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Abstract

Hydrolysis is a fundamental chemical reaction where water facilitates the cleav-1

age of bonds in a reactant molecule. The process is ubiquitous in biological and2

chemical systems, owing to water’s remarkable versatility as a solvent. However,3

accurately predicting the feasibility of hydrolysis through computational tech-4

niques is a difficult task, as subtle changes in reactant structure like heteroatom5

substitutions or neighboring functional groups can influence the reaction outcome.6

Furthermore, hydrolysis is sensitive to the pH of the aqueous medium, and the7

same reaction can have different reaction properties at different pH conditions. In8

this work, we have combined reaction templates and high-throughput ab initio9

calculations to construct a diverse dataset of hydrolysis free energies. Subsequently,10

we use a Graph Neural Network (GNN) to predict the free energy changes (∆G)11

for all hydrolytic pathways within a subset of the QM9 molecular dataset. The12

framework automatically identifies reaction centers, generates hydrolysis products,13

and utilizes a trained GNN model to predict ∆G values for all potential hydroly-14

sis reactions in a given molecule. The long-term goal of the work is to develop15

a data-driven, computational tool for high-throughput screening of pH-specific16

hydrolytic stability and the rapid prediction of reaction products, which can then be17

applied in a wide array of applications including chemical recycling of polymers18

and ion-conducting membranes for clean energy generation and storage.19
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1 Introduction20

Water is arguably the most widely known compound, and yet, its deceptively simple structure fails21

to suggest the complex relationships it forms with itself and with other compounds in reactions.22

In the case of hydrolysis, which is ubiquitous in both biological(1) and synthetic chemistry(2; 3),23

water doubles as a reactant and solvent medium in the reaction. At the molecular level, hydrolysis is24

initiated by the attack of a water, hydronium, or hydroxide molecule at specific sites in the reactant,25

triggering a sequence of bond cleavage and formations, leading to the formation of new product(s).26

The thermodynamic feasibility of this reaction is fundamentally tied to the pH of the aqueous reaction27

medium (4; 5). The availability of protons (H+) or hydroxide (OH– ) ions, generates charged species28

with different reactivities than the neutral molecule. Consequently, acid or base-catalyzed hydrolysis29

(6; 7) of the same reactant can have prominently different reaction rates than its neutral counterparts30

and further complicates the study of these prominent reactions.31

The Eyring equation provides a means to quantify experimental reaction rates by evaluating activation32

barriers (∆G‡) through computational methods (8; 9). However, this approach demands computa-33

tionally intensive transition state calculations for each reaction along the complex potential energy34

surface (PES) (10; 11). In contrast, within a specific reaction family, the Bell-Evans-Polanyi principle35

(12) can offer a qualitative linear correlation between the thermodynamic Gibbs Free Energy change36

(∆Gr) and the kinetic parameter ∆G‡ (13; 14; 15). Nevertheless, quantifying this thermochemical37

quantity (∆Gr) with high accuracy still requires DFT calculations with large basis sets and refined38

hybrid functionals for both reaction endpoints (16; 17). Depending on the size of the molecules, these39

calculations can take anywhere from several hours to days, particularly when employing implicit40

solvent models to approximate the contributions from the reaction environment.41

Since computational cost is a severe bottleneck for any form of high-throughput screening, deep42

learning approaches have emerged as promising alternatives in the past decade, especially for tasks that43

involve the establishment of structure-to-property relationships (18; 19). Recently, graph convolutions,44

which can iteratively update node and edge features based on connectivity and local environment,45

have proven to be extremely effective in learning molecular (20; 21) and reaction representations46

(22; 23). Despite these methodological advances, the largest roadblock to the development of an47

accurate model is typically the procurement of diverse, representative data. For instance, the model48

developed by Grambow et al. (19) was facilitated by a dataset of 12,000 gas-phase reactions (24)49

sampled from a subset of molecules in the GDB-17 dataset (25). The bond dissociation energy (BDE)50

prediction framework developed by Wen et al. (26) was trained on a dataset of over 60,000 homolytic51

and heterolytic bond dissociation reactions (27). In the realm of hydrolysis, no such comprehensive52

dataset currently exists.53

In this work, we first developed a predictive framework based on reaction templates for different54

functional groups which can automatically generate products for multiple hydrolysis pathways in55

any molecule. This framework was then applied to a subset of the QM9 database (28) to generate a56

database of over 25,000 hydrolysis reactions in an implicit aqueous solvation environment. For a57

subset of the database, both the neutral and protonated states of the reactant molecule were considered58

to approximate hydrolysis in neutral and highly acidic pH conditions. Finally, we propose a GNN59

model that utilizes the difference features of the atom, bond, and global features between the products60

and the reactants to predict the DFT-calculated ∆Gr. The utilization of the global reaction atom61

mapping enables the model to track multiple elementary bond dissociation and formations, resulting62

in a mean absolute error (MAE) of 2.25 kcal mol−1 across a diverse holdout test set.63

2 Methods64

2.1 Reaction Generation65

The hydrolyzable molecules in the QM9 database were screened through RDKit (29) substructure66

matching of 20 prototypically hydrolyzable functional groups. We then adapted hydrolysis reaction67

templates for the aforementioned groups from previous work by Tebes-Stevens et al. (30) into an68

automated framework for determining reaction products. For instance, as shown in Schematic S1,69

if an ester functional group was detected in a molecule, the reaction template used would yield a70

carboxylic acid and an alcohol as the respective hydrolysis products. Similar reaction templates were71

implemented for all functional groups. As seen in Schematic S2, the reaction template for nitriles72
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yielded amides which can be further hydrolyzed into an amine and a carboxylic acid. Therefore,73

the products of the nitrile reactions were redirected as reactants for separate hydrolysis reactions to74

augment the dataset.75

Hydrolysis reactions in neutral and strongly acidic pH were differentiated through two separate76

reaction schemes. For neutral pH, we assumed separate hydrolysis reactions between each detected77

functional group and one molecule of water. For an acidic medium, the reacting functional group78

was assumed to be protonated at the most basic atom site in the functional group moiety. The79

acidic pH reaction was then executed between the protonated reactant and two molecules of water80

to maintain reaction stoichiometry. A representative example of these two reaction conditions for a81

hydrolyzing carbamate molecule has been demonstrated in schematics S3 (a) and (b) of the SI. The82

extra water molecule on the reactant side absorbs the proton to generate hydronium as one of the83

reaction products. This was done to circumvent the erroneous DFT calculated energies of an isolated84

proton in an implicit solvent medium (31).85

2.2 Density-Functional Theory86

QChem (version 5 or 6) (32) was used to perform all the DFT calculations necessary to generate87

the dataset. A specialized frequency-flattening optimization (FFOpt) workflow, originally developed88

by Spotte-Smith et al. (27) and currently implemented in atomate (33) was used to optimize the89

reactant and product structures to a true minima and also obtain thermochemical quantities from90

the vibrational frequencies. The workflow iteratively performs successive geometry optimizations91

and frequency calculations until there are either none or a single negligible negative frequency (<1592

cm−1). This approach ensures that the optimized structure is a true local minimum of the PES and93

not a saddle point. Moreover, the workflow parses the necessary enthalpy and entropy terms from the94

QChem frequency output document for the free energy calculations. For all the DFT calculations,95

we used the range-separated meta-GGA hybrid functional, ωB97M-V (34), which employs the vv1096

dispersion correction (35), to improve the non-covalent interactions. The def2-SVPD basis set (36)97

was employed for the FFOpt workflow and the solvation effects were implicitly accounted for with98

the water SMD solvent model (37). The electronic energies of the optimized structures were refined99

with single-point calculations using a larger def2-QZVPPD basis set (36).100

2.3 Model Architecture101

The GNN model, visually depicted in S4, is heavily based on the previously published BonDNet102

architecture (26). This algorithm uses gated graph convolutional (GatedGC) layers to propagate103

starting node features within the graphs of individual species on both sides of a reaction. While104

GatedGC layers have been used widely for structure-to-property models in chemistry and materials105

science (38; 39), BonDNet improved on these previous implementations by integrating update and106

message-passing equations between global nodes and atom/bond type nodes; this allows for the107

treatment of species of different charges and provides a framework to include molecular-level features.108

In order to propagate more distant graph relationships, several (typically 2-4 layers) GatedGC layers109

were stacked. With updated species’ graphs, we constructed a reaction graph to hold reaction110

feature differences. Atom and bond nodes were mapped to each other on both sides of a reaction111

and features were subtracted from their corresponding node with zero-padding added to represent112

broken bonds. From here, a set2set (40) layer was applied to bond and atom node types in the113

reaction difference graph to obtain a vectorized representation of the reaction that is passed through a114

multilayer perceptron (MLP) for property prediction.115

In this implementation, the reaction mapping is altered from the original BonDNet as a global reaction116

graph is constructed between the union set of bonds in products and reactants. Originally, BonDNet117

used the product graph as a scaffold and then subtracted reactant features from corresponding nodes118

in this scaffold. This limited the model to only being applicable for A → B and A → B + C type119

reactions with a single bond dissociation. The previous framework could not interpret a hydrolysis120

reaction that involves at least two elementary bond dissociation and formation reactions. In the121

presented model, we shift the atom-mapping to a prior task where atoms and bonds are labeled122

according to their mappings. This reduces the overhead of the model where it no longer has to123

determine mappings on-the-fly. More importantly, this change allows for an arbitrary number of bond124

changes to be treated by the model (both breaking and forming sequences in concert)(Fig. S4). With125
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this, we extend the applicability of the original BonDNet immensely, not just for this task but to other,126

more complex chemical reactions.127

We also attempted to leverage the consistent reaction framework of hydrolysis by incorporating a128

one-hot encoding of functional group identity into the global feature nodes. This encoding provides a129

simple, yet effective, descriptor that captures the reaction site of hydrolysis reactions alongside the130

more distant features generated by stacked message-passing layers. This is a particularly attractive131

feature as sequential stacking of message-passing layers rapidly increases compute time and can lead132

to problems such as oversmoothing (41; 42). While this modification does not improve performance133

in the context of the neutral training/holdout sets, testing on the protonated and hydroxylated datasets134

remain.135

3 Results and discussion136

3.1 Dataset Overview137

Figure 1: Distribution of ∆Gr for the compiled hydrolysis reactions.

In its current state, the dataset comprises a total of 25,599 reactions. Among these, 16,264 reactions138

correspond to reactants with a net zero charge, representing neutral pH conditions. The remaining139

reactions were generated from a subset of reactants from the neutral dataset. The hydrolyzable140

functional groups of these reactants were protonated at the relevant atom site to get positively141

charged reactants representing highly acidic pH conditions. The number of hydrolyzed products142

varies depending on the specific reacting functional group, with reactions yielding 1, 2, and in143

some instances (e.g., urea and carbamates), 3 products. The distribution of reactions based on the144

number of products generated is visualized in Figure S5(a) of the SI and the distribution across145

different hydrolyzed functional groups is also included in Figure S5(b). The ∆Gr distribution for the146

neutral dataset is presented in Figure 1. Here, we observe a bimodal nature, characterized by two147

distinct peaks in the endergonic and exergonic regimes. Approximately 54% (8837) of the neutral148

reactions fall within the endergonic regime. Further analysis across different functional groups reveals149

some interesting insights. Functional groups such as epoxides, nitriles, esters, and amides exhibit150

a unimodal energy distribution. Conversely, cyclic esters and cyclic amides, such as lactones and151

lactams, significantly contribute to the bimodal nature of the dataset. When we sample random152

lactone and lactam reactions from the endergonic and exergonic regimes, it becomes clear that cyclic153

structures with a strained ring structure have a more favorable thermodynamic hydrolysis pathway154

while stable 5-membered rings are more resistant to hydrolysis. The energy distribution for the155

protonated dataset and its differences when compared to the neutral, is included in Figure S6 of the156
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Figure 2: Overall Model Performance.

SI. However, for the scope of this work, our discussion regarding model performance is limited to the157

neutral dataset shown in Figure 1.158

3.2 Overall Model Performance159

To evaluate the model’s performance and generalizability, we tested it on an independent holdout160

test set (Figure 2(b)) of hydrolysis reactions generated from QM9 molecules. This holdout set161

is comprised of 1000 reactions spanning diverse hydrolyzable functional groups and ∆Gr values162

ranging between -40 kcal/mol to 40 kcal/mol. Overall the predictions align accurately on the parity163

plot with an impressive coefficient of determination (R2) and Mean Absolute Error (MAE) for both164

the validation and test sets. The model performance on the test set demonstrates generalizability,165

achieving an R² of 0.92 and a MAE of 2.25 kcal/mol vs. DFT-calculated values (Figure 2(a)). The166

classification accuracy for the model correctly classifying reactions endergonic vs. exergonic was167

also 95.3% in the test set.168

Furthermore, to assess the model performance vs. other reaction-property prediction algorithms, we169

benchmarked our implementation to a host of other models. As discussed in Section 2.3, our model170

is highly generalizable and able to ingest reactions involving an arbitrary number of bond changes - a171

feature not common among reaction property algorithms. This, however, limited the range of models172

that could be selected for benchmarking. Nonetheless, we tested a simple reactant-only graph neural173

network with atom features and with both atom and bond features included. These features included174

a range of standard cheminformatic features such as bond degree, element identity, atomic weight,175

ring inclusion, hybridization, etc, coupled with global features like the total number of atoms and176

bonds in the reactant, molecular weight, and a one-hot encoding for the hydrolyzing functional group.177

An XGBoost model coupled with Morgan Fingerprints was also tested. Finally, Chemprop (43) was178

used as a more modern algorithm also based on graph neural networks and arbitrary bond changes.179

The XGBoost and Chemprop models were first tuned via a Bayesian optimization hyperparameter180

tuning scheme prior to final testing. We summarized the models’ performance in Table 1 where our181

model outperforms all benchmarks on the holdout test set. We note that training performance for all182

the benchmarked models was close to the best-performing model, but their ability to generalize on183

the test set is limited.184

3.3 Model Embeddings185

To investigate the model-learned representations of the hydrolysis reactions, we reduced the high-186

dimensional difference feature vectors for each hydrolysis reaction into a two-dimensional (2D) space187

using the uniform manifold approximation and projection (UMAP) method (44). Figure 3 displays the188

2D representations of the feature vectors for the test set, each tagged with its respective hydrolyzing189

functional group. A few interesting insights emerge from the visual patterns of the embeddings. As190

expected, the feature vectors for the hydrolysis reactions of similar functional groups cluster together.191

Specifically, in the case of lactones and lactams, we observe two distinctly separated clusters. In192

5



Table 1: Our model performance vs. other comparable models and baselines

Model Test MAE
(kcal/mol)

Mean 12.3

Reactant GNN(atom) 3.54

Reactant GNN(atom+bond) 3.45

Chemprop 4.14

XGB + Morgan 3.23

Our Model w/ Funct.
Group 2.7

Our Model 2.25

Figure 3: UMAP embedding of the reac-
tion features

Figure S8 of the SI, we have separately visualized the two-dimensional UMAP embeddings of the193

exergonic and endergonic reactions for the lactams and lactones where the cluster on the top left194

is dominated by the exergonic reactions while the bottom left section broadly corresponds to the195

endergonic hydrolysis of these two functional groups. This implies that the model also learns to196

distinguish separate sub-classes for the same functional group. Furthermore, the uni-product reactions197

are all clustered to the left of the feature vector space while the reactions which yield more than one198

product aggregate on the right of the dataset.199

4 Conclusion200

Utilizing a combination of reaction templates, high-throughput DFT calculations, and graph neural201

networks, we have developed a predictive model capable of assessing the thermodynamic feasibility202

of hydrolysis reactions. Our current focus is on expanding the model’s predictive capabilities to en-203

compass acidic and basic pH conditions, which could prove invaluable in high-throughput screening204

of molecules and automated chemical synthesis for pH-dependent applications. The training and205

holdout test sets are publicly accessible through figshare and granular information regarding the indi-206

vidual reactant and product molecules is also available in the newly developed MPCules (45)interface.207

The code for training the model can be accessed at https://github.com/HEPOM/HEPOM.208
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