubes) and for four average Re

concentrations c0 in the specimen.

Fig. 2. R(N,c�;c0) is the number of regions (cubes), per cm3 of

the W±Re specimen, in which the concentration of Re atoms is

larger than c�. R(N,c�;c0) is plotted as a function of N, the

number of atoms (lattice sites) in the considered small regions

(cubes). Results are given for four overall Re concentrations c0

in the specimen.
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5. Discussion

Pure bcc Re is dynamically unstable for long-wave-

length vibrational modes (sound waves) as well as for

phonons of very short wavelength (Brillouin-zone-

boundary states). In our model, the dynamical instabil-

ity that is ®rst encountered refers to a phonon with a

wavelength equal to 0.87a where a is the bcc-W lattice

parameter. Therefore, even a small region with c > c�

may be associated with a local dynamical lattice insta-

bility. As an example, let us assume that a region con-

taining a total of 100 atoms with c > c� su�ces to

develop an instability, i.e., consider N � 100. It is clear

from Fig. 2 that the concentrations of such overcritical

regions is negligibly small for all Re concentrations in

the equilibrium bcc W±Re phase ®eld.

We have ignored the subsequent transmutation of Re

to Os [1,2]. In the Periodic Table Os follows after W and

Re in the 5d transition-metal row. Both Re and Os have

stable hcp lattice structures and a dynamically unstable

bcc lattice [15,16]. In a rigid-band description of the

electronic states, W1ÿ2cRe2c would be equivalent with

W1ÿcOsc for c6 0:5. This will lower the stability limit of

the bcc W±Os lattice towards the bcc phase boundary at

c � 0:3 in the equilibrium W±Re phase diagram, but it is

still very unlikely that composition ¯uctuations due to

neutron irradiation of bcc W will lead to a signi®cant

number of overcritical regions where the bcc lattice

collapses.

Finally, we remark that our analysis ignores atomic

di�usion as well as radiation damage. Since the trans-

formation of W to Re takes place during a long time

span, there may be time enough for di�usion to keep the

local Re concentration close to its average value and

thus very much below c�. We also note that WRe and

WRe3 phases have been observed [17,18] in irradiated W

at average Re concentrations below the solubility limit

of Re in bcc W.

6. Conclusions

Ab initio calculations show that the bcc substitu-

tional solid solution of W1ÿcRec is dynamically unstable

beyond a critical concentration c�. This may have im-

portant consequences when W is used as a material

under heavy neutron irradiation, causing transmutation

of W to Re. However, we ®nd that the bcc lattice

structure does not become dynamically unstable until

c J 0:7, i.e., well above the equilibrium solubility limit

of Re in bcc W. Hence, in the bcc phase ®eld of the

equilibrium W±Re phase diagram (i.e., c < 0:3) one may

ignore local statistical ¯uctuations in the Re concentra-

tion that would lead to small regions of dynamical lat-

tice instability. Furthermore, the incipient bcc instability

at c � 0:7 gives no signi®cant precursor e�ects in the bcc

phase ®eld �c < 0:3�.
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