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Phonon Instabilities in fcc and bcc Tungsten
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The lattice dynamics of bcc and fcc W is studied as a function of pressure using the dens
functional linear-response theory. At high pressures andT  0 K, bcc W has a higher enthalpy than
the fcc and hcp phases and it develops phonon softening anomalies related to this thermodyn
instability; however, it remains dynamically stable. In contrast, the widely unstable shear modes of
W at zero pressure (whenHfcc

W . Hbcc
W ) stabilize with increasing pressure beforeHfcc

W , Hbcc
W . Hence

the thermodynamic and dynamic instabilities are uncorrelated. [S0031-9007(97)04061-1]

PACS numbers: 63.20.Dj, 62.20.Dc, 71.15.Mb, 71.20.Be
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Dynamical instabilities or anomalous softening in th
lattice vibrations of metals in the bcc and fcc structure
are of considerable current interest [1–8]. They ma
occur for wavevectors well into the first Brillouin zone
(BZ), as is exemplified for many metals in the bcc
structure by the longitudinal phonon mode atq  f 2

3
2
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2
3 g

[1,2], transforming bcc into thev phase for sufficiently
large amplitude. In other cases the instability is due to
negative elastic constant for shear modes, often relat
to the martensitic transformation between fcc and bc
structures via the tetragonal Bain’s path [3–6]. Referen
to dynamical instabilities recently clarified a long-standin
discrepancy between the structural energy differenc
obtained fromab initio electron structure calculations and
those derived through a Calphad analysis of binary pha
diagrams [3,4,7]. Tungsten is then a typical exampl
The stable phase has the bcc lattice structure while fcc
is dynamically unstable.Ab initio calculations [7] showed
that the elastic constantsC44 and C0  sC11 2 C12dy2
are both negative, implying that fcc W is dynamically
unstable underall elastic shear, while some BZ boundary
phonons were found to be stable.

The importance of lattice instabilities in materials
science, and the unusual features occuring in W, motiva
a detailedab initio calculation of the lattice dynamics for
this metal, both in the unstable fcc phase and in the stab
bcc phase. It has been speculated that the dynami
instability of W at T  0 may be stabilized at highT ,
a possibility which would have profound implications for
the thermodynamic Calphad-type analysis of fcc-based
alloys. One then refers to, e.g., theLf 2

3
2
3

2
3 g mode in

bcc Ti and Zr [1,2,9], which is unstable at lowT but
is stabilized at highT . However, such a behavior is
unlikely if the unstable phonon modes occur in a larg
part of the BZ. Therefore we will map out that region
in the BZ where the fcc-W phonons are dynamicall
unstable and study how it changes with pressure. W
also perform calculations for the stable W bcc phas
compare with experiments, and pay particular attention
incipient instabilities under an applied pressure when b
W becomesthermodynamicallyunstable (i.e., has a higher
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Gibbs energy) with respect to more close-packed pha
(e.g., fcc and hcp).

We use density-functional theory [10] in the local de
sity approximation [11]. The calculations are perform
using a plane-wave basis set and norm-conserving p
dopotentials for W5s,5p,6s,6p and5d states as valence
states. The core radii are chosen to be2.0 a.u. We
use two nonlocal separable projectors fors and p chan-
nels, and apply the optimization technique of Ref. [1
to deal with the localized5s,5p and 5d states. It al-
lows a cutoff energyEcut  22.5 Ry, and a total en-
ergy convergence with respect to the basis, better t
0.1 mRyyatom. The BZ summations are carried out on
16 3 16 3 16 Monkhorst-Pack [13] grid using the first
order Methfessel-Paxton broadening scheme [14] w
W  20 mRy. The phonon frequencies are calculat
using the density functional linear response method [
for metallic systems [16,17]. These calculations are p
formed for phonon wave vectors on the same recipro
space mesh as used in the BZ summations.

Using the parameters above we obtain equilibriu
volumes V0 ; V calc

fcc  15.52 Å3yatom and V calc
bcc 

15.19 Å3yatom for fcc and bcc W, respectively (ex
periments [9] giveV

exp
bcc  15.78 Å3yatom). From the

calculated binding energy curves for bcc, fcc, and h
W, we find that the fcc phase becomes more stable t
bcc at 11 Mbar. The enthalpy of hcp W becomes low
than the enthalpy of bcc W at 12 Mbar, but the form
is higher than the enthalpy of fcc W at all pressur
considered. Volume differences between these phase
constant pressure are smaller than 1.5%.

Figure 1 shows calculated phonon dispersion cur
nsqd at the volumeV0, and experimental results [18]
The agreement with experiment is very good (deviatio
&6%), characteristic of first-principles LDA calculation
of this kind. (Interestingly, the deviation is large
along the HP direction in Fig. 1, where we also no
a significant volume dependence even nearV  V0, see
Figs. 2 and 3.) Our calculations reproduce an interest
feature of the experimental phonon dispersion—the n
degeneracy and crossing of the transversal modes a
© 1997 The American Physical Society 2073
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FIG. 1. Experimental [18] (symbols) and calculated (soli
lines) phonon frequencies of bcc W at the volumeV0.

fjj0g. From a smooth polynomial fit tonsqd at different
volumes, we calculate the Grüneisen parametersgGsqd 
2s≠ ln nsqdy≠ ln V d for bcc W whenV  V0, and average
it over the BZ using the method of Mauriet al. [8] to get
gG  1.5. The electronic contribution togG , obtained
through the calculated≠ ln NsEFdy≠ ln V [NsEFd is the
density of states at the Fermi level], was found to b
slightly less than 0.1. The experimental thermodynam
Grüneisen parameter isgG  1.6 for bcc W at 300 K
[19], in excellent agreement with our calculated averag
phonon part. We conclude that our pseudopotent
method accurately predicts the phonon frequencies a
their volume dependence for bcc W.

We next study fcc and bcc W at high pressures, wh
bcc W has a higher Gibbs energy than the close-pack

FIG. 2. Calculated phonon frequencies of bcc W at differe
volumes, corresponding to the pressures 12 Mbar, 3 Mb
0.6 Mbar, and 0.3 Mbar, respectively.
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fcc and hcp phases. It is interesting to see if the phono
and elastic constants of bcc W exhibit anomalies indicat
of its thermodynamic instability at high pressures (rec
that fcc W at zero pressure is boththermodynamicallyand
dynamicallyunstable). We also investigate the gradu
dynamic stabilization of fcc W with pressure.

The calculated phonon dispersion curves of bcc W
several pressures are shown in Fig. 2, and Table I gi
the elastic constants of fcc and bcc W. We see th
bcc W is dynamically stable [nsqd2 . 0 and Cij . 0]
at all the volumes considered, even though it is therm
dynamically unstable atV  0.442V0 (at P  12 Mbar
and T  0 K, corresponding to bcc volume0.438V0,
both fcc and hcp W are predicted to have a lower e
thalpy than bcc W). In order to see incipient instabilitie
more clearly, we rescale the dispersion curves at differ
atomic volumes so that the maximum frequency of ea
branch (longitudinal or transversal) becomes volume
dependent. Figure 3 shows the result for branches a
directions where anomalies are observed. Strong soft
ing with decreasing volume occurs around theLf 2
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mode. We interpret this as a manifestation of the i
herent softness of that mode which follows from ge
metrical arguments [20] (connection between the bcc a
v structures for sufficiently large displacements), an
is observed, e.g., in the bcc structuresb-Sc, b-Ti,
and V [1,2,9]. We also note a smaller but significant so
ening in the entire transverse branch alongfjj0g with
the polarization vector alongf11̄0g. The long wavelength
modes of this branch correspond to theC0 elastic con-
stant, responsible for transition to the fcc structure throu
Bain’s path. TheTf11̄0gf

1
2

1
2 0g mode has previously been

studied in several systems [1,21,22], since it was co
jectured that it gives a possible path for martensi
bcc ! hcp transformations. An interesting feature is th
relative softening of theTf11̄0gf

1
4

1
4 0g phonon frequency

compared to theTf11̄0gf
1
2

1
2 0g mode. From a geometrica

consideration we find that the former, if unstable, provid

FIG. 3. Calculated phonon dispersion curves for select
branches of bcc W at several volumes, scaled to a comm
maximum frequency (nmax

L  18.9 THz for longitudinal and
n

max
T  15.7 THz for transversal modes).



VOLUME 79, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 15 SEPTEMBER1997
TABLE I. Calculated elastic constants for fcc and bcc W.

V0 0.854V0 0.656V0 0.442V0

bcc C0 (Mbar) 1.74 2.45 2.67 3.61
C44 (Mbar) 1.49 2.28 4.92 11.24
B (Mbar) 0.32 0.57 13 37

fcc C0 (Mbar) 21.59 21.34 20.81 5.52
C44 (Mbar) 21.28 0.76 3.15 14.41
B (Mbar) 0.30 0.57 12 36

DEfccybcc (mRyyatom) 37.1 42.0 40.1 24.21
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a transition path from the bcc to the hcp structur
similar to that involving theTf11̄0gf

1
2

1
2 0g mode. Hence,

the softening ofTf11̄0gf
1
2

1
2 0g andTf11̄0gf

1
4

1
4 0g is related.

We now turn to instabilities in the fcc W; see Table
and Fig. 4 where2jnj is plotted whenn2sqd , 0. At
normal pressure all long wavelength transverse modes
unstable and the dynamical instability extends far into t
BZ. A strong softening anomaly occurs in the lowe
transversefjj0g branch with polarization alongf11̄0g.
We note that the long wavelengthTf001gfjj0g modes, cor-
responding toC44, are stabilized at the volume 0.854V0,
while C0 is still unstable at 0.656V0. Another impor-
tant feature is seen in the transversefjj0g branches.
The Tf11̄0gfjj0g mode has an instability at finite wave
lengths, although the long wavelength part, correspon
ing to the elastic constantC0, is stable (see the panel for
V  0.656V0). This means that aC0-related Bain’s path
is not necessarily responsible for a dynamical instabili
of the fcc phase. A different behavior is observed in th
Tf001gfjj0g, Tfjjjg andLfj00g modes where the insta-
bilities are first developed in the long wavelength limi
being caused by negative elastic constants.

FIG. 4. Calculated phonon frequencies for fcc W at pressur
12 Mbar, 3 Mbar, 0.6 Mbar, and 0 Mbar, respectively.
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A remarkable feature in fcc W is demonstrated by th
Tfjjjg branch which is weakly unstable atV0 for all
wave vectorsq out to the BZ boundary. This branch
remains soft over a large variation in volume, and it
maximum frequency is always smaller by at least
factor of two, compared with all other branches. In
analogy to a qualitative reasoning of Mauriet al. [8]
for a pressure-induced softening in tellurium, we write
the frequencies of this branch as a “normal” (n) and
an “anomalous” (a) part; n2sqd  n2

nsqd 1 n2
asqd. We

expect nn (due to short-range force constants) to be
similar in shape to the corresponding branch in fcc coppe
[9], which is free of softening anomalies. If we now
normalize n2sqd to take the value 1 at theX point in
the BZ and scale it accordingly for shorterq, we get the
result in Fig. 5. We see how the large dip caused b
the “anomalous” contributionn2

asqd gradually decreases
with decreasing atomic volume. This indicates that th
dynamical instability of this branch is caused by a long
range contribution ton2sqd, possibly from anomalous
electronic screening effects.

Finally, we analyze the connection (if any) between
the thermodynamic and dynamic instabilities in fcc and
bcc W. Figure 6 gives the total energyEscyad along
the (a) tetragonal and (b) trigonal Bain’s paths at sever
volumes. As explained in Ref. [4],Escyad as a function
of cya has at least three extrema. Two of them occur a
the points of cubic symmetry. For the tetragonal Bain’
path, the third extremum is a minimum and is locate

FIG. 5. Square of the phonon frequenciesn2sqd for the
transversalTf11̄0gfjj0g branch of Cu [9] and our calculated
results for fcc W. All curves are normalized to 1 at theX
point.
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FIG. 6. (a) Tetragonal and (b) trigonal Bain’s paths betwee
fcc and bcc W. The inset in (b) shows the region aroun
fcc W.

at cya . 1. As the volume decreases, the position o
this minimum moves toward smallercya (higher close-
packing), eventually merging with the fcc maximum into
an inflection point [Fig. 6(a)]. At further volume decreas
the fcc structure represents a locally stable minimum
and the third extremum is a maximum located betwee
the bcc and fcccya values. We note thatC0 [given
by the curvature ofEscyad in Fig. 6(a)] is stabilized
before the fcc phase becomes thermodynamically stab
The trigonal Bain’s path [Fig. 6(b)] at zero pressuresV 
V0d hasfiveextrema (i.e., two more than required), and fc
W is a locally unstable phase. Already atV  0.854V0

both extra minima have merged with the fcc maximum
stabilizingC44 for fcc W. Due to the high energy barrier
separating bcc and fcc W along the trigonal path,C44

is rapidly increasing with pressure in both structure
Furthermore, the bcc phase is dynamically stable (C0 . 0
and C44 . 0) even when fcc W has a lower energy a
V  0.442V0. From Fig. 6 it appears that there is no
direct connection between the thermodynamic and lon
wavelength dynamic instabilities in the case of W unde
pressure.

In conclusion, the presentab initio calculation of
phonon frequencies is the most detailed that has been p
formed for a transition metal. We obtained an excelle
agreement with the experimental phonon frequencies a
the Grüneisen constant. The bcc W phase has no p
nounced phonon anomalies at normal pressure, but at h
pressures (when it becomes thermodynamically unstab
several phonon modes soften, in particular theLf 2
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andTf11̄0gf
1
2

1
2 0g modes that are known to be soft in severa

other bcc transition metals. A related but less expect
and more pronounced softening is noted in theTf11̄0gf

1
4

1
4 0g

mode, which also provides a path forbcc ! hcp trans-
formation. This feature should be important for futur
studies of martensitic bcc-hcp transitions. The fcc W
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phase is dynamically unstable under all shear at norm
pressure. The unstable transverse phonon modes exte
over such a large part of the BZ atT  0 K and zero pres-
sure that we do not expect fcc W to be stabilized at hig
T . However, with increasing pressure the phonons in fc
W tend to stabilize, and no instabilities remain when the
volume has been reduced to about half of the volume
zero pressure.
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