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ABSTRACT: New computational tools for solid-state synthesis
recipe design are needed in order to accelerate the experimental
realization of novel functional materials proposed by high-
throughput materials discovery workflows. This work contributes
a cellular automaton simulation framework for predicting the time-
dependent evolution of intermediate and product phases during
solid-state reactions as a function of precursor choice and amount,
reaction atmosphere, and heating profile. The simulation captures
the effects of reactant particle spatial distribution, particle melting,
and reaction atmosphere. Reaction rates based on rudimentary
kinetics are estimated using density functional theory data from the
Materials Project and machine learning estimators for the melting
point and the vibrational entropy component of the Gibbs free
energy. The resulting simulation framework allows for the prediction of the likely outcome of a reaction recipe before any
experiments are performed. We analyze five experimental solid-state recipes for BaTiO3, CaZrN2, and YMnO3 found in the literature
to illustrate the performance of the model in capturing reaction selectivity and reaction pathways as a function of temperature and
precursor choice. This simulation framework offers an easier way to optimize existing recipes, aid in the identification of
intermediates, and design effective recipes for yet unrealized inorganic solids in silico.

1. INTRODUCTION
The solid-state or “ceramic” method is a simple and ubiquitous
technique for synthesizing inorganic crystalline solids in which
powder precursors are heated to elevated reaction temper-
atures under controlled atmospheric conditions.1 This method
is used at both the small scale (e.g., research laboratories
attempting the synthesis of new materials) and large scale
(industrial manufacturing processes) to produce a wide variety
of important functional materials such as battery cathodes
(including LiMnPO4

2 and LiFePO4
3), the ferroelectrics

BaTiO3,
4 YMnO3,

5 and BiFeO3,
6 and many superconductors,

including FeSe0.88,
7 YBa2Cu3O6+x,

8 and MgB2.
9 Despite the

ubiquity of the method, no conventional system for designing
or modeling solid-state synthesis recipes exists. Instead, recipes
have long been designed primarily using expert knowledge
(e.g., precursor selection from a common library or via phase
diagram analysis) and heuristic guidelines.10,11

The difficulty in modeling solid-state synthesis reactions can
be illustrated by drawing a comparison to organic molecular
synthesis in which recipes can be generated by working
backward from a desired product molecule to a set of known
precursors via a series of mechanistically well-defined steps in a
process known as retrosynthesis.12 In contrast, high-temper-
ature solid-state synthesis proceeds by spontaneous thermody-
namic reactions, which lack clearly defined intermediates and
reaction mechanisms. However, enabled by the recent rise of

high-throughput density functional theory (DFT) calcula-
tions13,14 and the databases generated by them,15−18 several
new automatable methods for designing solid-state synthesis
recipes have emerged. These methods, which include measures
for determining the synthesizability of a desired target,19,20

metrics for comparing the selectivity of reaction recipes,21,22

tools for extracting synthesis data directly from natural
language,23−25 and reaction networks that identify thermody-
namically favorable pathways between precursor and target
materials,26 have yielded early success in guiding synthesis
recipe design, despite being built on zero-temperature
simulations of ordered crystalline structures. Furthermore,
advances in autonomous synthesis have increased the
throughput of synthesis experiments27−29 and motivated the
development of synthesis design algorithms that utilize
experimental results to improve their planning.30 While each
of these methods provides an element of recipe design
guidance, none of them allow for the quantitative prediction of
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the time- and temperature-resolved emergence and con-
sumption of phases during the execution of a synthesis recipe.
Though no a priori simulation exists for predicting the

progression of solid-state synthesis reactions, other reaction
classes have been captured by simulation methods that are not
neatly transferable to the solid-state case. For example, the
kinetic Monte Carlo method is frequently used to model the
evolution of species in gas or liquid phase molecular reactions
(often in conjunction with reaction rates calculated using
transition state theory31,32). This method assumes integer
numbers of discrete particles that transform via reaction into
other sets of discrete particles, and it assumes that these
particles are available to interact with each other with no heed
paid to their spatial arrangement.33 These two assumptions do
not hold for solid-state reactions; instead, solid phases
transform in continuous amounts from reactant to product,
and reactant particles do not move as freely as they do in liquid
phase reactions (barring the presence of a molten flux or gas
transport). Surface reactions have been successfully modeled
by lattice Monte Carlo simulations to determine heteroge-
neous catalytic behavior, but they explicitly treat the motion of
individual atoms.34 This method is not feasible for modeling
the evolution of the powder contents of a solid-state reaction
vessel because the large number of atoms involved (often on
the order of 1010 to 1020 atoms or more) leads to intractable

computing requirements. Indeed, any atomistic method
presents similar limitations. Finally, phase field models have
been used to model ionic diffusion during solid-state
metathesis reactions,35 but these methods require significant
assumptions about the form of the governing equations and
explicitly known mobilities for each of the species involved.
Such mobility values are not readily calculable, nor are they
available in existing materials databases.
In light of these challenges, we present in this work a

simulation framework (ReactCA) that predicts the time-
dependent, quantitative evolution of phases over the course
of a prescribed solid-state reaction as a function of the
precursor ratio, heating profile, and reaction atmosphere. To
achieve this, we leverage the cellular automaton (CA)
formalism,36 which offers a flexible framework for addressing
the unique challenges posed by solid-state reactions. A CA is
defined by a grid of sites, each of which is assigned a state
value. At each step in the evolution of the automaton, the state
in each site is updated according to its own current value and
the states of the sites neighboring it (the “neighborhood”). The
specific nature of the state values and the rule governing
evolution (the “evolution rule”) can be chosen to best suit the
simulation problem at hand. As a result of this flexibility,
cellular automata have been used in materials science and
chemistry to model a variety of processes, including grain

Figure 1. Modeling solid-state reactions with a CA. (a) Progression of the initial stages of a solid-state reaction occurring via the pairwise
interface reaction model; (b) convex hull schematic representing the thermodynamics of reactions between two hypothetical solid precursor phases
drawn as orange squares and light blue hexagons, with possible products given as the pink diamond and blue oval phases; (c) schematic illustrating
the main stages of the simulation: (i) formation energies are obtained from the Materials Project and machine learning estimators are used to
calculate the vibrational entropy part of the Gibbs energy of formation as a function of temperature and the melting point for each phase, reactions
are enumerated and scored, and a recipe that defines the desired precursors, a heating profile, and a reaction atmosphere is specified; (ii) a random
initial arrangement of particles is generated, and the evolution rule is repeatedly applied to simulate the reaction; and (iii) simulation steps are
concatenated into a trajectory, which is analyzed to determine phase evolution over the reaction pathway.
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growth, crystallization, and surface adsorption/desorption.37,38

Due to the fundamentally spatial nature of the neighborhood,
the flexibility of the evolution rule, and the rapidly advancing
theory of solid-state synthesis, the CA structure is a natural
choice for modeling these reactions.
The simulation framework described here utilizes the zero-

temperature thermodynamic properties of ordered crystalline
compounds from the Materials Project as its primary input
data. Importantly, some of the compounds we simulate here
(and many of those found in the Materials Project) can
accommodate disorder, which would increase the entropy of
these phases and affect the energetics of the reactions that form
them, especially at higher temperatures. To date, however, no
existing database of computed material properties contains
rigorous representations of configurationally disordered
materials and their entropy. As a result, for the ordered
materials in the Materials Project, we consider only the
vibrational entropy contribution to the Gibbs formation
energies as estimated by the machine learning method of
Bartel et al.39 These estimates, in conjunction with the CA
formalism, are used to capture the thermodynamic and spatial
features of solid-state reactions, in addition to some
rudimentary kinetic effects based on machine learning
estimates of phase melting points. Our framework offers new
functionality in automated solid-state synthesis planning in that
it enables the facile prediction of quantitative reaction
outcomes a priori as a function of temperature profile, reaction
atmosphere, and precursor choice. We envision our framework
being used as a straightforward, easily implemented method 1)
for testing hypothesized recipes before attempting them in the
lab, 2) for implementing a digital twin in an autonomous
laboratory designing its own synthesis recipes, and 3) for
refining synthesis parameters when used in conjunction with
optimization frameworks.

2. THEORY AND COMPUTATION
2.1. Cellular Automaton Model. The solid-state reaction

CA simulation described herein (ReactCA) is constructed
based on the pairwise model of solid-state reactions. This
model states that solid-state powder reactions proceed
predominantly via sequential reactions at pairwise interfaces
(i.e., between only two solid species at a time). This model has
its theoretical basis in the spatial geometry of the contact
regions between particles and has been verified with in situ
experiments.8 The solid-state reaction process, illustrated in
Figure 1a, proceeds via diffusion of atomic species driven by
chemical potential differences across the interface between two
reactant particles. As the reaction progresses, nuclei of one or
more stable product phases form and grow at the interface,
converting reactant material into product. Importantly, the
local composition of the interface region is determined by the
kinetic availability of reacting species and not constrained to
reflect the overall composition of the precursor mixture. The
first product phase to form is then a function of the “local”
composition (as opposed to the overall composition) and the
relative energetics of the possible product phases.40

The thermodynamics of the pairwise interface reaction
model are conveniently represented by the convex hull
construction, in which the Gibbs free energy is shown as a
function of the mixing ratio (i.e., mixture composition) of the
two precursor phases (Figure 1b). The interior points (i.e.,
pink diamond and blue oval) represent product phases that can
form as a result of the reaction of the precursors. In two- or

three-element systems, these points correspond to discrete
compositions; however, for larger systems, the interior points
can additionally correspond to balanced mixtures of two or
more product phases. The vertical distance between the
compositional axis and a product point is the change in the free
energy of the corresponding reaction. The geometry of the
reaction hull contains information about the behavior of a
particular reacting pair, as illustrated by reaction selectivity
metrics based on thermodynamics developed in ref 22. This
pairwise reaction model and the interface hull underpin the
simulation described here and, in particular, motivate the
choice of the CA formalism, which naturally captures local
interactions between neighboring entities.
The structure of the ReactCA simulation framework can be

broken down into three stages (Figure 1c). The first entails the
automated collection and calculation of relevant phase
thermodynamics, an assessment of a score function for
estimating relative reaction rates, and the specification of the
reaction recipe. In the second phase, an initial state (or
arrangement of phases on a grid) is produced, and then the
evolution rule is repeatedly applied. Finally, the results of each
application of the evolution rule are concatenated to form a
trajectory that is analyzed to provide information about relative
phase amounts at each time step.
2.2. Phase Data Acquisition. The input data for ReactCA

are determined by the desired synthesis recipe that includes
precursor ratios, a heating profile, and a reaction atmosphere
(currently gaseous atmospheres consisting of only a single
element are supported, e.g., N2, O2, or Ar). The heating profile
is defined by the user as a list of heating stages that each have a
temperature and duration (specified by number of simulation
steps). Once this recipe is defined, ordered crystal structures in
the chemical system spanned by the reaction atmosphere and
precursor phases are identified, and their calculated formation
energies are acquired from the Materials Project. Note that
these formation energies are calculated via zero-temperature
DFT, while solid-state reactions occur at elevated temper-
atures. However, exact calculations of finite temperature
formation energies are not available from existing high-
throughput databases. To bypass this data deficiency, a
machine learning descriptor given by Bartel et al.39 is used
to estimate the vibrational entropy contribution to the Gibbs
energy of formation for ordered solid phases at each of the
temperatures specified in the reaction recipe. The Gibbs free
energies of formation for common liquid/gaseous phases are
acquired from experimental thermochemistry data (NIST-
JANAF tables).41 Finally, the melting points of all phases are
estimated using the graph neural network model from Hong et
al.42

2.3. Reaction Enumeration and Scoring. With the
phases and energies acquired from the Materials Project, the
reaction-network26 Python package is used to identify all
stoichiometrically possible reactions and calculate the changes
in Gibbs free energy associated with them at each of the
specified temperatures. While no general strategy exists for
estimating the rate of solid-state reactions, predicting the
evolution of phases during a reaction necessitates a model for
relative reaction rates. To accomplish this, a score, S, is
calculated for each reaction at each temperature using a
heuristic function (eq 1), which returns the relative likelihood
of each reaction occurring.
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The score function described by eq 1 is composed of two
primary terms: a softplus function term and an error function
term. The shape of this function (as shown in Figure 2)
captures: 1) the spontaneity of exergonic reactions, 2) the
onset of reactions at temperatures equal to two-thirds of the
melting point of the lowest melting point precursor (i.e.,
Tamman’s rule), and 3) the increase of reaction rate with
temperature. The scaling parameters a = 14 and b = 0.8 were
chosen to shift/scale the softplus function such that its “onset”

is around the Tamman temperature =( )T
T

2
3

rxn

m
and the

parameters c = 35 and d = 0.03 were chosen to shift/scale
the error function such that it is centered on the region just
below ΔG = 0 eV/atom. Other values near the ones shown
here for a, b, c, and d were experimented with, but the
variations did not significantly alter the simulation outcomes.
The softplus function was chosen to encode Tamman’s rule

because of its “soft” activation (i.e., above the Tamman
temperature). The error function was chosen to encode
spontaneity because it behaves as a dial that abruptly “ramps
up” for exergonic reactions. While these effects could also have
been encoded using piecewise functions (e.g., a rectified linear
unit in place of the softplus function or Heaviside function in
place of the error function), we opt for smooth alternatives that
“smear” the onset of each effect over a range of values. This
smearing allows for a degree of accommodation for uncertainty
in our input Gibbs energy and melting point estimates. Most
importantly, the scoring function can easily be updated to
accommodate more sophisticated functionality, e.g., based on
kinetics and local availability of reactive species.
2.4. Simulation Evolution. After phase data are collected

and reactions are enumerated and scored, an initial simulation
state is defined. The simulation box for this automaton is a
three-dimensional region of space subject to periodic boundary
conditions and discretized into a grid of cubic cells. To
establish an initial state, each cell is randomly assigned a phase
occupancy according to the precursor ratios given by the
reaction recipe, along with a volume equal to 1.0. We assign no
scale or unit to this value because only the ratio of the volumes
of neighboring cells is relevant to this simulation. This value is

used in achieving conservation of mass and should not be
interpreted as a literal measure of the physical extent of the
simulation. After the initial state is established, the simulation
evolves according to an evolution rule, which encodes reaction
behavior. An animated visualization of the evolution process
for a synthesis recipe for YMnO3 (discussed later in this text) is
provided in the Supporting Information.
The evolution rule determines the phase occupancy and

volume value of the selected cell in the next simulation time
step. It is applied to a single cell at a time, selected at random,
meaning that this simulation is an asynchronous CA (as
opposed to a standard CA, in which every cell is updated
simultaneously).43 This rule ensures that one of two actions
occurs: 1) a swap or 2) a reaction. These actions are illustrated
in Figure 3. The definitions for the simulation state and shape,
along with the evolution rule, were implemented using the
pylattica Python package.44

2.4.1. Action 1: Melted Phase Swap. If the current reaction
temperature is above the melting point of the phase in the
selected cell, then the state of the selected cell is swapped with
one of its neighbors, chosen at random, as shown in Figure 3.
To accommodate uncertainty in the estimation of the melting
point, the onset of the likelihood of this swap is smeared over a
range of relative temperature values. Specifically, the swap
likelihood begins ramping up as a function of reaction
temperature at Trxn = 0.8Tm, increases to a 95% probability
when Trxn = Tm, and reaches a 99% probability at Trxn = 1.2Tm.
This behavior is shown graphically in Figure S1. The swapping
motion facilitates movement of the reaction vessel contents
and can capture heightened reactant movement during flux-
mediated reactions, in which the presence of a liquid phase
makes reactants more able to access each other. This is crucial
for capturing more realistic reaction dynamics in many solid-
state reactions.

2.4.2. Action 2: Reaction Progression. If the phase
occupying the selected cell is determined to be a solid (i.e.,
it has a melting point higher than the current temperature), a
reaction is selected. In this step, the reaction library is
consulted to identify possible reactions between the selected
cell and its neighbors. Reactions between the phase in the
selected cell and the reaction atmosphere are also considered.
From this list of possible interactions, a reaction is chosen
randomly with a probability that is proportional to its score
obtained from eq 1. As a result, reactions with higher scores
occur more frequently than reactions with lower scores. This

Figure 2. Scoring the likelihood of reactions as a function of reaction energy and temperature. (a) Score relationship with reaction energy; at a
constant temperature above the Tamman temperature, endergonic reactions are vanishingly unlikely, while increasing exergonicity does not yield
an infinitely increasing reaction rate, (b) relation with temperature (assuming a constant, negative reaction energy); reaction likelihood increases
quickly above the Tamman temperature, (c) score relationship plotted as a surface function of both inputs.
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scheme has the net effect that higher-scoring reactions proceed
faster. Once a reaction is chosen, the reaction proceeds at each
of the reacting cells; note that only a single cell is involved if
the other reactant is contained in the atmosphere (e.g., gaseous
O2). This procedure involves several steps (Figure 3):

1. A probability distribution over the reactants is
constructed. The stoichiometric coefficients taken from
the reaction are used as the weights in this distribution.

2. A random draw from the resulting distribution is
performed. If the resulting phase matches the phase of
the reacting cell, the process proceeds to the next step. If
it does not match, the step ends, and the cell is left
unchanged.

3. If the reaction proceeds, a second distribution is
constructed over the reaction products (again using
their stoichiometric coefficients as weights).

4. A draw from this distribution is used to select a product
phase.

5. The reacting phase is replaced with the product phase.
6. The volume of the cell is scaled according to the ratio

between the volume of the products and the reactants.
Importantly, the process described above utilizes probability

distributions over the stoichiometric coefficients of the
reaction to maintain conservation of mass within the
automaton. For a given reaction, the coefficients of the
reactants provide the probability that each will be consumed
during the occurrence of that reaction. This ensures that the
reactants are consumed at the correct rate relative to each
other. The coefficients on the products of the reaction provide
the probability that each one will be produced by a given
occurrence of the reaction, similarly ensuring that the products
of each reaction are produced at the correct rate relative to

Figure 3. Evolution of phases in the simulation according to the evolution rule. In the top panel, a cell is randomly selected (pale green) from
the simulation, and its neighbors are identified (teal). Next, if the simulation temperature is above the melting point of the phase in the selected cell,
the Melted Phase Swap action occurs (middle-right). If not, reactions between the selected cell and its neighbors are enumerated and a reaction is
randomly chosen using the reaction scores as probabilities (middle-left). Finally, each of the reacting cells’ phases are replaced (or not) according to
probabilities given by the stoichiometric coefficients of the selected reaction. These probabilities are indicated by the small fractions decorating
each arrow in the bottom panel. Note that the CA implemented in this work uses a three-dimensional simulation state, but only two dimensions are
shown here for clarity.
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each other. Finally, scaling the volume of the simulation cell
after its contents have been replaced during a reaction ensures
that the correct amount of the product phase is produced
relative to the amount of reactant consumed by the reaction. A
more detailed explanation of this process in conjunction with
an example is provided in the Supporting Information.
2.5. Trajectory Construction and Analysis. A simu-

lation run typically entails hundreds of thousands of
applications of the evolution rule described above. When the
simulation is complete, the results are concatenated into a
trajectory that can be analyzed to understand the reaction
pathway as a series of steps and discrete intermediate species.
Because ReactCA relies on random draws from probability
distributions over the possible actions, reactions, and product
phases, several simulations are run in parallel, each utilizing a
different random starting state. Though the choice of starting
state does not affect the qualitative outcome of the simulation,
each trajectory is characterized by differing fluctuations and
represents a unique sampling of the distributions in the
automaton. As shown in Figures S2 and S3, when a sufficiently
large simulation box is used, the standard deviation of the
maximum and final mass fractions attained by each phase
across a set of parallel trajectories is reduced to less than 1%.
To construct the final result, the individual outputs of these
parallel simulations are ensemble averaged to yield an overall
trajectory. An illustration of the degree of fluctuation between
individual trajectories is shown in Figure S7, where six separate
and randomly initialized trajectories for a YMnO3 synthesis
recipe (described in detail in the Results and Discussion) are
plotted. While the precise amount of each phase varies
between the trajectories at each time step, the qualitative
features of the prediction (in terms of major intermediates,
their relative amounts, and the order in which they appear) do
not significantly vary in this example (or in any example we
have observed).

3. RESULTS AND DISCUSSION
To test the efficacy of ReactCA in describing real solid-state
reactions, we apply it to several case studies selected from the
literature where high-quality in situ phase evolution data are
available. Each of the phase prevalence plots shown here was
produced by averaging together six individual trajectories,
which each evolved from a different randomly initialized
starting state. For each case, we compare the predicted and
observed final products of the synthesis reaction as well as the
appearance (or disappearance) of intermediate and impurity
phases.
3.1. Product Selectivity in BaTiO3 Recipes. Barium

titanate is a well-known multiferroic material with a significant
body of synthesis literature. While there are a number of well-
known recipes for producing this material, we refer to the
recent solid-state reaction selectivity study of ref 22, which
tested and compared nine different BaTiO3 synthesis recipes
characterized over a range of temperatures with synchrotron X-
ray diffraction (XRD). A selection of these recipes and the
corresponding reactions are simulated here using ReactCA to
illustrate the way reaction selectivity is expressed in a phase
evolution prediction.
Selectivity was assessed in the aforementioned study (ref 22)

according to two metrics: primary competition (C1), which
quantifies the likelihood of impurities forming from the
reaction of precursors, and secondary competition (C2),
which quantifies the likelihood of subsequent reactions

consuming the desired products after they form. In the case
of both of these metrics, a lower value corresponds to a more
selective reaction, that is, one that is more likely to form only
the desired product phase. To illustrate the way that selectivity
presents itself in ReactCA simulations, three recipes were
selected: the conventional recipe (Recipe I�BaCO3 and
TiO2), a recipe with improved primary selectivity but worse
secondary selectivity (Recipe II�Ba2TiO4 and TiO2), and a
metathesis reaction with excellent primary selectivity (Recipe
III�BaCl2 and Na2TiO3). The primary and secondary
competition scores reported by ref 22 for each of these recipes
are shown in Table 1.

3.1.1. Recipe I. The simulation results for Recipe I are
shown in Figure 4a, and the corresponding experimental
outcome is shown in Figure 4b. This reaction received a
relatively high primary competition score but a perfect (zero)
secondary competition score, suggesting that there were
competing phases that could form from the original precursors
but that if the desired products were formed, they would be
unlikely to be consumed by any secondary reactions. In the
corresponding experiment from ref 22, the BaTi2O5 phase
formed as an impurity in conjunction with the product,
BaTiO3, at around 1100 K. The result of the reaction
automaton simulation for this recipe, shown in Figure 4a,
predicts the formation of the target phase BaTiO3 as well as the
BaTi2O5 impurity phase at the same onset temperature (1100
K). However, it also predicts the appearance of two additional
phases (Ba2TiO4 and BaTi4O9). The three impurities grow at a
rate similar to that of the desired product, BaTiO3, an effect
also seen in the experiment. This result illustrates the way that
secondary competition appears in a reaction: competing phases
form during the reaction of the precursor materials, but once
the desired product, BaTiO3, is formed, it is not consumed by
any subsequent reaction. In addition to the four phases
predicted to appear, there were 35 other accessible phases that
were not predicted to appear by the automaton. Finally, we
highlight that a long hold time at the highest temperature was
required in the simulation in order for the product and
impurity phases to form in such an amount that illustrated the
selectivity, whereas in the experiment every temperature was
held for an equal time. We opted to shorten the lower
temperature stages because no apparent reactivity occurred
during the simulation.

3.1.2. Recipe II. The second reaction chosen here was
shown22 to improve the selectivity of the first at the cost of
lowering the driving force of the reaction by choosing
compositional members toward the interior of the convex
hull as precursors. The ReactCA simulation (shown in Figure
4c) predicts a majority BaTiO3 formation, and the formation of
the impurity BaTi2O5. In the corresponding experiment
(shown in Figure 4d), BaTi4O9 is observed as an impurity,
but the simulated BaTi2O5 is notably absent. This is discussed

Table 1. Selected Experimental BaTiO3 Synthesis Reactions
and Their Associated Primary Competition Scores,C1, and
Secondary Competition Scores,C2, Calculated in Ref22

C1 C2

recipe precursor pair (eV/at.) (eV/at.)

1 BaCO3 + TiO2 0.043 0.000
2 Ba2TiO4 + TiO2 0.030 0.043
3 BaCl2 + Na2TiO3 −0.007 0.040
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below. In addition to the two phases predicted to appear, there
were 30 other accessible phases that were not predicted to
appear by the automaton. Additionally, we note that in the
original experimental results for this recipe, no data were
reported for phase amounts during the temperature ramp-up
period. As a result, the experimental results shown here
correspond to the high-temperature hold region in the
simulation result. This also explains the fact that BaTiO3 is
already present at the left most point in the experimental phase
evolution plot for this reaction.
3.1.3. Recipe III. The final BaTiO3 reaction selected for

simulation is a metathesis reaction using NaTiO3 as the Ti
source and BaCl2 for the Ba source. In the original work, this
reaction was selected for its strong exergonicity and its strong
selectivity scores. The high selectivity of this reaction is on
display in the ReactCA prediction, and the prediction (shown
in Figure 4e) is in good agreement with the experimental
results (Figure 4f)�the dominant products are the intended
metathesis products: BaTiO3 and NaCl. The main discrepancy
between the prediction and the experiment is that the
automaton predicts no other Ba−Ti−O phase formation,
while the experiment indicates the appearance of BaTi2O5,
though it is only a trace amount. Besides the two phases
predicted to appear, there were 53 other accessible phases,
none of which were predicted to appear by the automaton. We
also note that no data for NaTiO3 were present in the original
experimental XRD refinement and phase prevalence plot for

this recipe. As a result, the mole fraction of BaCl2 shown in the
experimental result is higher than the true value. In fact, the
authors of the experimental work used a 1:1 BaCl2:NaTiO3
precursor ratio, the same values used in the simulation. Finally,
in this example, similar to Recipe I, our simulation required a
longer hold time at the highest temperature to allow the
product phases to grow such that they were easily visualized.
This could be corrected in the future with an improved score
function that better captures the low temperature reactivity
and sudden increases in reaction rate that occur with
temperature for these reactions.
Across these three reactions, the selectivity differences

between the recipes are apparent in the results from the CA
simulations. The size of the green regions in Figure 4 shows
the overall trend from low selectivity (in the case of Recipe I),
to increased selectivity (in the case of Recipe II) and finally to
perfect selectivity (in the case of Recipe III). We also note a
tendency for ReactCA to predict the appearance of unobserved
impurity phases (particularly in the case of Recipe I, as shown
in Figure 4a). This is a result of the evolution rule that samples
reactions based on their calculated rates. The effect is
especially strong for the Ba−Ti−O chemical system, which
contains many phases with similar energetics and which have
similar melting points (the two features that are used in
ReactCA to calculate reaction rates). Finally, in the reactions
shown here, we also highlight a tendency of the automaton to
overpredict the accumulation of Ba-rich Ba−Ti−O ternary

Figure 4. Simulated (left) and experimental (right) reaction evolution plots for the selected BaTiO3 recipes. In each of these plots, the x-axis
corresponds to the reaction coordinate, and the y-axis corresponds to mass fraction. The background of each plot is colored according to the
amount of precursor (gray), impurity/intermediate (pink), and target/byproduct (light green) over the course of each simulation or experiment.
Each of the traces represents the amount of each phase during the reaction. Traces marked with circles correspond to precursor phases, those
marked with exes correspond to intermediate or impurity phases, and those marked with diamonds correspond to BaTiO3, the expected target
product phase. Dashed red lines show the heating profile used for each simulation or experiment. Experimental results were reproduced using data
from ref 22.
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phases. For example, in the Recipe I simulation, the most
prevalent byproduct is Ba2TiO4 (Ba-rich), but in the
corresponding experiment, it is BaTi2O5 (Ba-poor). In the
Recipe II simulation, BaTi2O5 (Ba-rich) is the primary
impurity, but in the experiment, only BaTi4O9 (Ba-poor)
appears. Finally, in Recipe III, the simulation predicts the
formation of pure BaTiO3 (Ba-rich), while in the experiment,
small quantities of BaTi2O5 (Ba-poor) were also observed. In
light of this observation, we hypothesize that - given the similar
energetics of these compounds - the preferential formation of
Ba-deficient compounds in experiments may be related to the
kinetics of the ionic species across the reaction interface.45

This discrepancy between simulation and experiment
motivates future work to develop new reaction rate estimators
using system-specific kinetic models, perhaps in conjunction
with yet-unrealized high-throughput databases of kinetic
calculations.
3.2. Intermediate Identification in CaZrN2 Synthesis.

Ternary nitride systems provide a wealth of material discovery
and synthesis opportunities. Recently, Rom et al. identified
metathesis synthesis pathways that allowed them to produce
the novel ternary nitrides CaZrN2 and CaHfN2.

46 Using in situ
XRD analysis, they constructed trajectories for each phase
present during their synthesis reaction, which used precursors
Ca3N2 and ZrCl4 to yield CaZrN2. This trajectory is
reproduced in Figure 5a. We performed a simulation for this
reaction using a simulation box with a side length of 15 cells, a
heating profile consisting of a ramp phase from room
temperature to 1400 K, and a N2 reaction atmosphere. The
resulting phase trajectories are shown alongside the exper-
imental results from ref 46 in Figure 5b. We note that in panel
a) of this figure, the phase prevalence trace for Ca4Cl6O is
excluded. This phase appeared in the experiment due possibly

to either impure precursor material or reaction with the quartz
ampule,46 two effects that certainly represent practical
synthesis considerations but are not relevant to the ideal
environment represented by the automaton.
This simulation successfully captured the reaction pathway

present in the experiment. The first intermediate phase to
reach its peak in the simulation is ZrCl3, which agrees with the
early reduction of ZrCl4 to ZrCl3 in the experiment. The two
intermediates that then follow in the experiment (a small
amount of Zr6NCl15 and significant Ca2NCl) are also present
in the simulation with the same relative prevalences. Finally,
the simulation predicts the major product (CaZrN2) and
byproduct (CaCl2) with confidence, though some unreacted
Ca2NCl also remains. This prediction was made from a set of
22 accessible phases, 15 of which were not predicted to appear
by the automaton. In addition to this pathway, the simulation
predicts the appearance of two phases that are not observed in
the experiments, ZrNCl and ZrN. In the following analysis, we
discuss the mechanisms by which these phases appear in the
simulation and explain why those mechanisms may not have
been active during the experiment.
ZrNCl appears in the simulation at roughly the same stage in

the temperature trajectory as Ca2NCl, and the three reactions
that facilitated the bulk of its formation are shown in Table 2.
The most frequent of these reactions, Reaction (1), may have
incorrectly occurred in the simulation because ReactCA, in its
current form, does not include sublimation. Reaction (1)
consumes Ca2NCl, which only forms in the experiment
(Figure 5a) when the temperature has reached 600 K and
ZrCl4, the other reactant, has sublimated. As a result, the two
reactants may never have been sufficiently available to one
another for this reaction to occur in the experiment. In
contrast, since ReactCA has no method for estimating

Figure 5. Resulting phase trajectories from simulation and experiment for CaZrN2 synthesis. (a) Experimental phase trajectories for the
reaction using Ca3N2 and ZrCl4 as precursors and (b) simulated phase trajectories for the reaction using Ca3N2 and ZrCl4 as precursors. In (a), the
steep drop-offs of CaCl2 and ZrCl4 are caused by their melting and sublimating, respectively. Experimental results were reproduced using data from
ref 46.
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sublimation temperatures, ZrCl4 remains available when
Ca2NCl appears, allowing Reaction (1) to proceed. This
hypothesis is supported by another experiment by Rom et al.,
in which Ca2NCl and ZrCl4 were reacted directly as the initial
solid precursors. In that experiment, both phases are present as
solids, and ZrNCl appears as a prominent intermediate,46

suggesting that Reaction (1) does occur if both precursors are
present.
Reactions (2) and (3) in Table 2 consume the same

precursors: Ca3N2 and ZrCl4. In the experiment, however,
Rom et al. propose that these phases instead react according to
the following reaction

+ + +

= = =S T

Ca N 6ZrCl 6ZrCl N 3CaCl

0.165, 0.194
eV

atom
( 600 K)

3 2 4 3 2 2

rxn

This reaction and the three reactions in Table 2 are all
assigned the same score because they are highly exergonic (the
thermodynamic component of the score function is maximized
for all of them) and share the lowest melting point precursor,
ZrCl4 (so the melting point component of the score takes on
the same value for all of them). Consequently, ReactCA does
not differentiate the rates of these reactions, and they all occur
with similar frequencies during the simulation. It is surprising
that evidence for neither Reaction (2) nor Reaction (3)
appears in the experiment, given their energetics (they are even
more exergonic than the reaction proposed by Rom et al.), but
there may be important differences in the kinetic accessibility
of their product phases. In particular, the formation of the two
binaries, ZrCl3 and CaCl2, (along with the release of gaseous
N2) from these two compositionally dissimilar precursors may
be more kinetically facile than the formation of the nitrogen-
containing ternary phases ZrNCl and Ca2NCl. In support of
this hypothesis, we note that Rom et al. observe the formation
of a small amount of Zr6NCl15 (Figure 5a), which could be
interpreted as an incomplete incorporation of nitrogen while
transforming of ZrCl3 into ZrNCl. Additionally, while Ca2NCl
does appear in the experiment, Rom et al. suggest that its
formation is facilitated by the reaction of more compositionally
similar binaries, CaCl2 and Ca3N2 (which is precisely how it is
formed in the simulation). When ZrNCl does form, it occurs in
the second experiment performed by Rom et al. (reacting
Ca2NCl with ZrCl4). In this case, it may be that the presence
of one ternary nitride (Ca2NCl) leads to more facile formation
of the other (ZrNCl), potentially by providing more favorable
nucleation sites on account of the similar layered structures
and shared R 3̅ m space group of the two phases. Considering

these observations, the absence of ZrNCl in the experiment
strongly motivates the development of improved kinetic
estimations for reaction rates in ReactCA and suggests that
such estimations might be based, in part, on compositional or
structural features of the precursors.
The simulation also predicts the emergence and con-

sumption of ZrN, an impurity that is not measured in either
of the experiments. In their discussion, however, Rom et al.
described the growth of the product, CaZrN2, as facilitated by
the slow growth of off-stoichiometric CaxZr2−xN2 starting from
the ZrN rocksalt phase. In other words, the early product
phase in their experiments is generated from ZrN, but the
material at that point is likely heavily defective and
stoichiometrically ambiguous, which may be the reason that
no explicit ZrN phase appears in the XRD characterizations of
the experiments. In contrast, no such defective or off-
stoichiometric phase can be represented by ReactCA (which
is limited to the ordered, crystalline, stoichiometrically exact
phases currently available in the Materials Project). As a result,
the explicit appearance and disappearance of crystalline ZrN
are the best model the current version of the simulation can
produce to represent the complex, continuous transformation
in the experiment.
3.3. Recovery of Observed Reaction Pathways in

YMnO3 Synthesis. The multiferroic YMnO3 has been the
recent focus of a number of synthesis investigations into the
effect of precursor selection, reaction atmosphere, and reaction
temperature on both reaction pathways and the identity of the
dominant product.5,26,47 In the first of these studies, Todd et
al. propose reaction pathways at work during the formation of
YMnO3 in a flux-assisted metathesis reaction and explain the
lower reaction temperature required by their recipe in terms of
the interplay between these pathways.5 Building on this work,
McDermott et al. were able to confirm using a reaction
network that the suggested pathways were thermodynamically
predicted by data within the Materials Project.26 We use this
example here to illustrate the ability of ReactCA to predict
temperature-dependent reaction pathways and intermediate
and product mass fractions and to provide insight into the
interactions between the simultaneously occurring pathways.
The simulation for this reaction was configured to use a

simulation box with a side length of 15 cells and a heating
profile consisting of a ramp phase to 1300 K followed by a hold
phase at 1300 K. We note that the peak temperature used here
is slightly higher than the experimental maximum temperature
of 1100 K. This choice was made in order to accommodate
uncertainty in the melting point and vibrational entropy
estimates. A view of the resulting trajectory for this simulation
is shown in Figure 6a and a longer trajectory that includes the
stabilization of the product phases is available in Figure S4.
Additionally, an animation of the evolution of this simulation is
provided in the Supporting Information. The overall result
shown here predicts YMnO3 as the dominant product phase
and a number of intermediate phases, including YOCl,
Mn8Cl3O10, YMn2O5, and Mn3O4. In Figure 6b, a magnified
view of the bottom of the trajectory is shown for those phases
that never formed greater than 2.5% of the overall mass
content in the simulation box. This prediction was made from
a set of 105 accessible phases, 89 of which never formed during
the simulation. Still, the multitude of phases present in this
result illustrate the way that the reaction automaton samples
many possible reaction pathways that can be traced from the
initial precursor set.

Table 2. Most Frequently Occurring ZrNCl-Forming
Reactions in the Automaton Simulation Shown in Figure
5ba

no reaction
score

(600 K)
eV

atomrxn
occurrences

1 Ca2NCl + ZrCl4 →
2CaCl2 + ZrNCl

0.165 −0.562 6683

2 2Ca3N2 + ZrCl4 →
ZrNCl + 3Ca2NCl

0.165 −0.636 5103

3 Ca3N2 + 2ZrCl4
→ 3CaCl2 + 2ZrNCl

0.165 −0.788 4533

aWe use the notation ΔΘrxn as opposed to ΔGrxn to indicate that the
relevant thermodynamic potential in this system is a grand potential
with N2 as the open species.
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Amidst the complexity shown in Figure 6, the reaction
pathways identified by Todd et al. are remarkably well
predicted by the ReactCA simulation. From XRD refinements,
Todd et al. calculated the trajectory of each intermediate phase
and plotted them in groups according to cation. We reproduce

these plots for the experimental data alongside similar plots
generated from the simulation data in Figure 7. Every
intermediate phase identified by Todd et al. is predicted by
the reaction automaton. The relative amounts of these phases
as well as the order of their appearance are also predicted with
good accuracy, although Y3O4Cl appears in only trace
quantities in the simulation. However, we note that previous
work highlights the high degree to which both Y3O4Cl and
YOCl accommodate defects and disorder.48 Indeed, in another
study, Todd et al. assert that the transformation between these
phases proceeds through an off-stoichiometric YO1+ϵCl1−ϵ
phase.48 Because our input data are limited to only the
ordered, perfectly crystalline phases present in the Materials
Project, we do not include the effects of defects and disorder.
As a result, we neglect the likely significant contribution of
configurational entropy to the stability of these phases. This
omission may explain the underestimation of Y3O4Cl in this
simulation result. Finally, we emphasize that the accuracy of
these results is facilitated by the Melt-Swap action within the
evolution rule. We show in Figure S5 that excluding this action
from the evolution rule causes the reaction to stall after the
appearance of the YOCl intermediate. This result aligns
strongly with the experimental claim that the presence of a flux
assists in transport during the reaction. We also note that the
Tamman’s rule heuristic portion of the score function is
important for achieving this result. In Figure S6, the same
recipe is simulated using a score function that excludes this
heuristic (reducing it to a pure function of reaction
thermodynamics). Using this alternative scorer, reactions
occur speedily (and unrealistically) at room temperature, and
Y2O3, a significant intermediate in the experimental pathway,
appears only in trace amounts.
In addition to prediction of reaction intermediates, the

ReactCA trajectory contains information about the specific
reactions that yielded each phase. Of particular interest here is
the formation mechanism for the product phase, YMnO3.

Figure 6. Resulting trajectory from simulation of the Li2CO3−
YCl3−Mn2O3 reaction. (a) Total trajectory and (b) a magnified view
of all low-prevalence phases (≤2.5% by mass).

Figure 7. Reaction pathways extracted from (a) the experimental synthesis results from Todd et al.5 and (b) the simulation trajectory of the
reaction between Li2CO3, YCl3, and Mn2O3. Top panels illustrate the early emergence and subsequent plateau of LiCl, the middle panels capture
the emergence and then recession of the reduced Mn3O4 phase, and the bottom panel shows the ordering and relative prevalence of the three key
Y−O−Cl intermediates. Note that LiCl disappears from the experimental phase trajectory in (a) (which was generated using XRD data) only
because it melts. Experimental results were reproduced using data from ref 5.
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Todd et al. propose dual mechanisms for the formation of this
phase: first, the faster, lower temperature ternary metathesis
reaction between LiMnO2 and YOCl, and second, the higher
temperature reaction between Mn2O3 and Y2O3 (the latter of
which is formed in part by consumption of YOCl). Within the
ReactCA trajectory, we identify two major classes of reactions
that align with these two proposed reaction pathways. The first
of these classes (Class I) is the reaction of LiMnO2 with one of
a number of yttrium-containing intermediates (the most
frequently occurring of which is YOCl, followed by YCl3).
These reactions correspond to the low-temperature ternary
metathesis step. The second of the two classes of reactions
(Class II) producing YMnO3 are reactions between the
refractory Y2O3 and either Mn2O3 or Mn3O4. That reactions
in the first class occur with any substantial frequency in this
simulation is a surprising finding because the total amount of
LiMnO2 never exceeds 3% by mass, suggesting that the phase
is consumed at a rate nearly equal to that at which it is
produced. This may be a reasonable prediction, however,
because the failure of this phase to accumulate in our
simulation agrees strongly with the experiment performed by
Todd et al., in which LiMnO2 appears in only trace quantities
(its XRD pattern is poorly resolved from Mn3O4, which implies
that the data in Figure 7a suggests the appearance of only small
quantities of both Mn3O4 and LiMnO2 in the experiment).
By counting the frequency of each of these classes of

reactions as a function of the reaction coordinate, we illustrate
in Figure 8 that the first ternary metathesis reaction class
dominates early in the simulation at lower temperatures and
that the second reaction class, which consumes the refractory
Y2O3, occurs later in the simulation at higher temperatures.
This result reflects the mechanism that Todd et al. proposed
based on their experimental observations: ternary metathesis
dominates at lower temperatures, Y2O3 reactions proceed at
higher temperatures, and indeed both mechanisms contribute
to the formation of YMnO3.
We emphasize that the analysis presented here represents an

important increase in capability over the previous reaction
network approach.26 In particular, the reaction network
requires a set of expected product phases as input, while
ReactCA predicts the product without any prior target input.

Additionally, the reaction network identified isolated pathways
of a finite length at a single temperature at a time. In contrast,
ReactCA can explore pathways of unlimited length (and allow
them to interact) over a range of temperatures in a single
simulation. Compared with the reaction network, these
improvements both simplify the analytic process and broaden
the range of reaction behavior that can be predicted.
In addition to the reaction intermediates identified by Todd

et al., the ReactCA simulation predicts a number of other
unobserved intermediates, most of which appear in the
simulation at only trace levels (less than 1−2% by mass, as
shown in Figure 6b). These unobserved intermediates reveal
the alternate pathways that are present in the trajectory as a
result of the automaton sampling many available reactions
during its evolution. While we demonstrated earlier that
investigating even low-prevalence intermediates, such as
LiMnO2, can yield insights into overall reaction pathways,
the prevalence of a given intermediate in a ReactCA simulation
generally reflects the relative amount predicted to appear
during the synthesis reaction. In other words, while we do
show that LiMnO2 plays a role in the reaction that aligns well
with the experimental hypothesis, its low prevalence suggests
that it may not accumulate in significant quantities during the
reaction. Similarly, because these other low-prevalence phases
appear in only trace quantities, the ReactCA simulation should
be interpreted as assigning a low likelihood to the appearance
of those phases in experimental characterization.
Besides these low-prevalence unobserved impurities, two

others (YMn2O5 and Mn8Cl3O10) achieve significant amounts
comparable to the predictions for the observed intermediates
(>10% by mass). The first of these phases, YMn2O5, does not
appear in the experiment originally presented by Todd et al.,
but is recognized in a later work by the same authors as a
common impurity in the synthesis of YMnO3 by this
metathesis method.47 The second of these phases,
Mn8Cl3O10, was recently synthesized by the solid-state method
from precursors MnCl2 and MnO2

49 at 600 °C, hence its
appearance is not implausible in this reaction. However, by
examining the reactions that consume Mn8Cl3O10 during the
ReactCA simulation we find that its primary role is as an
intermediate between reactants YCl3 and Mn2O3 (which react

Figure 8. Histogram illustrating the dominance of different classes of YMnO3-forming reactions over the course of the simulation. Counts shown in
red correspond to reactions that involve the LiMnO2 intermediate (the ternary metathesis route, i.e., Class I), and the counts in blue show reactions
between the refractory Y2O3 and phases in the Mn−O chemical system (i.e., Class II).
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to form it) and experimentally verified downstream inter-
mediates (most significantly, LiMnO2, Mn3O4, and LiCl). As a
result, we hypothesize that Mn8Cl3O10 functions similarly to
ZrN in our discussion of the CaZrN2 synthesis discussed
above. That is, Mn8Cl3O10 may be the best representation the
simulation can provide of a process that is actually facilitated
by highly defective or amorphous intermediates with a similar
Mn−Cl−O composition that are not present among the
ordered, crystalline, and stoichiometrically exact phases on the
Materials Project. This uncertainty further emphasizes the
necessity of future work to improve the ability of the
automaton to navigate more sophisticated intermediate
landscapes.

4. CONCLUSIONS
We present ReactCA, a new simulation framework based on the CA
formalism for predicting the evolution of crystalline phases during the
course of a solid-state reaction. This simulation utilizes thermody-
namic data from the Materials Project and machine learning estimated
melting points in conjunction with a cost function to assign reaction
rates as a function of temperature. The evolution of the reacting
material is determined by a rule based on the pairwise interface
reaction model, which considers reactions between neighboring
particles. The flexibility of the form of both the cost function and the
evolution rule lends great extensibility, meaning that as new data
become available from as of yet unrealized high-throughput methods
or machine learning frameworks, both empirical rules and heuristics
based on those data can be incorporated into ReactCA to improve its
performance. We illustrate the current performance of the simulation
framework using three case study systems, the first of which serves as
a platform for viewing the relative selectivity of various reaction
recipes and the importance of precursor choice with regard to product
purity, and the second and third of which demonstrate the power of
ReactCA in predicting likely reaction pathways, the temperature
dependence of those pathways, and the order and amounts of
intermediate phases that appear during the course of complex ternary
metathesis reactions.
While we believe that ReactCA is of immediate utility in both

“testing” reaction recipes before utilizing physical or monetary
resources to experimentally execute them, we also foresee the
simulation being used to determine recipe parameters using an
optimization framework or to facilitate the autonomous design of
synthesis recipes by acting as a digital twin for experimental synthesis
in an automated lab. Still, there are many physical phenomena that are
not considered by ReactCA. In particular, future work that will most
significantly improve this simulation will be related to the intelligent
incorporation of kinetic effects into the evolution rule and source
data. The case studies presented in this work show that the current
model likely overpredicts the number of ordered intermediates or
impurity phases as compared with real synthesis experiments.
Furthermore, including complex, noncrystalline intermediates such
as off-stoichiometric and amorphous phases as well as additional
phase transition mechanisms (e.g., sublimation or peritectic
decomposition) provide future challenges. We foresee ReactCA
growing alongside increasingly rich data generation capabilities in
computational materials science to capture improved features of solid-
state synthesis as the field matures, yielding faster and more accurate
methods for predicting solid-state synthesis behavior.

5. METHODS
5.1. Thermochemistry Data. To prepare data for the simulation

of the BaTiO3, CaZrN2, and YMnO3 recipes, entries from the
Materials Project from the Ba−Ti−O−C, Ba−Ti−O−Na−S, Ba−Ti−
O−Na−Cl, Ca−Zr−N−Cl, and Y−Mn−Cl−Li−C−O chemical
systems were collected. Additionally, a DFT structure relaxation
calculation was performed at the GGA level of theory using
parameters from the MPRelaxSet in atomate250 to obtain a formation
enthalpy for Y3O4Cl, a phase known to appear during the synthesis of

YMnO3, but not present within the Materials Project. For each entry
in these chemical systems, the machine learning descriptor by Bartel
et al. was used to estimate the vibrational entropy contribution to the
Gibbs energy of formation at 300 K.39 Phases with formation energies
greater than 30 meV/atom above the hull were removed at this
temperature. This value for a metastability cutoff filter was chosen
based in part on the work of Sun et al., which presents statistics on the
metastability of compounds in the Materials Project and connects
them to synthesizability.20 We also removed compounds that were
marked as “theoretical” on the Materials Project unless they appeared
explicitly in the experimental results. In addition, several phases that
have previously only been successfully produced using synthesis
methods other than the solid-state method considered here were
excluded. These are ZrCl (synthesized using high-pressure
methods51), ZrCl2 (synthesized via hydrogen disproportionation
reactions52), CaN2 (synthesized using high-pressure methods53),
CaN6 (synthesized in solution54), Ca2N (synthesized via metal-
lothermic reduction55), and Zr3N4 (synthesized via high-pressure
methods56,57 or ammonolysis58).
Data from the Materials Project was collected using the mp-api

package and the possible reactions in each of these systems were
enumerated using the reaction-network Python package.26 The CA
model was implemented using the pylattica Python package.44
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