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Data mining has revolutionized sectors as diverse as pharmaceutical drug discovery, finance,
medicine, and marketing, and has the potential to similarly advance materials science. In this
paper, we describe advances in simulation-based materials databases, open-source software tools,
and machine learning algorithms that are converging to create new opportunities for materials
informatics. We discuss the data mining techniques of exploratory data analysis, clustering, linear
models, kernel ridge regression, tree-based regression, and recommendation engines. We present
these techniques in the context of several materials application areas, including compound
prediction, Li-ion battery design, piezoelectric materials, photocatalysts, and thermoelectric
materials. Finally, we demonstrate how new data and tools are making it easier and more
accessible than ever to perform data mining through a new analysis that learns trends in the
valence and conduction band character of compounds in the Materials Project database using data
on over 2500 compounds.

Materials science has traditionally been driven by
scientific intuition followed by experimental study. In
recent years, theory and computation have provided
a secondary avenue for materials property prediction
and design. Several successful examples of materials
designed in a computer and then realized in the labora-
tory1 have now established such methods as a new route
for materials discovery and optimization. As computa-
tional methods approach maturity, new and complemen-
tary techniques based on statistical analysis and machine
learning are poised to revolutionize materials science.

While the modern use of the term materials informat-
ics dates back only a decade ago,2 the use of an
informatics approach to chemistry and materials science
is as old as the periodic table. When Mendeleev grouped
together elements by their properties, the electron was yet
to be discovered, and the principles of electron

configuration and quantum mechanics that underpin
chemistry were still many decades away. However,
Mendeleev’s approach not only resulted in a useful
classification but could also make predictions: missing
positions in the periodic table indicated potential new
elements that were later confirmed experimentally. Men-
deleev was also able to spot inaccuracies in atomic
weight data of the time. Today, the search for patterns
in data remains the goal of materials informatics,
although the tools have evolved considerably since
Mendeleev’s work.
While materials informatics methods are still in their

infancy compared to other fields, advancements in
materials databases and software in the last decade are
rapidly gaining ground. In this paper, we discuss recent
developments of materials informatics, concentrating
specifically on connecting a material’s crystal structure
and its composition to its properties (and ignoring, for
instance, microstructure and processing). First, we pro-
vide a brief history of classic studies based on mining
crystallographic databases. Next, we describe the recent
introduction of computation-based databases and their
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potential impact on the field, followed by a discussion of
techniques and illustrative examples of modern materials
informatics. Finally, we present a novel materials in-
formatics study, based exclusively on openly-available
data sets and tools, that predicts the valence and
conduction band character of new materials. We note
that while this review is mainly focused on periodic
solids, molecular systems have also been extensively
studied through data mining approaches.3–5

I. EARLY EXAMPLES OF DATA MINING
CRYSTALLOGRAPHIC DATABASES

The earliest and still today the most systematic and
organized data sets in materials science are based on
crystallographic data. Crystal structures of observed
compounds are available in databases such as the In-
organic Crystal Database (ICSD),6 the Cambridge Struc-
tural Databases,7 and the Pauling file.8 Information on
unit cells, atomic positions, and symmetry are available
from these resources for hundreds of thousands of
inorganic compounds.

Crystal structure data have been extensively used to
perform, before the term even existed, data mining
studies. For instance, ionic radii for the elements were
extracted from large crystallographic data sets in the
beginning of the 1970s by Shannon.9 This was followed
by a more complex description of bonding through the
bond valence formalism,10,11 which relates the valence of
cation i to a sum of the bond strengths sij between cation i
and anions j through an analytical expression, i.e., Vi 5P

jsij in which the sij terms are summed over bonds
through a simple mathematical expression such as sij 5

(rij/r0)
�N or sij ¼ e

r0�rijð Þ
B . The parameters r0, N, or B are

specific to a cation–anion pair (ij) and must be extracted
from a data set through a fitting procedure. Using the
ICSD database,6 Brown et al. extracted these parameters
from 750 atom pairs, building a bond valence table that
remains widely used today.12

More specific questions on bonding in solids have also
been answered through the usage of large structural data
sets, e.g., the nature of hydrogen bonds13 and bonding in
borates.14 Furthermore, these data sets have enabled
studies of the distribution of inorganic compounds among
space groups,15,16 to the search for materials with specific
crystallographic and symmetry requirements such as
ferroelectrics,17 and for screening structure-based prop-
erties such as diffusion paths.18

Another early application of crystallographic databases
was in crystal structure prediction. Early approaches used
structure maps, which plot the experimentally observed
type of crystal structures against intuitive chemical
descriptors (electronegativity, Mendeleev number, or
ionic radius).19–22 The groupings that form on these

maps can then be used to infer the structure in which
a new chemical compound will crystallize. An example
of a structure map is plotted in Fig. 1 for the A1 B1

stoichiometry. Recently, Morgan et al. used modern
cross-validation techniques to demonstrate that structure
maps are indeed predictive and quantified their perform-
ances.23 Structure maps have also been combined with
modern data mining techniques to build a predictive
model using information entropy and classification trees
for the prediction of binary halide scintillators.24

II. NEW RESOURCES: THE ADVENT OF
COMPUTATIONAL MATERIALS DATA
REPOSITORIES AND OPEN SOFTWARE

While it is possible to perform data mining using
crystal structures alone, most informatics studies addi-
tionally require materials property measurements. Al-
though many databases of experimental materials
properties are now available, it can be difficult to extract
large-scale structure-property relationships from these
resources. Computational databases, while also possess-
ing many important limitations, may be able to supple-
ment the capabilities of experimental databases and
facilitate an informatics-style approach to materials
design.

A. Experimental materials databases

One class of experimental materials databases are the
crystallographic structure repositories mentioned previ-
ously, which include the ICSD,6 the Pauling file,8

CRYSTMET,25 and Pearson’s Crystal Data.26 These
resources have been recently summarized and reviewed
by Glasser.27 Materials properties databases are also
available. The largest of these is likely the set of data-
bases from Springer, which includes the comprehensive
Landolt–Börnstein Database.28 However, most materials
property information remains scattered across multiple
resources, including the FactSage suite of databases,29

the National Institute of Standards and Technology data-
bases,30 MatWeb,31 MatNavi,32 various publications
such as the Kubaschewski tables,33 and the Handbook
of Ternary Alloy Phase Diagrams.34 We note that Citrine
Informatics (http://www.citrine.io) is one commercial
entity that is attempting to centralize information col-
lected from diverse sources (both experimental and
computational).

These various data sources have historically been
expertly curated and validated, and serve as important,
trusted resources for the materials research community.
While it is certainly possible to perform data mining on
these databases, limitations include completeness and
programmatic access. In terms of completeness, many
materials properties (e.g., formation energies, band gaps,
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and elastic tensors) have only been measured for only
a small fraction of the number of known crystal struc-
tures. There is particularly a lack of data available for
negative results, including failed synthesis attempts and
unexceptional materials properties measurements. Even
when compound properties are available, they are often
associated only with a composition and lack a rigorous
description of the material being measured (crystal
structure, microstructure, doping level, etc.). The lack
of information about the input material can make it very
challenging to develop models. Finally, in terms of data
access, most of these databases can only be accessed
through mechanisms designed for “single lookups” rather
than systematic data mining over large portions of the
database. Thus, there is room for other types of databases
that can help address the gaps in the experimental record.

B. Computational materials databases

In recent years, the ability to generate materials
data using systematic high-throughput computations
(typically based on density functional theory, or DFT,
approaches for solving the Schrödinger equation35,36)
has created new, efficient opportunities to produce
high-quality databases for data mining. These
computationally-driven databases, which usually le-
verage crystal structure information from experimen-
tal databases, provide powerful means to extract
patterns and correlations from hitherto unavailable
data sets. As an example, the full elastic tensor has
only been measured for approximately 150 distinct
compounds, but a recent high-throughput computa-
tional study has tabulated this quantity for over 1000
materials.37

FIG. 1. An example of a structure map for the A1 B1 composition. Each symbol indicates a specific crystal structure prototype. The axis refers to
a “chemical scale” attributing a number to each element based on its position in the periodic table (Mendeleev number). Image from Ref. 20. ©IOP
publishing, all rights reserved. Reprinted with permission.
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Examples of such computationally-derived databases
include the Materials Project,38 AFLOWlib,39 the Open
Quantum Materials Database,40 the Harvard Clean
Energy Project,41 the Electronic Structure Project,42

NoMaD,43 NRELMatDB,44 and the Computational
Materials Repository.45 Some of these databases can
be quite extensive; for example, the Materials Project38

today contains property data for over 60,000 com-
pounds and includes many different properties, and
AFLOWlib39 includes over 600,000 entries. However,
more focused efforts are also proliferating, including
CatApp46 for catalysis, PhononDB47,48 for phonons,
TEDesignLab for thermoelectrics,49 and ESTEST50 for
verification and validation of physics software. In some
cases, the separation between these efforts is clear. For
example, the Harvard Clean Energy Project41 is geared
toward small molecules, whereas AFLOWlib39 targets
inorganic compounds. In other cases, such as for the
Materials Project,38 AFLOWlib,39 and the Open Quan-
tum Materials Database,40 there is considerable overlap
in the intended scope. Even in this latter case, users can
still benefit from multiple databases, e.g., to verify
results or to “fill in the gaps” of their preferred database.
Unfortunately, at present there exists no search-engine
or similar tool to facilitate search across databases
(e.g., something in the spirit of ChemSpider51). This
might partly be due to the current difficulty of accessing
data programmatically in many of these resources, as
discussed in Sec. II. C. A summary and comparison of
these different efforts can be found in a recent review
by Lin.52

A major contributing factor to the rise of simulation-
based data is the availability of software libraries that
have brought large-scale data generation and data mining
within the reach of a greater number of research groups.
Examples include pymatgen53 (materials analysis,
plotting, and I/O to DFT software), ASE54 (structure
manipulation and DFT calculator interface), AFLOW55

(high-throughput DFT framework), AiiDA56 (workflow
management for high-throughput DFT), and FireWorks57

(general workflow software for high-throughput comput-
ing). These codebases, as well as the continually improving
accuracy of theoretical techniques, robust and more power-
ful DFT software, and the exponential growth of computing
power will likely make simulation-based data sets even
more valuable and prevalent in the future.

C. Programmatic data access

An efficient method to download large data sets from
data resources (whether experimental or computational)
is necessary for performing materials informatics. There
are many methods by which data can be exposed,
including direct download of either raw or processed
data sets. A more modern technique to expose a data

resource is to use representational state transfer (REST)
principles to create an application programming interface
(API) to the database.58 This method was pioneered in
the computer science community and was introduced to
the materials world through the materials API (MAPI)59

of the Materials Project. To date, the MAPI has served
more than 15 million pieces of materials data for over 300
distinct users, enabling new types of applications and
analyses.

Under RESTful design, each object is represented as
a unique resource identifier (URI) that can be queried in
a uniform manner using the hypertext transfer protocol
(HTTP). Each document or object (such as a computa-
tional task, crystal structure, or material property) is
represented by a unique URI (see Fig. 2 for an example)
and an HTTP verb that can act on that object. In most
cases, this action returns structured data that represents
the object, e.g., in the javascript object notation format
(JSON).

Some of the advantages of RESTful interfaces include:
(i) Abstraction: RESTful interfaces use universal pro-

tocols that can be accessed by many programming
languages. They hide the details of the underlying data
storage implementation (i.e., whether the data is stored in
an SQL or NoSQL database), by exposing a clean and
consistent set of actions and queries that can be per-
formed against the data.

(ii) Flexibility: Because they abstract away implemen-
tation details, RESTful interfaces are flexible to changes
in the underlying infrastructure. They also allow for
federation amongst several databases with different in-
ternal architectures under a consistent API, such that
a user can in principle write the same code for different
resources. Such flexibility might become especially
important in building universal access modes to disparate
data sources.

(iii) Power: High-level interfaces can be built upon
RESTful APIs such that one can access and manipulate
offsite data resources in an object-oriented way. For
example, a high-level interface to the MAPI59 is provided
in the pymatgen53 code base and allows users to obtain

FIG. 2. An example of the URL structure of the MAPI. Figure reprinted
from Ref. 59 with permission from Elsevier.
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properties, such as crystal structure or electronic band
structure, using built-in functions rather than by explicitly
making HTTP requests.

(iv) Up-to-date: Data sets can become stale and out-
dated. A RESTful interface allows for the most recent
version of the data and queries to be exposed at all times
without actions needed by the user. Users can always
choose to retain data, and the URI scheme can also be
used to preserve multiple versions of the data. However,
RESTful APIs make it simple to obtain the most current
and relevant data for a given analysis without needing to
re-download the entire database.

Although REST interfaces can be tricky for beginning
users, a well-designed REST interface promotes discov-
erability of the data and frees the end user from learning
the implementation details of a particular database,
instead allowing data analysis through a clean and
consistent API.

III. MODERN DATA MINING TECHNIQUES AND
EXAMPLES

With the generation of ever-expanding materials data
sets underway, the major remaining challenges are to
develop descriptors (sometimes called “features” or
“predictors”) of materials and relate them to measured
properties (sometimes called “outputs” or “responses”)
through an appropriate data mining algorithm. In the last
few decades, many new approaches have been developed
to extract knowledge from large data sets using elaborate
mathematical algorithms, leading to the new field of
machine learning or data mining.60 In many cases, such
algorithms can be applied in an “off-the-shelf” way for
materials problems; in other cases, materials scientists
have themselves developed new approaches for data
analysis that are tuned to their domain.

A. Descriptors for materials structure and
properties

Because data mining operates on numerical data
structures, materials scientists must first encode materials
in a format that is amenable for finding relationships in
the data. While several data formats have been developed
for describing crystallographic materials (e.g., the CIF
file format), these formats are not suitable as data mining
descriptors for reasons that follow. The problem of
developing robust descriptors for crystalline solids
remains a challenging task; here, we identify and re-
capitulate61 four properties that characterize good
descriptors:

(i) Descriptors should be meaningful, such that
relationships between descriptors and responses are not
overly complex. For example, whereas the lattice vectors
and atom positions of a crystal structure in principle

determines its properties, such an encoding involves
a very complex relationship between inputs and outputs
(i.e., the Schrödinger equation). In particular, the com-
plex and important three-dimensional boundary condi-
tions implicit in this representation are not captured by
today’s data mining techniques. Better descriptors have
simpler relationships to the outputs, ideally within the
complexity space of what a data mining algorithm can
reasonably uncover (in accordance with similar principles
outlined by Ghiringhelli et al.61)

(ii) Better descriptors are universal, such that they can
be applied to any existing or hypothetical material. While
this is not strictly necessary when performing analysis
within a well-constrained chemical space, it is useful for
building universal models that bridge chemistries and
structures.

(iii) Better descriptors are reversible, such that a list of
descriptors can in principle be reversed back into a de-
scription of the material. This is not strictly necessary for
a successful model, but it would enable more efficient
“inverse design” in descriptor space rather than in the
space of materials. A less stringent version of this
condition was put forth by Ghiringhelli et al.,61 who
stated that descriptors should uniquely characterize
a material.

(iv) Descriptors should be readily available, i.e., they
should be easier to obtain than the target property being
predicted.61

It is unlikely that any one set of descriptors will meet
such criteria across the space of all potential composi-
tions, crystal structures, and targeted output properties.
Rather, descriptors will likely need to be tailored to an
application, as was demonstrated by Yang et al. for
topological insulators.62

A common first-level set of descriptors is to encode
compounds as a vector that depends only on the identity
of the elements contained within the compound, without
explicit consideration of crystal structure or stoichiome-
try. For example, an A–B binary compound might
include properties such as the electronegativity of the
pure A element, the electronegativity of the pure B
element, the atomic radii of these elements, and the
experimentally known melting points of these elements.
One weakness of this strategy is that the properties of
pure elements do not always correlate well to their
properties exhibited in compounds; as an extreme exam-
ple, the elemental properties of oxygen gas are very
different from the anionic properties of oxygen in oxide
compounds. An extension of this basic technique, which
we refer to as the “atoms-in-compounds” approach, still
only considers the identity of the atoms in a compound
when formulating descriptors, but uses descriptions of the
elements from known compound data. For example, for
the same A–B compound we might include descriptors
such as the ionic radius of A (determined from its bonds
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in the context of selected compounds) or the oxide heat of
formation of B. Depending on the type of compound
being modeled, such descriptors might be more pre-
dictive than properties of the pure elements.

Important research efforts are being directed toward
the development of novel descriptors today for encoding
more complex materials data such as crystal structure.
For instance, beyond the description of materials by
space groups, a description by crystal structure proto-
types can be essential and several algorithms have been
developed63,64 and applied toward probabilistic crystal
structure prediction models.65,66 Further methods include
the development of the “symmetry functions” that cap-
ture two and three-body terms67 and local environment
descriptors68 to characterize bonding details in crystals.
“Fingerprints” representing the somewhat complex object
of crystal structures have also been proposed to charac-
terize the landscape of possible structures and as descrip-
tors in data mining approaches.69,70 Finally, other recent
approaches are inspired by molecular data mining; the
idea of a “coulomb matrix” as a representation of organic
molecules has been extended to solids by Faber et al.,71

and the SimRS model for structure primitives has been
applied to solids by Isayev et al.70

In addition to descriptors derived from experimental
data and structural analysis, descriptors from DFT com-
putations are becoming increasingly popular. For in-
stance, a data mining approach using linear regression
recently revealed that information from the charge
density of the material could be predictive of its elastic
tensor.72 Mixing of computed and traditional descriptors
is also possible; for example, Seko et al.73 presented
results on the development of a linear regression model
predicting melting temperature from both classical
descriptors and computed quantities (such as cohesive
energies). This study highlights the gain in predictive
power provided by the addition of these computed

quantities (see Fig. 3), provided that performing the
computations remains more convenient than determining
the final property. We note that even properties for which
the underlying physics is unclear, such as high-Tc super-
conductors, can sometimes be tackled by combining
computed data (density of states (DOS) and band
structures) with experimental observations.70

Often, such fundamental descriptors perform better if
they are combined through functions; for example, a de-
scriptor describing the ratio between the ionic radius of
elements A and B in a compound may produce more
accurate linear models than two separate descriptors
describing the individual radii. We note that functions
that are symmetric to the interchange of elements can be
used to avoid the problem of site differentiation across
crystal structures. One problem in formulating such
functions, and with descriptor selection in general, is
the large number of possibilities and the danger of using
correlated predictors, and in over-fitting. An active area
of research in statistical learning methods is in such
feature selection problems, which identify the best
descriptors within a large pool. For example, recent work
by Ghiringelli et al.61 have demonstrated that physically
relevant models can be constructed by mathematically
selecting between approximately 10,000 possible func-
tional forms of descriptor combinations. Such techniques
to automatically derive physical relations are reminiscent
of earlier work in physics data mining, in which the
equations of motion of a double pendulum could be
automatically derived given explicit input variables and
an output data set.74

B. Exploratory data analysis and statistics

Once the descriptors and target outputs are determined,
an appropriate data mining scheme must be selected to
relate these quantities. The first step is to plot visual
correlations and apply standard statistical tools (such as

FIG. 3. Predicted versus experimental melting temperature over a data set of 248 compounds for two models: one including DFT descriptors and
one without. Image from Ref. 73. Reprinted with permission, ©American Physical Society.
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the analysis of variance, or ANOVA, approach) to better
understand the data set and to make basic predictions. This
phase is often referred to as exploratory data analysis. For
example, one large ab initio data set75 targeted the
discovery of new Li-ion cathode materials. This data set
encompassed tens of thousands of materials, which were
extensively analyzed for trends, limits, and opportunities
across cathode chemistries. For example, statistics for this
data set were compiled for phosphate materials,76 which
have been of great interest for the battery community due
to the success of LiFePO4 as a Li-ion cathode. Using more
than 4000 lithium-containing phosphate compounds, the
expected voltage for all potential redox couples in any
phosphate cathode material could be derived and rational-
ized. Furthermore, several hypotheses, proposed in the
literature and based on limited data, on the relevant factors
determining voltage (such as ratio of P/O, number of
linkages between phosphate groups and redox metals, and
P–O bond length) were confirmed or challenged.

Visual exploration can also uncover relationships be-
tween properties. The same project mentioned above un-
covered a correlation between the computed average
voltage and thermodynamic chemical potential of O2 (trans-
lated into a temperature for oxygen gas release) for cathode
compounds (Fig. 4).77,78 This analysis determined that
higher voltage compounds are in general at greater risk
for thermal instability. Although a similar idea was pro-
posed much earlier,79 the advent of high-throughput com-
puted data tested the idea on a large scale and further
uncovered chemistry-based differences in behavior.

C. Clustering

Going beyond visual examination and basic correlation
analysis, one can use clustering techniques to uncover

hidden relationships in the data. Clustering divides data
into groups based on a similarity metric in a way that
uncovers patterns and categories, but does not directly
predict new values. Several algorithms exist today for
automatically clustering data (e.g., k-means clustering,
Ward hierarchical clustering, Density-based spatial clus-
tering of applications with noise (DBSCAN), and
others80,81). To perform a clustering analysis, one must
be able to define a distance metric between data points
(e.g., Manhattan distance or Euclidean distance between
feature vectors) and sometimes additional parameters
depending on the algorithm (e.g., a standard k-means
clustering requires setting the number of clusters in
advance); several different trials of an iterative algorithm
may be needed to find an optimal grouping.

The results of a clustering analysis can be used
downstream in data analysis; for example, each cluster
might represent a “category” of material, and a separate
predictive model can be fit for each cluster. For example,
this is the approach taken in the cluster-rank-model
method developed by Meredig and Wolverton,82 which
was used to classify and then predict the stability of
various dopants into zirconia.

One technique for visualizing a hierarchical clustering
process is the dendrogram, which displays the results of
clustering as a function of cutoff distance. An example of
a dendrogram for two dimensions of clustering is
depicted in Fig. 5. This diagram was created by Castelli
and Jacobsen83 to understand which elements can be
placed in the A and B sites of a perovskite structure to
produce a stable compound that also has a nonzero band
gap, with the end goal being to understand principles for
designing photocatalyst materials. The researchers ob-
served several “pockets” representing combinations of

FIG. 4. Temperature of O2 release versus voltage for a large set of cathode materials. Higher temperatures are associated with greater “safety” of
the cathode material. A clear correlation between higher voltage and lower temperatures for releasing oxygen gas is observed. The figure on the
right depicts a linear least-squares regression fit to the data for different chemistries (oxides, sulfates, borates, etc.). While all cathode materials have
a similar tendency to be less safe for higher voltage, there is a clear difference between different (poly)anions. Image from Ref. 77. Reproduced by
permission of the PCCP Owner Societies.
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elements that met their criteria (Fig. 5) and that could be
rationalized through the periodic table. The way to read
the dendrogram tree in Fig. 5 is as follows:

(i) The dendrogram can be cut at any distance; the
number of lines intersecting that cut is the number of
clusters formed at that distance cutoff.

(ii) As one progressed down the tree (reduces the
distance cutoff), more clusters emerge representing groups
of greater homogeneity. For example, in terms of the A ion
(right side of Fig. 5), the first “cut” separates La from the
other elements, and the second cut separates Y; further cuts
divide the remaining elements into groups. In practice, such
hierarchical clustering algorithms can either be agglomera-
tive (start with each data point as a separate cluster and
begin merging them) or divisive (start with all data points in
a single cluster, and start dividing those clusters).

(iii) By coloring the leaf nodes, the distinct clusters at
a selected cutoff can be emphasized.

Clustering is often combined with methods for
dimension reduction such as principal components anal-
ysis, which determines orthogonal directions in high-
dimensional space that explain the most variance in the

data. Often, only a few principal components are needed
to explain most of the data variance, allowing clustering
to be performed in a small number of dimensions (e.g., 2
or 3) and subsequently visualized. One example of such
a clustering analysis is the classification of oxide DOS
spectra performed by Broderick et al.84 In this study,
DFT-based DOS data for 13 compounds were normalized
and aligned such that each DOS was parametrized as
a 1000 element vector relating energies to number of
states. A principal components analysis was then applied
to determine which parts of the DOS explained the
greatest difference between materials; i.e., the first
principle component, which is itself a 1000-element
vector resembling a DOS, was highly related to the
average difference in the DOS spectrum between mono-
clinic and cubic/tetragonal structures. Each DOS in the
data set was then projected in the space of the first two
principle components, and a clustering analysis was
performed to find similarities in this space. By examining
the clusters, it was determined that variation in the
(normalized, aligned) DOS was most affected in the
order structure .stoichiometry .chemistry, although it

FIG. 5. Elements forming stable oxide perovskites in the A and B sites; the gap is represented by the color, and elements are ordered by size of gap
and grouped by similarity in gap. The dendrogram trees for A and B sites are plotted at the right and top of the image, respectively. Image from Ref.
83. ©IOP publishing, all rights reserved. Reprinted with permission.
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should be noted that there exist hidden relationships
between these variables in the data.

A larger-scale version of DOS classification was
performed by Isayev et al.,70 who grouped together
structures in the AFLOWlib39 database through the use
of a “D-fingerprint” to encode DOS information (similar
to the encoding used by Broderick et al.84 described
previously). Rather than assessing similarity in the space
of principal components, the distance between these
D-fingerprint vectors was computed directly and used
to construct force-directed graphs that placed materials
with similar DOS together. While the resulting data set is
complex, some of the major groups that emerged were
those with a similar number of distinct elements in the
compound as well as a similar number of atoms in the
unit cell. The authors of the study used such graphs only
for making qualitative statements, and explored other
methods for performing quantitative analysis.

D. Linear models

When quantitative predictions are required, one option
is to construct linear models, in which the response value
is calculated as some linear combination of descriptor
values. Linear models encompass a broad range of
techniques and can often be modified to tackle different
types of problems. For example, when predicting prob-
abilities Pr(X) with possible values strictly in the interval
(0,1), a limitation of standard linear models is that values
outside the interval can be predicted. However, by
transforming probabilities to a “log-odds” formalism
(log[Pr(X)/(1�Pr(X)]) in logistic regression, the interval
of prediction can be reformulated into (�∞,1∞). If
factor variables (i.e., categorical variables such as
{“metal”, “semiconductor”, “insulator”}) are involved,
linear models can be used by encoding the potential
factor levels as a set of binary coefficients. As a final
example, “robust linear models” are resistant to outliers
and violations of least-squares linear model assumptions
(such as the presence of heteroscedasticity).85

Linear methods can be powerful methods for estima-
tion and prediction, particularly if descriptors are well-
chosen. For example, Chelikowsky and Anderson86

determined that the melting points of 500 intermetallic
alloys was highly correlated with a simple average of
their (known) unary end-member melting points; how-
ever, other descriptors (such as differences in Pauling
electronegativity) yielded only weak correlations.

One strategy to find good descriptors for linear models
is to begin by including many possibilities and sub-
sequently filter out those that are nonpredictive or
redundant. For example, the method of partial least-
squares fitting can reduce the effect of collinear descrip-
tors (e.g., components of spectra in which neighboring
data points are likely to be highly related). Another

technique is regularization of the linear coefficients
(i.e., reducing the l1 and/or l2 norm) through approaches
such as least absolute shrinkage and selection operator
(LASSO)87 (penalizes l1 norm), ridge regression (penal-
izes l2 norm), or Elastic net88 (penalizes a combination of
l1 and l2 norm). These methodologies help reduce the
number and strength of correlated or unhelpful predictors
and have been successfully applied to several materials
predictions problems such as chalcopyrite band gap
prediction,89 band gap engineering,90 scintillator discov-
ery,91 mechanical properties of alloys92 and phosphor
data mining.93

An example of the application of such techniques is the
use of principal component linear regression analysis by
Curtarolo et al. to predict energies of compounds.94 In
this study, the energy of a compound was demonstrated
to be predictable by linear regression from the energies of
other compounds in the same chemical system. Another
example pertains to new piezoelectrics discovery: Bala-
chandran et al. reduced a set of 30 candidate descriptors
down to 6 using principal components analysis.95 This
reduced set of descriptors was subsequently incorporated
into a linear model that predicted the Curie temperature at
the morphotropic phase boundary, including two new
possible piezoelectric materials (see Fig. 6).

E. Kernel ridge regression (KRR)

Linear techniques might not adequately capture com-
plex relationships in the data. One method to capture
nonlinear relationships is to retain linear models, but to
transform the descriptors in nonlinear ways (e.g., by
taking the square or logarithm of descriptors) prior to
fitting the linear model. This idea forms the essence of
KRR, which leverages two principles beyond standard

FIG. 6. Predicted versus experimental Curie temperature for a series of
piezoelectric materials. Blue points are the training set, green triangle the
test set and red cross predicted new piezoelectrics. Image from Ref. 95.
©The Royal Society, reprinted with permission.
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linear regression. First, KRR uses the ridge regression
principle of regularizing the fitted coefficients by adding
a penalty term that scales with their l2 norm. The
regularization term, used to control over-fitting, is par-
ticularly important for kernel-based methods like KRR
because of the higher number of dimensions being used
for the fit. The second principle of KRR is to use a kernel
to lift the input descriptors into a higher dimensional
space. The mathematics of kernels can be found else-
where,96 but the general principle is that problems that
can be posed as inner products can be mapped to higher
dimensions through kernels that transform the inputs.
This allows KRR to efficiently minimize the ridge
regression error function even when the number of
dimensions in the transformed feature vectors is very
high and perhaps even in excess of the number of
observations. There are many types of kernels that can
be used for this higher-dimensional mapping, including
polynomial, gaussian, exponential, and others. The
choice of kernel function and the magnitude of the
regularization parameter will affect the fitting and must
often be tuned, e.g., through cross-validation.

The KRR model is nonparametric, i.e., the prediction
for a new feature vector is not expressed through
a typical linear equation expressed in terms of trans-
formed features but rather by projecting that targeted
feature vector onto the solution space through dot
products with the training data. KRR has been used to
model the properties of small molecules (atomization
energies4 and multiple properties of 1D chains97) and
have recently been applied to solids. For example, Shütt
et al. used KRR to predict the DOS at the Fermi energy
using a sample of 7000 compounds, finding a high
correlation (error of roughly 6% of the range of values)
that depends on the types of electronic orbitals in-
volved.98 A second example is from Faber et al., who
used KRR to predict formation energies using a sample
of almost 4000 compounds, achieving errors as low as
0.37 eV/atom.71 In both instances, a critical part of the
analysis was deciding how to represent crystalline
materials through descriptors; Shütt et al. leveraged
a form similar to radial distribution functions,98 whereas
Faber et al. modified a Coulomb matrix form that was
developed for molecules.71

F. Nonlinear techniques based on trees

There exist several methods designed to directly
capture nonlinear functions of descriptors that produce
an output. One such method is that of neural networks, in
which descriptor values serve as “input nodes” that form
a weighted graph through “hidden nodes” and end in a set
of “output” nodes, with the weightings describing (in
a nonlinear way) how the inputs relate to the outputs and
are trained by the data. Neural nets have been applied in

materials science99–102 and are experiencing a general
resurgence in the form of “deep learning”; however, they
suffer from a lack of interpretability, and large data sets
are usually needed to adequately train them.

An alternative nonlinear technique is that of tree-based
models. Tree-based methods iteratively split variables
into successively smaller groups, typically in a way that
maximizes the homogeneity within each branch. In this
way, trees are similar to clustering, but they are super-
vised (split on the value of a known “response” variable
but using decisions only on the “predictors”) whereas
clustering is unsupervised (finds internal relationships
between all variables, without distinction between “pre-
dictor” and “response”). A tree model makes a series of
decisions based on descriptor values that successively
move down the branches, until one reaches a “leaf”
(ending) node within which the values of the responses
are sufficiently homogeneous to make a prediction.

One field in which tree-based methods have been
applied is thermoelectrics design. Carrete et al. have
constructed decision trees103 that separate half-heusler
structures into high and low probability of possessing
high figure-of-merit based on decisions regarding elec-
tronegativity difference, atomic number difference, and
periodic table column (see Fig. 7). This study also used
the tree-based method of random forests (described next)
to predict thermal conductivity.

FIG. 7. Results from a decision tree algorithm on a data set of 75 half
heusler compounds; labels above the arrows represent decisions, and
nodes are divided into number of compounds and fraction of
compounds remaining that possess high ZT (the thermoelectric
figure-of-merit). The decision tree highlights the most important
factors leading to high ZT materials for two different operating
temperatures (300 and 1000 K). Image from Ref. 103. ©Wiley-VCH
Verlag GmbH & Co.,reprinted with permission.
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There exist many techniques for improving the pre-
dictive performance of trees, such as pruning (removing
endpoint branches) to avoid over-fitting and smoothing to
reduce variance in prediction (so that small changes in
input data do not result in abrupt changes to the output).
In recent years, ensemble-based techniques based on
averaging the predictions of several models have gained
much popularity. For example, the technique of random
forests104 fits many individual tree models (as the name
suggests) and then averages or takes a vote on the results.
To prevent each tree in the random forest from producing
the same result, each model is (i) fit using only a subset of
the training data and (ii) employs only a subset of the
possible descriptors. We note that when only (i) is used,
the technique is termed bagging and falls under the
general technique of bootstrapping. The random forest
method results in a mix of slightly different “opinions”
that are used to form a coherent consensus that reduce
bias of a single model and produces smoother results than
a single tree. We note that ensembling techniques are
more general than tree-based methods and can indeed
mix many different types of models. For example,
Meredig et al.105 combined a heuristic approach (based
on relating ternary formation energies to a weighted sum
of binary formation energies) with a regression approach
based on ensembles of decision trees to build a model
linking composition to formation energy.

Ensembles are effective because a majority vote of
many models can produce better results than any in-
dividual model, provided that the errors in the individual
models are not highly correlated. For example, by
combining 5 different models that are each only 75%
accurate in predicting a binary outcome (with random
errors) into a majority vote ensemble, the overall prob-
ability of a correct classification increases to approxi-
mately 90%. Unfortunately, such models can be difficult
to interpret and might be overfit if a proper machine
learning design (training, validation, test sets)106 is not
followed. Nevertheless, the high level of performance
that can be achieved will likely make ensembles popular
in future materials science studies.

G. Recommendation engines

Another class of data mining techniques is based on
finding associations in data and can be used to create
a ranked list of suggestions or probable outcomes. Using
these techniques, one can derive useful associations in
materials properties in the same way that a retailer can
predict that a shopper who purchases cereal is likely to
also purchase milk.

Indeed, some of the first applications of advanced
machine learning algorithms in materials science were
based on this idea. Fischer et al. developed a Bayesian
statistics-based algorithm trained on a large

crystallographic experimental database (the Pauling file8)
to build correlations between existing binary crystal
structures and proposed ones.107 The model used the
associations to build predictive models, such as: if A1B1

composition of two elements is known to form the rock
salt structure, then what is the probability that a new
proposed A2B1 compound of those elements crystallizes
in the Mg2Si prototype structure? Fischer et al. analyzed
such associations to derive probabilistic statements on
what structures are likely to form at unexplored compo-
sitions based on what structures are observed at measured
compositions. This approach was later extended to
ternary systems and in particular ternary oxides to
perform an automatic search for new compounds.65

Among the reported successes is the experimental con-
firmation of the formation of SnTiO3 in an ilmenite
structure rather than perovskite (as was previously pro-
posed in the literature108).

Subsequently, another compound prediction data
mining-based algorithm, specifically designed for data-
sparse regions such as quaternary compounds, was pro-
posed by Hautier et al.66 This method is based on the
simple assumption that if a compound forms in a given
crystal structure (e.g., a perovskite), replacing one of its
ions by an ion that is chemically similar (e.g., in the same
column of the periodic table or in the same size) is likely
to lead to a new stable compound in the same structure.
The idea was implemented within a rigorous mathemat-
ical framework and trained on compounds present in the
ICSD database.6 Fig. 8 represents a map of pair correla-
tions between ions obtained from the probabilistic model.
The map indicates which ions are likely (red) and
unlikely (blue) to substitute for one another. Some
compounds predicted by this work (mainly rooted in an
interest in the Li-ion battery field) and confirmed exper-
imentally include: Li9V3(P2O7)3PO4)2,

76,109,110 A3M
(CO3) (PO4) (A 5 alkali, M 5 TM),111,112 LiCoPO4,

113

Li3CuPO4,
114 and LiCr4(PO4)3.

115 An online version of
this tool is available as the Materials Project “Structure
Predictor” app. More recent work by Yang et al. has
further built on this concept and proposed a composition
similarity mapping.116

Another example of associative learning is in the
prediction of photocatalyst materials. Castelli et al. com-
puted several key photocatalytic properties using DFT for
over 18,000 ABO3 oxides, then used association techni-
ques to derive the probability of an arbitrary oxynitride
(i.e., ABO2N) to meet the same photocatalytic criteria.83

By learning the A and B element identities, most associated
with good photocatalytic behavior in the oxides data and
transferring the same assumptions for oxynitrides, they
were able to find 88% of the target oxynitride systems by
searching only 1% of the data set.

Such analyses are culminating in more general “rec-
ommender” systems that can suggest new compounds
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based on observed data. For example, Citrine Informatics
has built a recommendation system for suggesting new
and unconventional thermoelectric materials.117 Another
example is that of Seko et al.,73 who used the method of
kriging, based on Gaussian processes, to search for
systems with high melting point based on observed data.
The same technique was recently applied to identify low
thermal conductivity materials.118 A particularly fruitful
field of study in the future may be in the combination of
such recommender systems with high-throughput com-
putation. In such a scheme, the results of an initial set of
computations would produce the initial data set needed
for a recommender system to make further suggestions.
These new suggestions would be computed automatically
and then fed back into the recommender, thereby creating
a closed loop that continually produces interesting
candidates for follow up.

IV. APPLICATION EXAMPLE: VALENCE AND
CONDUCTION BAND CHARACTER

The combination of open materials databases, pro-
grammatic APIs, and data mining techniques has recently
exposed new and unprecedented opportunities to apply
materials informatics. We next demonstrate work that
analyzes the character of valence and conduction bands in

materials over a large data set. This study was performed
using only free software tools: the Materials Project data-
base,38 the MAPI programmatic API,59 the pymatgen
code,53 and the Python and R programming languages
(including the BradleyTerry2 package119 implemented in R).

The aim of our study is to develop a probabilistic
model for predicting the dominant character (element,
charge state, and orbital type) of the electronic states near
the valence band maximum (VBM) and conduction band

FIG. 8. Map of the pair correlation for two ions to substitute within the ICSD database. Positive values indicate a tendency to substitute, whereas
negative values indicate a tendency to not substitute. The symmetry of the pair correlation (gab 5 gba) is reflected in the symmetry of the matrix.
Image from Ref. 66. ©The American Chemical Society, reprinted with permission.

FIG. 9. Example of projected DOS used in the study (MoO3, entry mp-
18856 in the Materials Project38). The states near the valence band are
dominated by O2�:p, whereas those near the conduction band are dominated
by Mo61:d. Over 2500 such materials are used to assess statistics on valence
and conduction band character in this study.

A. Jain et al.: New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships

J. Mater. Res., Vol. 31, No. 8, Apr 28, 2016988
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1557/jmr.2016.80
Downloaded from http:/www.cambridge.org/core. Lawrence Berkeley Nat'l Lab, on 22 Dec 2016 at 23:40:53, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1557/jmr.2016.80
http:/www.cambridge.org/core


minimum (CBM) over a broad range of compounds.
Many materials properties, including the band gap
(important for light capture) and Seebeck coefficient
(important for thermoelectrics) depend critically on the
details of these band edges. Understanding the character
of these states allows one to determine the type of
modifications needed to achieve desired properties.

Our strategy for developing a probabilistic model of
VBM and CBM character can be outlined as follows:

(i) Select a computational data set from the Materials
Project database and download the projected DOS in-
formation using the MAPI. The projected DOS contains
the relative contributions of all the elements and orbitals
in the material to the DOS at each energy level (see
Fig. 9).

(ii) For each material, assign valence states to each
element using a bond valence method; remove materials
with mixed or undetermined valence.

(iii) Assess the contribution of each combination of
element, valence, and orbital (e.g., O2�:p, hereafter called
an ionic orbital) to the VBM and CBM, thereby
assigning a score to each ionic orbital (based on Fermi
weighting, see Supplementary Info) toward the VBM and
CBM in that material.

(iv) For each material, and separately for the VBM and
CBM, determine the higher score amongst all pairs of
ionic orbitals. This can be considered a set of “compet-
itions” within that material for greater contribution to the
VBM and CBM for which there are binary win/loss
records between pairs of ionic orbitals (e.g., O2�:p
contributes more to the VBM than F1�:p). When iterated
over all materials in the data set, this will result in
a comprehensive set of pairwise rankings regarding
which ionic oribtals tend to dominate the VBM/CBM.

(v) Use a Bradley–Terry model120 to transform pair-
wise assessments of ionic orbitals into a single probabi-
listic ranking of which ionic orbitals are most likely to
form the VBM and CBM states. This technique is useful
because each material provides only a limited view (i.e.,
comparisons between the few elements contained in that
material) of the overall ranking between all ionic orbitals.
For example, this technique is one way to determine an
absolute ranking of sports teams based only on pairwise
competition data.

The details of our methodology, including consider-
ations such as the treatment of d orbitals in the Materials
Project dataset, are presented in the Supplementary
Information.

The results of our study for a selected set of ionic
orbitals are presented in Fig. 10; the full results are
presented in the Supplementary Information. Each data
point in Fig. 10 represents the probability that the ionic
orbital listed on the y axis will have a greater contribution
to the specified band edge than the orbital listed on the x
axis. The ionic orbitals that tend to dominate are ordered

top-to-bottom along the y axis, and left-to-right along the
x axis. For example, the data indicate that in a material
containing both Cu11:d and Fe31:d states, the VBM is
highly likely to be dominated by Cu11:d (probability
close to 1.0) where as the CBM is more likely to be
dominated by Fe31:d. We note that our model should not
be interpreted as a ranking of energy levels in com-
pounds. For example, an ionic orbital may have a low
VBM score either because the energy tends to be too high
(it forms a conduction band) or too low (too deep in the
valence band).

As an example of how this type of analysis can be used
in materials science problems, the absolute VBM position
of a material has been demonstrated to be correlated with
its ease to be p-type.121–123 Oxides with purely oxygen
valence band character tend to have a too low valence
band to be p-type dopable. The design principle of using
cations that will hybridize with oxygen to lift the valence
band up and facilitate p-type doping is an important
paradigm in the development of new p-type oxides and
especially transparent conducting oxides (TCOs). The
presence in our data set of Cu11 or Ag11 as cations that
compete strongly with oxygen is consistent with the use
of these elements in p-type TCOs.124–129 Notably, other
3d ions in our analysis, including V31 and Mn21, are also
known to form p-type oxides.130 This analysis can
therefore be used as a first step toward the more
systematic listing of ions necessary to form p-type
oxides.

In some cases, the data do not match our intuition; for
example, we expect that S2�:p would be ranked higher in
the valence band than O2�:p. Counter to our result that
O2�:p and S2�:p are ranked similarly, in all specific
examples in our data set for which a single material
simultaneously contained both O2�:p and S2�:p orbitals,
the greater VBM contribution came from S2�:p. This
discrepancy suggests that a consistent universal ranking
of ionic orbitals may not exist. For example, when
considering compounds containing Mn21:d, the VBM
is composed mostly of S2�:p in only 20% of cases versus
88% for O2�:p (see the Supplementary Info). An example
of the latter is MnPO4 with spacegroup Pmnb (mp-
777460 on the Materials Project38 web site), in which
O2�:p dominates the VBM, whereas Mn21:d forms the
CBM. Thus, interactions between ionic orbitals can be in
conflict depending on a specific material’s physics.
Possible improvements to the model may include more
heavily weighting direct competitions, or taking into
account the relative energies between ionic orbitals.
Nevertheless, overall our scores are in good agreement
with known principles and provide general guidelines for
engineering band edges.

Our model for predicting VBM and CBM characters is
one example of how it is now possible to leverage open
materials data sets and software tools to provide rapid and
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data-driven models for problems normally guided by
intuition and experience. However, it should be noted
that the results of such approaches are still limited by the
accuracy of the underlying data set. In the case of this
analysis, the generalized gradient approximation with
1U correction (GGA1U) method was used by the
Materials Project to handle localized/correlated d states,
but this method is not universally accurate. Nevertheless,
the fact that today, these models can be built on top of
already existing data sets and software libraries speaks to
the potential democratic power of materials informatics.

V. DISCUSSION AND CONCLUSION

Data mining and informatics-based approaches present
new opportunities for materials design and understand-
ing. As the amount of publicly available materials data
grows, such techniques will be able to extract from these
data sets scientific principles and design rules that could
not be determined through conventional analyses. In this
paper, we reviewed some of these emerging materials
databases along with several techniques and examples of
how materials informatics can contribute to materials
discovery. We also demonstrated how one can already
combine open data and software tools to produce an
analysis predicting the character of a compound’s valence
and conduction bands. However, despite these opportu-
nities, several challenges remain that have limited the
impact of materials informatics approaches thus far and
will no doubt be the subject of future work.

The first remaining challenge is for the community to
gain experience in navigating the challenges of using
large data resources. Even as the number of databases
grows and as programmatic APIs to the data become
available, the fraction of users that extract and work with

large data sets remains relatively small. Furthermore,
when the desired data are not available from a single
source, it is difficult to query over multiple resources and
to combine information from different databases. It is
especially challenging to match computations against
experimental measurements because data regarding the
crystal structure and other conditions under which the
experiments were performed is usually missing. Working
with computational data alone is also tricky; researchers
must understand the error bars of the simulation method,
which can sometimes be quite high and difficult even for
expert users to estimate. Thus, even though the situation
for materials data is improving rapidly, today one must
still be somewhat of an expert user to exploit these
resources.

The second challenge is the development of materials
descriptors for crystalline, periodic solids. While there
has been progress in the last several years, this area is still
ripe for new ideas. Today, we still do not possess
automatic algorithms that can describe crystals using
descriptors that would typically be used by a domain
expert. Such descriptors could include the nature and
connectivity of local environments (e.g., “edge-sharing
tetrahedra” versus “corner-sharing octahedra”), qualita-
tive assessments of structure (e.g., “close-packed” versus
“layered” versus “1D channels”), or crystal prototype
(e.g., “double perovskite” or “ordering of rock salt lattice”).
Crystal structure data are quite complex and varied.
Without such algorithms, it is difficult for researchers to
describe a crystal to a machine learning algorithm using
constructs proven to be successful by decades of materials
science.

Finally, the third challenge is in assessing the appro-
priateness and transferability of machine learning
models. Typically, such assessments are made using

FIG. 10. Pairwise probability for the ionic orbital listed to the left to have a greater contribution to a band edge then the ionic orbital listed at the
bottom. The VBM edge data are listed to the left, and the CBM data to the right. Only a selected set of ionic orbitals are depicted; the full data set is
in the Supplementary Information.
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a performance-oriented metric such as cross-validation
error. However, there are many reasons why such
performance metrics might be misleading. The first issue
is that the cross-validation error can be affected by the
type of cross-validation (e.g., leave-one-out versus
n-fold)131 as well as the design of how models are selected
and how the data are split for fitting (i.e., training,
validation, and test sets).106 However, perhaps an even
bigger concern is in controlling and reporting sampling
errors, i.e., in training and cross-validating a model on
a sample that is not representative of the full population.
Examples of potential sampling error include (i) build-
ing and validating a model on a data set of binary
compounds and subsequently applying that error esti-
mation to ternary and quaternary compounds, (ii)
building and validating a model’s performance for
a limited number of highly symmetric structure types,
and then applying the same model to predict the
behavior of dissimilar crystal structures, and (iii) train-
ing the model only on thermodynamically stable com-
pounds and then applying that model to unstable
compounds. In many cases, it is very difficult to obtain
data for samples that are truly representative of the
prediction space, and better methods to estimate error
and applicability are needed for these situations.

This third issue of knowing how much weight to put in
a machine learning model is particularly important
because the models that achieve the lowest cross-
validation error are often the most complex (e.g., neural
nets or random forests) and can be impossible to interpret
scientifically. Should materials scientists trust a prediction
from an impenetrable machine learning model when it is
in conflict with the intuition afforded by a more classical,
interpretable model? Part of the distinction lies in whether
the goal of machine learning models is to simply be
predictive (capable of making useful forecasts) or
whether additional weight should be afforded to models
that are causal (confirming that a factor is truly the reason
behind an effect) or mechanistic (reproduce the physics
behind an effect). Ideally, machine learning models will
not only try to answer specific questions accurately but
will also prove useful in leading us to better questions
and to new types of analyses (as was the case for the
periodic table).

While it will take some time to truly develop solutions
to all of these challenges, informatics is already making
headway into materials science, and data-driven methods
will no doubt form a major area in the study of materials
in the future.
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