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ABSTRACT: Hydrolysis reactions are ubiquitous in biological,
environmental, and industrial chemistry. Density functional theory
(DFT) is commonly employed to study the kinetics and reaction
mechanisms of hydrolysis processes. Here, we present a new data set,
Barrier Heights for HydrOlysis - 36 (BH2O-36), to enable the design
of density functional approximations (DFAs) and the rational
selection of DFAs for applications in aqueous chemistry. BH2O-36
consists of 36 diverse organic and inorganic forward and reverse
hydrolysis reactions with reference energy barriers ΔE‡ calculated at
the CCSD(T)/CBS level. Using BH2O-36, we evaluate 63 DFAs. In
terms of mean absolute error (MAE) and mean relative absolute error
(MRAE), ωB97M-V is the best-performing DFA tested, while
MN12-L-D3(BJ) is the best-performing pure (nonhybrid) DFA. Broadly, we find that range-separated hybrid DFAs are necessary
to approach chemical accuracy (0.043 eV). Although the best-performing DFAs include a dispersion correction to account for long-
range interactions, we find that dispersion corrections do not generally improve MAE or MRAE for this data set.

■ INTRODUCTION
Hydrolysis reactions are among the most important and widely
studied reaction classes in chemistry. In addition to its
relevance in biological and environmental processes,1−5

hydrolysis finds myriad technical applications, including in
pharmaceuticals,6−8 total organic synthesis, waste treatment,9

and the deconstruction of polymers.10,11 Due to the ubiquity
and technological importance of hydrolysis, many experimental
and theoretical studies have been undertaken to understand
the fundamental reaction mechanism involved, including the
elementary reaction steps, reaction energy barriers (from which
rate coefficients can be calculated), and the effect of solvent
molecules.12−20

First-principles quantum chemical calculations are a power-
ful tool for the prediction and analysis of reaction mechanisms.
This frequently involves performing calculations to predict the
geometries and subsequently the energies of reactants,
products, intermediates, and transition states (TSs) along the
reaction pathway. In particular, density functional theory
(DFT) is widely used for studies of small-molecule
hydrolysis21−46 due to its reasonably high accuracy and low
cost compared to more advanced wave function methods. A
particularly popular choice of density functional approximation
(DFA) in such studies is B3LYP.21−38 Beyond DFT, common
methods employed in computational studies of hydrolysis
reactions include Hartree−Fock (HF)23,25,31,35,45 and second-
o r d e r M ø l l e r− P l e s s e t p e r t u r b a t i o n t h e o r y

(MP2),23−25,30,32,47,48 with less frequent use of higher-order
Møller−Plesset perturbation theory,24,30,49 coupled-clus-
ter,25,47 and configuration-interaction methods.30,31,48

While numerous benchmark studies have been conducted to
evaluate the performance of various exchange−correlation
DFAs for the prediction of reaction thermochemistry,50−58

there exist relatively few such benchmark studies focused on
reaction kinetics,59−65 and even fewer include hydrolysis
reactions. In one study of hydrolysis, Ribeiro et al.66 assessed
the performance of 52 DFAs, Hartree−Fock, and 4 post-
Hartree−Fock methods (MP2, MP3, MP4, and CCSD)
against the coupled-cluster singles, doubles, and quasipertur-
bative triplets wave function method extrapolated to the
complete basis set limit (CCSD(T)/CBS) in predicting the
reaction and activation energies involved in the hydrolysis of
dimethylphosphate as a model system for phosphodiester
bonds. They performed calculations both in vacuum and with
an implicit solvent and identified the same two global hybrid
meta-generalized gradient approximation (hybrid meta-GGA)
DFAs (MPWB1K and MPW1B95) to have the lowest mean
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Table 1. Exchange−Correlation DFAs Considered in This Benchmark Studya

Name Type Hybrid Type HF Exchange Dispersion Correction References

PBE GGA N/A N/A None 68
PBE-D3(BJ) GGA N/A N/A D3(BJ) 68, 69
BLYP GGA N/A N/A None 70, 71
BLYP-D3(BJ) GGA N/A N/A D3(BJ) 69−71
B97-D GGA N/A N/A D2 72
B97-D3 GGA N/A N/A D3(0) 69, 72
mPW91 GGA N/A N/A None 73
mPW91-D3(BJ) GGA N/A N/A D3(BJ) 69, 73
VV10 GGA N/A N/A VV10 74
rVV10 GGA N/A N/A rVV10 75

M06-L meta-GGA N/A N/A None 76
M06-L-D3(0) meta-GGA N/A N/A D3(0) 76, 77
SCAN meta-GGA N/A N/A None 78
SCAN-D3(BJ) meta-GGA N/A N/A D3(BJ) 69, 78
TPSS meta-GGA N/A N/A None 79
TPSS-D3(BJ) meta-GGA N/A N/A D3(BJ) 69, 79
MN12-L meta-GGA N/A N/A None 80
MN12-L-D3(BJ) meta-GGA N/A N/A D3(BJ) 69, 80
B97M-rV meta-GGA N/A N/A rVV10 75, 81

PBE0 hybrid GGA global 0.25 None 82, 83
PBE0-D3(BJ) hybrid GGA global 0.25 D3(BJ) 69, 82, 83
B3LYP hybrid GGA global 0.20 None 70, 71, 84
B3LYP-D3(BJ) hybrid GGA global 0.20 D3(BJ) 69−71, 84
mPW1PW91 hybrid GGA global 0.25 None 73
mPW1PW91-D3(BJ) hybrid GGA global 0.25 D3(BJ) 69, 73
LRC-ωPBE hybrid GGA range-separated 0.0; 1.0 None 85
LRC-ωPBE-D3(BJ) hybrid GGA range-separated 0.0; 1.0 D3(BJ) 69, 85
LRC-ωPBEh hybrid GGA range-separated 0.2; 1.0 None 86
LRC-ωPBEh-D3(BJ) hybrid GGA range-separated 0.2; 1.0 D3(BJ) 69, 86

CAM-B3LYP hybrid GGA range-separated 0.19; 0.65 None 87
CAM-B3LYP-D3(0) hybrid GGA range-separated 0.19; 0.65 D3(BJ) 77, 87
rCAM-B3LYP hybrid GGA range-separated 0.18; 0.65 None 88
rCAM-B3LYP-D3(0) hybrid GGA range-separated 0.18; 1.13 D3(BJ) 77, 88
HSE-HJS hybrid GGA range-separated 0.25; 0.0 None 89, 90
HSE-HJS-D3(BJ) hybrid GGA range-separated 0.25; 0.0 D3(BJ) 69, 89, 90
ωB97X hybrid GGA range-separated 0.16; 1.0 None 91
ωB97X-D hybrid GGA range-separated 0.22; 1.0 D2 72, 92
ωB97X-D3 hybrid GGA range-separated 0.20; 1.0 D3(0) 77, 93
ωB97X-V hybrid GGA range-separated 0.17; 1.0 VV10 74, 94

M06-2X hybrid meta-GGA global 0.54 None 95
M06-2X-D3(0) hybrid meta-GGA global 0.54 D3(0) 77, 95
M06-HF hybrid meta-GGA global 1.0 None 95
M06-HF-D3(0) hybrid meta-GGA global 1.0 D3(0) 77, 95
M08-SO hybrid meta-GGA global 0.57 None 96
M08-SO−D3(0) hybrid meta-GGA global 0.57 D3(0) 77, 96
MN15 hybrid meta-GGA global 0.44 None 97
MN15-D3(0) hybrid meta-GGA global 0.44 D3(0) 77, 97
BMK hybrid meta-GGA global 0.42 None 98
BMK-D3(BJ) hybrid meta-GGA global 0.42 D3(BJ) 69, 98
TPSSh hybrid meta-GGA global 0.1 None 99
TPSSh-D3(BJ) hybrid meta-GGA global 0.1 D3(BJ) 69, 99
SCAN0 hybrid meta-GGA global 0.25 None 100
SCAN0-D3(BJ) hybrid meta-GGA global 0.25 D3(BJ) 69, 100
mPWB1K hybrid meta-GGA global 0.44 None 101
mPWB1K-D3(BJ) hybrid meta-GGA global 0.44 D3(BJ) 69, 101
ωM06-D3 hybrid meta-GGA range-separated 0.27; 1.0 D3(0) 77, 93
M06-SX hybrid meta-GGA range-separated 0.34; 1.0 None 102
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absolute error (MAE) values (<1 kcal/mol) both overall and
with respect to activation energies exclusively. In addition,
Pereira et al.67 benchmarked 40 DFAs, as well as the self-
consistent-charge density-functional tight-binding method
(SCC-DFTB) and 4 semiempirical methods (AM1, PM3,
PM6, and PDDG) against CCSD(T)/CBS//MP2/aug-cc-
pVTZ in the study of the hydrolysis of glycosidic bonds.
Using a 22-atom model system, they compared the perform-
ance of the methods under investigation both in geometry
optimizations (bond lengths and angles) and electronic energy
calculations (barrier heights and reaction energies). Their
findings show that the inclusion of HF exchange generally
correlates with an increase in accuracy, whereas the effect of
adding semiempirical D3 dispersion corrections on the
accuracy of barrier heights can be either positive or negative.
While these studies are significant contributions to the use of
DFAs for studying hydrolysis, the class of reagents that can
undergo hydrolysis reactions is extensive, and thus, additional
work is needed to assess the performance of DFAs for a
broader range of hydrolysis applications.
Here we present a set of 36 forward and reverse hydrolysis

reactions that we call BH2O-36 (Barrier Heights of HydrOlysis
- 36). The reactions in BH2O-36 are diverse, including single-
step SN2 and multistep addition−elimination mechanisms;
water-assisted and nonwater-assisted reactions; acidic and basic
hydrolysis; as well as a range of functional groups. We use
BH2O-36 to benchmark the performance of 63 DFT methods
in four different classes: the generalized gradient approxima-
tion (GGA), meta-generalized gradient approximation (meta-
GGA), hybrid GGA, and hybrid meta-GGA levels of theory.
We assess the ability of DFAs to predict the electronic energy
barriers of hydrolysis reactions at fixed geometries, referencing
to energy values calculated using CCSD(T)/CBS. We also
consider predictions of hydrolysis reaction energies. Based on
these results, we make specific recommendations of DFAs for
use in studying hydrolysis kinetics and general observations
regarding particular types of DFAs or features included in DFA
design.

■ COMPUTATIONAL METHODS
The 63 exchange−correlation DFAs considered in this study
are listed in Table 1. Selection of DFAs was essentially
arbitrary but based on a number of practical factors, including
diversity in terms of DFA type (GGA, meta-GGA, hybrid,
etc.), DFA family (e.g., Perdew nonempirical DFAs or
Minnesota DFAs), and previous performance in benchmark
studies of reaction thermochemistry and energy barriers.65,106

Of these 63 DFAs, 10 are GGA, 9 are meta-GGA, 20 are
hybrid GGA, and 24 are hybrid meta-GGA. For hybrid DFAs,
Table 1 lists whether the DFA is a global hybrid, which applies
a fraction of Hartree−Fock (HF) exact electronic exchange

energy uniformly through space, or a range-separated hybrid,
which has HF contributions that vary spatially. Range-
separated hybrids include different fractions of HF exchange
at long-range and short-range and use a splitting function,
commonly involving the error function, to interpolate between
those two fractions. By spatially varying the fraction of HF
exchange, range-separated hybrids aim to improve upon global
hybrids to further reduce the detrimental self-interaction error
inherent to DFAs and to improve the treatment of long-range
electron−electron interactions.91 DFAs were evaluated both
with and without dispersion corrections unless they were
designed specifically with an included dispersion correction.
The dispersion correction chosen for most DFAs was the
empirical D3 dispersion correction, either with the original
(D3(0))77 or the Becke−Johnson (D3(BJ))69 damping
functions. The difference between D3(0) and D3(BJ) is
typically small, and so the choice of D3 correction should not
be significant;69 that said, in general, the D3 correction more
commonly used in the literature and in previous benchmark
studies was chosen. Some DFAs alternatively employ the D2
dispersion correction,72 such as B97-D72 and ωB97X-D,92 or
the VV1074 and rVV1075 nonlocal correlation DFAs, such as
VV10,74 B97M-rV,81 and ωB97M-V.105 The notation D3(0)
or D3(BJ) is used here for a dispersion correction appended
during the calculation, while all other notation indicates the
DFA was designed with the dispersion correction. In the
Supporting Information, we consider the effect of the more
recently developed DFT-D4 semiempirical dispersion correc-
tion on a small subset of DFAs (Tables S5).107 DFT-D4 is not
included in the Q-Chem major version that was used for all
other data in this study (version 5), so we instead used Q-
Chem version 6.0.2. Because Q-Chem version 6 has significant
changes over version 5, we caution against placing significant
weight on any comparisons between DFT-D4-corrected and
other DFAs.
All calculations apart from the DFT-D4 study were

performed using Q-Chem versions 5.3.2 and 5.4.2.108 We
performed all calculations using a tight threshold for the
neglect of two-electron integrals (10−14) to improve calculation
precision and convergence, and we used the standard
integration grid SG-3109 for all atoms. Unless otherwise stated,
all optimization calculations to ground-state potential-energy
surface minima (reactants and products) and TSs were
conducted using the split-valence def2-SVPD basis set,110

and all final energy calculations using DFT were performed
with the larger triple-ζ def2-TZVPPD basis set. In a previous
benchmark study from Mardirossian and Head-Gordon,106 it
was found that def2-TZVPPD had nearly the same accuracy as
the quadruple-ζ def2-QZVPPD basis set, making it appropriate
for benchmark studies. We note that some TSs were optimized
using initial guess structures taken from the literature; where

Table 1. continued

Name Type Hybrid Type HF Exchange Dispersion Correction References

M06-SX-D3(BJ) hybrid meta-GGA range-separated 0.34; 1.0 D3(0) 69, 102

M11 hybrid meta-GGA range-separated 0.43; 1.0 None 103
M11-D3(0) hybrid meta-GGA range-separated 0.43; 1.0 D3(0) 77, 103
revM11 hybrid meta-GGA range-separated 0.23; 1.0 None 104
revM11-D3(0) hybrid meta-GGA range-separated 0.23; 1.0 D3(0) 77, 104
ωB97M-V hybrid meta-GGA range-separated 0.15; 1.0 VV10 74, 105

aFor range-separated hybrid DFAs, the short-range and long-range fractions of HF exact exchange are provided, separated by a semicolon.
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literature structures were not available, we conducted TS
searches by hand. In evaluating the performance of DFAs for
calculating electronic energy, we perform single-point energy
evaluations in vacuum.

All TSs were initially optimized in vacuum using the strongly
constrained and appropriately normed (SCAN) meta-GGA
DFA (Table S1).78 Reaction end points were then optimized
by perturbing the TS along the reaction coordinate in both

Table 2. Reactions Included in the BH2O-36 Benchmark Seta

aFor reactions where initial transition-state structures were taken from the literature, the reference indicates the source of the
structure.23,25,26,30,41,48,115−118
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directions. To assess the influence of the DFA used for the
optimization, we considered the effects of optimizing geo-
metries with ωB97M-V, but the variation in the ranking of
DFAs was insignificant (Figure S2 and Table S3).
Reference energies approximate the CCSD(T)/CBS level of

theory. In order to avoid computationally demanding CCSD-
(T) calculations at large basis sets, HF exchange and MP2
correlation energy were first calculated with the def2-TZVPP
(ζ1 = 3) and def2-QZVPP (ζ2 = 4) basis sets. These values
were then extrapolated to the CBS limit using a scheme similar
to the Weizmann-1 extrapolation:111,112

+E E
E E

exp( ( )) 1CBS
HF

2 1
2

2 1

(1)

E
E E

CBS
MP2 1 2

1 2

1 2

(2)

with α = 7.880, β = 2.970 as previously calculated for the
chosen basis sets by Neese and Valeev.113 Then, to calculate
CCSD(T)/CBS energy, the difference between CCSD(T) and
MP2 using the def2-TZVP basis set was calculated,114 yielding

= + +E E E E E( )CBS
CCSD(T)

CBS
HF

CBS
MP2

def2 TZVP
CCSD(T)

def2 TZVP
MP2

(3)

This method is based on the notion that the difference
between MP2 and CCSD(T) energies should be roughly the
same regardless of basis set size. To ensure that this method
provides reliable reference energy barriers, reaction barriers for
a smaller set of 24 reactions from BH2O-36 were calculated
with HF and CCSD extrapolated to the CBS limit using def2-
TZVPP and def2-QZVPP as above, and the (T) term
extrapolated to the CBS limit using the def2-SVP and def2-
TZVP basis sets with α = 10.390, β = 2.400. The MAE for the
method using eq 3 with respect to the direct extrapolation of
CCSD(T) was 0.016 eV, which is well within “chemical
accuracy” of 0.043 eV.
In this study, average errors compared to reference data are

reported in two ways. For each DFA f considered, the MAE is
calculated as

= | |
n

V VMAE
1

r

R

f r r, reference,
(4)

where n is the number of reactions, and the sum is over the set
of reactions R. Reaction barriers can vary significantly in
magnitude, and as a result, the MAE may overemphasize
reactions with larger energy barriers, where large errors may be
more likely. Because of this, the mean relative absolute error
(MRAE) is also calculated as

Table 3. Mean Absolute Errors (MAEs) and Mean Relative Absolute Errors (MRAEs) of 63 Exchange−Correlation DFAs on
the BH2O-36 Benchmark Set, Referenced to CCSD(T)/CBS Energies Calculated from SCAN-Optimized Geometriesa

Name MAE (eV) Rank MRAE Rank

ωB97M-V 0.030 1 0.078 1
CAM-B3LYP-D3(0) 0.044 2 0.090 2
M06-SX-D3(BJ) 0.049 6 0.104 4
ωM06-D3 0.045 3 0.111 8
ωB97X-D3 0.049 7 0.109 6
ωB97X-V 0.047 4 0.128 13
MN15 0.055 12 0.109 5
BMK-D3(BJ) 0.057 14 0.100 3
ωB97X-D 0.050 8 0.124 11
CAM-B3LYP 0.047 5 0.140 15
M11 0.052 10 0.123 10
BMK 0.063 19 0.110 7
mPW1PW91 0.063 18 0.113 9
M08-SO 0.053 11 0.142 17
ωB97X 0.056 13 0.143 18
HSE-HJS 0.071 25 0.128 12
M06-SX 0.051 9 0.215 29
PBE0 0.073 26 0.136 14
M08-SO−D3(0) 0.065 20 0.163 21
MN12-L-D3(BJ) 0.067 21 0.182 22
HSE-HJS-D3(BJ) 0.071 24 0.157 19
M11-D3(0) 0.058 15 0.225 31
MN12-L 0.067 22 0.186 24
mPWB1K 0.082 31 0.141 16
MN15-D3(0) 0.062 17 0.230 32
SCAN0 0.069 23 0.204 27
PBE0-D3(BJ) 0.074 27 0.183 23
mPWB1K-D3(BJ) 0.079 30 0.159 20
B97M-rV 0.060 16 0.302 39
LRC-ωPBEh 0.083 35 0.200 25
LRC-ωPBE 0.082 34 0.206 28
M06-2X-D3(0) 0.076 28 0.275 37
LRC-ωPBE-D3(BJ) 0.082 33 0.247 33

Name MAE (eV) Rank MRAE Rank

M06-2X 0.077 29 0.277 38
SCAN 0.109 44 0.204 26
B3LYP-D3(BJ) 0.082 32 0.305 41
mPW1PW91-D3(BJ) 0.087 37 0.274 36
rCAM-B3LYP 0.088 38 0.267 35
SCAN-D3(BJ) 0.111 45 0.219 30
B3LYP 0.084 36 0.380 47
TPSSh-D3(BJ) 0.117 49 0.260 34
rCAM-B3LYP-D3(0) 0.088 39 0.378 46
revM11 0.102 42 0.367 44
TPSSh 0.111 47 0.303 40
LRC-ωPBEh-D3(BJ) 0.102 41 0.382 48
SCAN0-D3(BJ) 0.099 40 0.401 50
revM11-D3(0) 0.104 43 0.472 53
PBE 0.166 55 0.377 45
PBE-D3(BJ) 0.171 57 0.338 43
M06-L 0.111 46 0.490 55
mPW91-D3(BJ) 0.180 59 0.315 42
M06-L-D3(0) 0.111 48 0.493 56
B97-D 0.155 52 0.488 54
TPSS 0.166 54 0.449 52
mPW91 0.168 56 0.432 51
TPSS-D3(BJ) 0.172 58 0.401 49
B97-D3 0.155 53 0.498 57
M06-HF-D3(0) 0.152 50 0.770 62
M06-HF 0.152 51 0.772 63
rVV10 0.183 60 0.550 59
VV10 0.183 61 0.540 58
BLYP 0.187 62 0.711 61
BLYP-D3(BJ) 0.190 63 0.623 60

aDFAs are listed in order of their average rankings in terms of MAE
and MRAE for barrier heights calculated in vacuum.
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=
| |

n

V V

V
MRAE

1

r

f reference

reference (5)

For completeness, we have also analyzed the mean signed error
(MSE) of the DFAs on the benchmark set (Figure S1 and
Table S2). The MSE can provide valuable information about
the tendency of a DFA to over- or underestimate barriers, but
because it can be misleading when considering the overall
accuracy of a method, we do not use it as a metric to rank the
performance of DFAs for hydrolysis reactions.

BH2O-36 Data Set. The reactions included in BH2O-36
are listed in Table 2. Where possible, we took the geometries
for our initial guesses from the literature. For each reaction
listed, both the forward and reverse reaction were considered.
BH2O-36 contains 36 total reactions representing 12 unique
classes of hydrolysis reactions (anhydride, amide, borohydride,
carbonate, diazonium, epoxide, ester, furan, imine, iminium,
lactone, and phosgene/chlorinated hydrocarbon). The data set
is evenly split between acidic (16) and basic (16) hydrolysis
reactions, with a small number of reactions that can occur in
any aqueous environment (4). While most reaction mecha-
nisms included in BH2O-36 do not include more than one
explicit water molecule, the amide (2 and 3) and furan (12−
14) reactions are water-assisted.

■ RESULTS AND DISCUSSION
Table 3 lists the MAE, MRAE, and associated rankings of the
63 DFAs in Table 1 for barrier heights calculated in vacuum.
DFAs are listed in order based on the average of the two
rankings. This is meant to reduce bias toward any one
particular metric. However, we note that rankings between
metrics are qualitatively similar. The top two DFAs (ωB97M-V
and CAM-B3LYP-D3(0)) are identical across both metrics,
and only 7 DFAs appear in the bottom 5 of either ranking. As
such, either MAE or MRAE could be reasonably used to draw
conclusions on the DFAs considered.
With an MAE of 0.030 eV and an MRAE of 0.078, the

range-separated hybrid meta-GGA DFA ωB97M-V is the best-
suited DFA tested for calculations of hydrolysis energy barriers
within the BH2O-36 benchmark set. ωB97M-V ranks first in
both metrics studied, and it outperforms by considerable
margins: the MAE of ωB97M-V is 31.8% lower than the
second-ranked DFA (CAM-B3LYP-D3(0)), and the MRAE is
15.3% lower than the second-ranked DFA (also CAM-B3LYP-
D3(0)). Beyond ωB97M-V, the differences between DFAs are
less pronounced, and exact rankings are perhaps less
meaningful. Other well-performing DFAs include the dis-
persion-corrected range-separated hybrid GGA DFAs based on
B97119 (ωB97X-V,94 ωB97X-D3,93 and ωB97X-D92), the
range-separated hybrid GGA DFAs CAM-B3LYP-D3(0) and
CAM-B3LYP,87 and several DFAs derived from Minnesota
DFAs�namely, the range-separated meta-GGA hybrids M06-
SX-D3(BJ)102 and ωM06-D393 as well as the global meta-
GGA hybrid MN15.97 These DFAs are all designed for
general-purpose use with main-group elements (and, in some
cases, transition metals) and have previously performed well in
broad benchmarks of reaction thermochemistry and barrier
heights.106 The BMK DFA,98 which was designed specifically
for calculations involving kinetics, achieves an MRAE value of
only 0.100 when modified with the D3(BJ) dispersion
correction. It also bears mention that the commonly used
DFA B3LYP is among the poorest performing DFAs, ranking

36th in terms of MAE and 47th in terms of MRAE. The
dispersion-corrected DFA B3LYP-D3(BJ) performs somewhat
better (32nd in terms of MAE, 41st in terms of MRAE) but is
still lacking compared to many other DFAs that have been
highlighted here.
Figure 1 shows the accuracy of the four families of DFAs

considered here�GGA, meta-GGA, hybrid GGA, and hybrid

meta-GGA. At a high level, we observe that local GGA DFAs
systematically underperform in calculating hydrolysis reaction
energy barriers. On average, the GGA DFAs considered here
have an MAE of 0.174 eV and an MRAE of 0.487. As a result,
we would not generally recommend the use of GGA DFAs for
applications in hydrolysis kinetics. The addition of second-
derivative terms to meta-GGA DFAs leads to a significant
improvement overall, though notably, the best-performing
GGA DFAs tend to outperform the worst-performing meta-
GGA DFAs (depending on the metric, TPSS-D3(BJ)79 or
M06-L-D3(0)76). Several meta-GGA DFAs, especially MN12-
L,80 MN12-L-D3(BJ), and B97M-rV,81 achieve low MAE
values (∼0.06 eV) and should be considered, especially where
computational resources are constrained.
The addition of Hartree−Fock exact exchange in hybrid

DFAs also leads to a general improvement over pure DFAs.
Interestingly, in spite of the dominant performance of ωB97M-
V, the hybrid meta-GGA DFAs exhibit higher error on average
than the hybrid GGA DFAs, which is somewhat unexpected
due to the greater complexity of the former compared to the
latter. Even after removing the outliers, representing the worst-
performing hybrid meta-GGA DFAs (M06-HF and M06-HF-
D3(0),95 global hybrids with 100% HF exchange), the hybrid
meta-GGA class performs slightly worse (0.077 eV MAE,
0.208 MRAE) than the hybrid GGA DFAs (0.071 eV MAE,
0.204 MRAE) on average. Another interesting distinction
between hybrid and pure DFAs arises when analyzing their
accuracy for the forward reaction versus the reverse reaction,
i.e., the addition of water versus the elimination of water

Figure 1. Performance of different families of exchange−correlation
DFAs (GGA, meta-GGA, hybrid GGA, and hybrid meta-GGA) in
calculating hydrolysis energy barriers from fixed SCAN-optimized
geometries in terms of MAE (a) and MRAE (b) in vacuum. The
median is represented by a black bar within the box defined by the
upper and lower quartiles of the data. Outliers are indicated by empty
circles and emphasized with arrows. Extreme values (not including
outliers) are indicated by the bars above and below the boxes.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00176
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00176/suppl_file/ct3c00176_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00176/suppl_file/ct3c00176_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00176?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Figure S4). Pure GGA and meta-GGA DFAs are significantly
less accurate for the reverse reaction than they are for the
forward reaction (0.099 eV Δ Mean MAE, 0.041 eV Δ Mean
MAE) while the hybrid GGA and hybrid Meta-GGA DFAs
display similar performance (0.001 eV Δ Mean MAE, 0.017 eV
Δ Mean MAE).
The range of MAE values observed for meta-GGA and

hybrid meta-GGA DFAs (Figure 1a) is particularly wide. This
can be attributed to a very small number of poor-performing
DFAs. In the case of the meta-GGA DFAs, the upper bound of
the MAE range is populated by TPSS79 and TPSS-D3(BJ).69,79

These DFAs are known to underbind dispersion-bound
compounds,106 which are exemplified by the reaction
complexes and transition states considered here. In addition
to the M06-HF and M06-HF-D3(0) which we have already
discussed, TPSSh99 and TPSSh-D3(BJ)69,99 exhibit high MAE
among the hybrid meta-GGA DFAs. With a similar functional
form to TPSS, it is perhaps somewhat unsurprising that TPSSh
and its derivative perform poorly in the prediction of barrier
heights. Although M06-HF was primarily designed for time-
dependent DFT (TDDFT) calculations,120 it was parametrized
on several barrier height data sets. It is therefore counter-
intuitive that M06-HF and M06-HF-D3(0) appear to
pathologically fail to predict hydrolysis energy barriers.
While hybrid DFAs generally perform better than their pure

counterparts without the inclusion of HF exchange, not all
hybrid DFAs are created equal. The hybrid DFAs included in
this benchmark study have fractions of short-range HF
exchange ranging from 0 (LRC-ωPBE and LRC-ωPBE-
D3(BJ)) to 1 (M06-HF and M06-HF-D3(0)); in addition,
we included both global hybrid DFAs, with HF exchange
included uniformly through space, and range-separated hybrid
DFAs, which aim to more rigorously eliminate self-interaction

errors through the separation of the exchange into short-range
and long-range terms. In most cases, the range-separated
hybrids considered here perform better than global hybrids;
this is especially true when considering the MAE (Figure 2a).
It is worth noting that 8 of the top 10 ranked DFAs in Table 3
are range-separated hybrids (MN15 and BMK-D3(BJ) are
global hybrids). Several of these high-performing range-
separated hybrids highlight the improvement that range
separation adds. CAM-B3LYP-D3(0) and ωM06-D3 both
transform a poorly performing DFA (B3LYP and M06-2X,
respectively) to one that ranks in the top 5, with MAE
improvements of 0.038 and 0.028 eV over the DFAs they were
based on, respectively. These DFAs also all take significantly
different approaches to range separation. For example, the
long-range HF exchange component of the range separation
operator varies significantly�ωM06-D3 uses 100% and CAM-
B3LYP uses 65%. Despite these differences in functional form,
reparameterization of the DFAs with the inclusion of range
separation elevates their performances to a similar extent.
Further emphasizing that different approaches to the functional
form of range separation can lead to similarly positive results,
the fraction of short-range HF exchange seems to have little
effect on the accuracy of the range-separated hybrids in this
benchmark set (Figure 2b,d). Based on these findings, for
predictions of hydrolysis kinetics, range-separated hybrids
should be preferred. If a global hybrid must be used, moderate
to high fraction of HF exchange may be desirable.
Many of the DFAs that perform well on the BH2O-36

benchmark include a dispersion correction. Among the top 10
DFAs, two (ωB97M-V and ωB97X-V) use VV10, five (CAM-
B3LYP-D3(0), M06-SX-D3(BJ), ωM06-D3, ωB97X-D3, and
BMK-D3(BJ)) use the D3 empirical correction, and one
(ωB97X-D) uses D2. It is therefore worth asking whether

Figure 2. Performance of global and range-separated hybrid DFAs in calculating hydrolysis energy barriers from fixed SCAN-optimized geometries.
(a) Box plot of MAE for global and range-separated hybrid DFAs; (b) scatter plot of MAE data, showing the effect of HF exchange fraction on
accuracy; (c) box plot of MRAE for global and range-separated hybrid DFAs; (d) scatter plot of MRAE data, showing the effect of HF exchange
fraction on accuracy. For range-separated hybrids, the x-axis of the scatter plots in panels b and d is the fraction of short-range exchange; for global
hybrids, it is the global HF exchange fraction.
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dispersion corrections, in general, improve the accuracy of
DFT-predicted hydrolysis barrier heights.
Since transition states often involve the formation and/or

breaking of bonds, with interatomic interactions on length
scales significantly longer than typical ground-state bond
lengths, it would follow logically that the long-range energy

terms provided by dispersion corrections would improve
calculations of transition-state energies and, therefore, barrier
heights. As Figure 3 shows, this does not appear to be the case
for the BH2O-36 benchmark set. In terms of MAE (Figure 3a),
dispersion corrections often lead to small changes on the order
of meV. While modest improvement is seen for some DFAs

Figure 3. Comparing MAE (a) and MRAE (b) of DFAs with various dispersion corrections, including the empirical D2 and D3 corrections as well
as the nonlocal correlation DFA VV10. The x-axes are the MAE or MRAE of the nondispersion-corrected DFA, and the y-axes are the changes in
MAE or MRAE for the dispersion-corrected DFAs relative to the noncorrected values. A change in MAE or MRAE of 0 indicates that dispersion
correction has no effect on the prediction error, on average. Negative values indicate an improvement over the nondispersion-corrected DFA, while
positive values indicate that the dispersion correction has a detrimental effect on the error.

Figure 4. Error in predicted energy barrier ΔE‡ versus reaction energy ΔE in terms of MAE (a) and MRAE (b). The dashed line, with the equation
=‡Error ErrorE E , indicates DFAs that have equal error for reaction energies and energy barriers. Boundaries between the gray regions indicate

deviations from the =‡Error ErrorE E by factors of 1.5 and 3, as well as their reciprocals, as noted on the plots.
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(notably, those based on ωB97X and BMK), the addition of a
D3 correction can lead to significantly higher error (e.g., for
PBE,68 mPW91,73 M08-SO,96 and SCAN0100). We note that
ωB97X-D, ωB97X-D3, and ωB97X-V were all specifically
trained to use a dispersion correction, which is not true for
most dispersion-corrected DFAs tested here. The changes in
MRAE (Figure 3b) caused by the addition of dispersion
corrections are more significant, but once again, uniform
improvement is not observed upon the addition of dispersion
corrections. In the Supporting Information (Tables S6 and
S7), we likewise find that the DFT-D4 dispersion correction
does not significantly improve over nondispersion-corrected
DFAs or over previous dispersion corrections like D2 and D3.
These findings are consistent with conclusions from a previous
benchmark for the hydrolysis of glycosidic bonds.67

While our focus in this work is on reaction energy barriers, it
is worth pausing to consider reaction thermochemistry, as both
reaction energies ΔE and energy barriers ΔE‡ are required for
most practical applications (e.g., constructing energy diagrams
or performing microkinetic modeling). The MAE and MRAE
for ΔE‡ versus those for ΔE are shown in Figure 4.
Analyzing the MAE (Figure 4a), we find that many pure

DFAs�and almost all GGA DFAs considered here�are
considerably worse at predicting energy barriers than reaction
energies when benchmarked on BH2O-36. While under-
performance on energy barriers is not unique to pure DFAs,
hybrids in general seem to be better behaved and follow a
more linear trend, adhering more or less closely to the line

=‡Error ErrorE E. This provides further evidence that hybrid
DFAs should be strongly favored over their pure counterparts.
Further, the finding that many DFAs that can reasonably
predict hydrolysis reaction energies fail when predicting related
energy barriers highlights the necessity of benchmarks specific
to chemical kinetics. The MRAE for ΔE and ΔE‡ are more
similar (Figure 4b) than the MAE. Most DFAs (and essentially
all hybrid DFAs) have an ‡MRAE E that is lower than the
respective MRAEΔE. This is unsurprising, as the reference
reaction energies are on average smaller in magnitude
compared to the reference energy barriers (|ΔE|ref,avg = 0.022
eV, ΔEref,avg‡ = 0.035 eV). The overall performance of the
highest-ranking DFAs for thermodynamics does not signifi-
cantly differ from the kinetics and the comparisons across DFA
classes largely remain the same, except for an improved
performance of meta-GGAs compared to hybrid-GGAs and
hybrid meta-GGAs (Figure S3 and Table S4).

■ CONCLUSION
In this work, we presented a new data set, BH2O-36, which
can be used to assess the ability of DFAs to predict the energy
barriers of diverse hydrolysis reactions. Using BH2O-36, we
analyzed 63 DFAs, including GGA, meta-GGA, and hybrid
DFAs (the latter group including GGA, meta-GGA, global, and
range-separated hybrids). The GGA DFAs we tested
performed poorly on this benchmark (with the exception of
the anomalous performance of the DFT-D4-corrected B97-
D4), and therefore we would not generally recommend using
GGA DFA in studies of hydrolysis kinetics or reaction barriers.
When dealing with large systems or in cases where computa-
tional resources are otherwise constrained, several meta-GGA
DFAs could be reasonably employed. In particular, we
recommend the Minnesota DFAs MN12-L and MN12-L-
D3(BJ), as well as the rVV10-corrected DFA B97M-rV. When

computational cost is not a significant obstacle, we recommend
the use of range-separated hybrid DFAs broadly. The ωB97M-
V and CAM-B3LYP-D3(0) range-separated hybrid DFAs show
the best performance within our benchmark set, but many
other range-separated hybrids (e.g., M06-SX-D3(BJ) ωM06-
D3, ωB97X-D3, ωB97X-V) are also well-performing con-
tenders. These recommended range-separated hybrid DFAs
are 1.5−2.3 times slower in their single-point energy
calculations than the recommended meta-GGAs (Figure S5).
Considering DFA design, we found that dispersion

correction does not systematically improve the accuracy of
DFAs in predicting hydrolysis energy barriers, and in many
cases, the introduction of a dispersion correction leads to
significantly higher error. While this may be counterintuitive,
considering the role of long-range interactions at transition
states, this finding suggests that dispersion corrections should
not be blindly applied in studies of hydrolysis reactions
specifically, and perhaps of reaction mechanisms more
generally. Likewise, although hybrid DFAs typically outper-
form pure DFAs on the BH2O-36 benchmark, we found that
among hybrid DFAs, there is no strong indication that an
increase in the fraction of short-range HF exchange leads to
lower MAE or MRAE. This is not surprising for range-
separated hybrids, which are all of the top-performing DFAs in
this study, as they depend significantly on the interplay of
several parameters tuned in their creation. For example, the ω
parameter controlling the partitioning of the HF exchange93

and the strength of the dispersion correction included in the
parametrization,92 are both known to lead to significant
differences in the fraction of short-range HF exchange. We
therefore emphasize that there is no single key to choosing a
DFA for reaction kinetics, and benchmarks are essential for
determining the appropriate DFA for particular tasks.
While particularly designed to assist in computational

studies of aqueous chemistry and reactivity, the BH2O-36
can supplement other energy barrier and kinetic benchmark
sets in order to aid in the design of new DFAs and
semiempirical quantum chemical methods.
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