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Promises and perils of computational materials 
databases
Over the past decade, the materials science community has fostered the development of materials databases 
from high-performance computation. While these databases have achieved great success, there are still several 
challenges to be addressed for the community to realize the full potential of the materials-by-design era.
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The ultimate goal of a materials 
database is to assist in the design of 
materials. These are materials that 

will form the basis of the modern world. 
However, finding the right material for 
the job can be decades-long, painstaking 
work. Materials databases, and the methods 
they rely on, form the foundation of new 
ways of finding materials to enable a 
transition from trial-and-error discovery 
to materials-by-design. This is achieved 
by allowing a scientist to search the 
database for their ideal material by desired 
property, and also by providing a bird’s eye 
perspective that can allow new insights into 
the physics that governs these materials, and 
therefore can improve the process by which 
completely new materials are designed.

The ability to realize these computational 
databases is relatively new. Historically, 
the calculation of a single material from 
first principles might take months or 
years. However, the inevitable march of 
high-performance computing, along with 
key efforts in infrastructure to allow the 
automation of calculations, has made 
computing properties of vast quantities of 
materials feasible in a way that was simply 
not previously possible. Given the youth of 
these databases, best practices are still being 
established, and there is much to learn about 
both the opportunities they offer and the 
unique challenges they must confront.

The current success of materials 
databases
Born out of the Materials Genome Initiative, 
and now approaching its tenth birthday, the 
Materials Project1 is an example of a widely 
used computational materials database that 
has been enormously successful. Founded 
with the goal of creating an open, web-based 
resource of computed properties of 
materials, it now has a database of millions 
of properties of over 100,000 crystalline 
materials, along with a website and tools that 
help filter and analyze the data it provides. 
At the time of writing, the Materials Project 

has over 150,000 registered users from 
across academia, education, government 
and industry, and offers not only properties 
of materials like thermodynamic stability 
but also piezoelectric, dielectric and elastic 
tensors, magnetic orderings, phonon 
dispersion and more. Crucially, use of data 
from the Materials Project has led to the 
real-world synthesis and characterization 
of many materials, including those for 
carbon capture2, phosphors3, photocatalysts4, 
magnetocalorics5 and thermoelectrics6, 
among other applications.

This success is shared by several 
other excellent computational databases, 
including, but not limited to, the Open 
Quantum Materials Database7, Materials 
Cloud8, NOMAD Laboratory9, AFLOW10, 
JARVIS11, NRELMatDB12 and numerous 
additional efforts dedicated to specific 
classes of materials, such as two-dimensional 
materials13, topological materials14 and 
organic crystals15. Clearly, computational 
materials databases are here to stay. The 
questions then become: what is the role 
of these databases in the future of our 
community? What new tools and techniques 
are necessary for them to improve? How do 
we ensure that they are useful?

Challenges for the years ahead
To answer these questions, we review  
several vital challenges for computational 
materials databases.

Literacy of data and methods.  
An effective materials database needs  
to make information as easy to access  
and as understandable as possible,  
especially given that their audience  
will necessarily include people without 
training in computational methods,  
and the burden is rightly on the database 
builders to do this. Computational methods 
are not a cure-all, and there are both 
physical and practical limitations to the 
accuracy of their predictions that need 
to be communicated. For instance, the 

absence of an error bar in a first-principles 
calculation can give a false sense of 
certainty to the unwary, leading to profound 
misunderstandings. The danger here 
is twofold: the data are misinterpreted 
in a way that hinders understanding or 
progress, or discarded because their true 
values are obscured. An example of this 
might be a typical low-cost calculation 
of the electronic structure of a material, 
where the magnitude of the bandgap is 
systematically underestimated, but which 
generally gives the right character and 
nature of the electronic transitions present 
and therefore still provides substantial utility 
in understanding the underlying physics. 
Nevertheless, the magnitude of the bandgap 
itself is presented without an error bar, 
since the prediction is exact for that level 
of theory. This is compounded by the fact 
that databases often have to trade accuracy 
of prediction with computational speed to 
achieve necessary scale, so they cannot use 
the latest, most-accurate methods.

Another issue is that systematic 
parameter sets are required to run hundreds 
of thousands of calculations, but these 
parameter sets might not be ideal in all 
cases. An example here might be the relative 
stability of polymorphs of the same material, 
which are calculated using different choices 
of exchange-correlation functional, the 
‘magic’ approximation that bridges the 
divide between independent-particle 
mean-field methods and quantum reality. 
Choice of functional has an important effect 
on which polymorphs are predicted stable, 
but no choice is completely congruent 
with observed reality. Or, similarly, 
predictions are dependent on the degree 
of self-interaction corrected for using 
Hubbard methods. Again, which choice is 
correct? The Materials Project confronted 
this issue by establishing a scheme to mix 
calculation results so that the best choice can 
be made on a per-material basis. Still, this 
approach is a blunt tool for a subtle problem. 
The problem remains that there is rarely 
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a one-size-fits-all solution, and making 
practical compromises and educating the 
audience becomes essential.

Confronting bias in machine learning. 
Data challenges become exacerbated when 
employing machine learning to investigate 
big data sets. Any machine learning model 
begins with data sanitization and, since the 
data from these databases are largely already 
sanitized, they make an ideal starting point. 
The danger here is that ultimately any 
model trained on these data will contain 
within it the fundamental limitations of 
the data themselves. For example, the 
bandgaps previously mentioned provide 
a convenient target since computational 
materials databases can contain an order 
of magnitude more values than the few 
thousand known to experiment. But what 
is being trained here is a model for the 
underlying simulation technique and not 
of physical reality itself. Additionally, a 
tendency towards technologically relevant 
or naturally abundant materials in the 
databases might starve the machine learning 
model of the data that it needs to be 
appropriately generalizable, and this is often 
overlooked in the analysis. Another bias not 
present in nature is that towards crystals 
with fewer elements and smaller unit cells. 
While developing these models needn’t be 
the mandate of a computational materials 
database, it is important to develop methods 
that remove or, at least, reduce these biases 
to enable effective use of the data for those 
who are performing machine learning tasks.

Linking experiment with computation. 
Experiment serves as an anchor to 
ensure that computation is relevant. 
Without it, computation is unmoored, 
forever simulating ever-more-idealized 
systems. However, the variables that are 
easy to modify in an experiment, such as 
changing temperature, applying a field, 
or adding a minute addition of another 
element, can often be very difficult to 
approach computationally. Also, from the 
computational side, experimental datasets 
are often not presented in a way that makes 
them easy to compare to predictions. To take 
a concrete example, there is no standardized 
experimental method to measure and report 
defect formation energies, which has forced 
the first-principles defects community to use 
higher-order methods to establish a ‘ground 
truth’, but there is no guarantee these 
higher-order methods are accurate either. 
And if they are not, how will computational 
materials databases build datasets that the 
materials science community can actually 
use to engineer or understand defects in 
real-world materials?

It is also important to calculate properties 
that are useful to scientists. Computation 
can often readily provide a specific number, 
such as a prediction of formation enthalpy, 
while failing to pay attention to the 
underlying, motivating question, such as 
‘can I make this?’ In this case, methods16,17 
have been developed to try to answer 
whether a material might be synthesizable 
or, at least, to establish when a material 
will not be synthesizable18. However, these 
methods are expensive to apply at scale, and 
even when they provide a tenuous answer, 
they do not share the means by which the 
synthesis might be performed. Developing 
and applying new methods that try to 
address the underlying questions, rather 
than just calculating those properties that 
are easy to calculate, is crucial for materials 
databases to remain relevant for practical 
applications. And dialogue, trust and mutual 
learning between both computational and 
experimental communities will be essential 
to make this happen.

Availability and reproducibility of data. 
The final challenge is in the accessibility 
of the database itself. Science has to be 
reproducible to be useful, but many 
computational results simply are not. In 
scientific databases, one proposal has been 
an aspirational set of standards, ‘FAIR’, 
for datasets that are ‘findable, accessible, 
interoperable and reusable’19, to ensure 
that the datasets live on and that we avoid 
a scientific digital dark age. However, 
many current databases fall short of these 
aspirations. Old data can become lost, 
corrupted or lack the metadata to query 
it effectively. Data can change as new, 
better techniques become available, and 
publications can refer to older data that 
are now inaccessible. To help address this, 
the Materials Project was the first within 
our community to provide a modern 
application programming interface (API) 
to help improve data access and allow 
scientists retrieve mass data on demand and, 
more recently, a consortium of materials 
databases has come together to provide a 
community-standard API20, which will be an 
essential next step to allow interoperability 
between databases.

Looking forward, one promising area 
of development to improve database 
accessibility is the construction of 
ontologies for materials science, such as 
the European Materials and Modelling 
Ontology (EMMO). Ontologies have been 
successful in bioinformatics to provide 
cross-database connectivity by establishing 
clear definitions of what individual 
data entries represent. For materials 
science, ontologies could differentiate 

similar concepts without destroying 
their connectivity. For instance, both an 
experimental and computational bandgap 
would be part of an ontology. Bandgaps 
from specific measurement techniques 
or computational methods would create 
sub-terms that enable understanding of each 
term. By linking to a canonical definition, 
data from multiple databases can be mixed 
more easily. Most importantly, ontologies 
provide a machine-understandable 
construct of how data are connected. This 
is critical to enable the complex search that 
scientists truly desire when looking at a 
large corpus of materials data, but involves 
not only a technological solution but also a 
willingness by the community to adopt  
such systems.

Concluding remarks
What do these challenges ultimately  
mean? It means we have work to do. It 
means that our field is a vibrant one, with 
much shared opportunity. In all this, it’s 
also notable what challenges are absent: the 
good news is that computers and algorithms 
will become ever faster, and computational 
limitations will fall away. What has taken the 
past decade to create in the Materials Project 
will one day be achievable in weeks, and 
this will be a good thing since it will open 
up new avenues for research. And let us not 
lose sight of the end goal: a resource with 
all materials real and imagined, a Library 
of Babel, or Hitchhiker’s Guide to crystals 
unknown. What a wonderful resource that 
will be. ❐
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