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Systematic softening inuniversalmachine
learning interatomic potentials
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Machine learning interatomic potentials (MLIPs) have introduced a new paradigm for atomic
simulations. Recent advancements have led to universal MLIPs (uMLIPs) that are pre-trained on
diverse datasets, providing opportunities for universal force fields and foundational machine learning
models. However, their performance in extrapolating to out-of-distribution complex atomic
environments remains unclear. In this study, we highlight a consistent potential energy surface (PES)
softening effect in three uMLIPs: M3GNet, CHGNet, and MACE-MP-0, which is characterized by
energy and force underprediction in atomic-modeling benchmarks including surfaces, defects, solid-
solution energetics, ion migration barriers, phonon vibration modes, and general high-energy states.
The PES softening behavior originates primarily from the systematically underpredicted PES
curvature, which derives from the biased sampling of near-equilibrium atomic arrangements in uMLIP
pre-training datasets. Our findings suggest that a considerable fraction of uMLIP errors are highly
systematic, and can therefore be efficiently corrected. We argue for the importance of a
comprehensive materials dataset with improved PES sampling for next-generation
foundational MLIPs.

Artificial intelligence (AI) is increasingly shifting the paradigm of scientific
discovery to accelerate research and solve real-world scientific challenges1.
While ab-initio quantum mechanical simulation methods, such as density
functional theory (DFT), offer the theoretical foundation to investigate
material and chemical science problems at the atomic scale, their compu-
tational demands limit their applicability in both spatial and temporal scales.
Recent advancements inmachine learning interatomicpotentials (MLIPs)2,3

have enabled the opportunity to scale up quantum mechanical methods to
million atoms simulations such as water, copper4, and biomolecules5.

Alongside improvements in atomic environment descriptors and
graph neural networks that enhance the expressivity of MLIP models3,6,
universal machine learning interatomic potentials (uMLIPs) have demon-
strated another avenue by taking advantage of pre-training on large and
comprehensive material datasets7–13. These uMLIPs enable out-of-box
atomic modeling covering the entire periodic table as well as providing
robust machine-learning foundations for fine-tuning downstream tasks.
While uMLIPs hold considerable promise, a critical challenge lies in their
ability to reliably generalize to complex and diverse chemical environments,
particularly those that deviate significantly from the pre-training data dis-
tribution. Several recent benchmark efforts have tested the uMLIPs’ ability
to identify stable materials14, surface energies15, lattice relaxations and

vibrational properties16, etc. A systematic understanding of the ability of
uMLIPs to extrapolate to common atomic-modeling tasks, especially those
with atomic environments that are out of distribution (OOD), remains an
openquestionwith implications for their real-world applicability inmaterial
discovery and design.

In this work, we systematically investigate the extrapolative capabilities
of three foundational uMLIPs –M3GNet7, CHGNet8, and MACE-MP-010

(hereafter referred to asMACE)– across adiverse suite ofmaterialmodeling
tasks, including surface energies, defect energies, solid-solution energetics,
phonon vibrational modes, and ion migration barriers. Across all bench-
mark tests for all uMLIP models, our analysis shows consistent under-
predictions of energies and forces. To quantify and explain thse
underpredictions, we investigate the behavior of uMLIPs in high-energy
transition states and reveal a systematic potential energy surface (PES)
softening behavior in the uMLIPs as illustrated in Fig. 1. We attribute the
PES softening issue to the combination of the biased sampling of near-
ground-state configurations in the uMLIP pre-training datasets17, which
primarily comprise DFT ionic relaxation trajectories near PES local energy
minima. The uMLIPs trained predominantly on small energy and force
labels suffer fromdistribution shifts and experience increasedbut systematic
prediction errors in high-energy PES regions which are important for the
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kinetics of rare events, such as ion migrations, and for the energy of defects
with undercoordinated atoms, such as vacancies and surfaces.

We demonstrate that this systematic PES softening can be effectively
mitigatedbyfine-tuningwith aminimal amountof datapoints.Wefind that
a simple linear correction derived from a single DFT reference label is
sufficient to remove much of the PES softening issue in a specific chemical
system of interest, significantly enhancing the performance and robustness
of uMLIPs for a given application. We rationalize this observation by
arguing that a considerable amount of prediction errors in pretrained
uMLIPs are highly systematic, and therefore can be efficiently corrected by
modifying a limited fraction of the model parameters with only a small
amount of data augmentation. Our work provides a theoretical foundation
for the widely observed data-efficient performance boosts achieved by fine-
tuning uMLIPs and highlights the advantage of atomicmodeling with large
and comprehensive foundational AI models.

Results
Machine learning interatomic potentials framework
MLIPs approximate the total energy of a system as a sum of atomic con-
tributions, each dependent on the positions and chemical identities of the
atoms in their local environment:

E ¼
Xn

i

ϕðf r!jgi; fCjgiÞ; f
!

i ¼ � ∂E

∂ r!i

ð1Þ

ϕ is a learnable function that maps the set of position vectors f r!jgi and
chemical species fCjgi of the neighboring atoms j to the energy contribution

of atom i. The force f
!

i acting on each atom is calculated as the derivative of
the total energy with respect to its position. In the training process, the
parameters of the MLIP model are optimized to minimize the discrepancy
between the predicted energies and forces and the corresponding reference
values from the DFT labels.

The design of the atomic environment descriptor function ϕ is crucial
to developing accurate and efficientMLIPs. To capture the essential physics
and chemistry of the system, ϕ should be informative and satisfy proper
translational and rotational symmetries. This is typically achieved through
the use of graph representations18, high-order interactions6,7, the preserva-
tion of SE(3)/E(3)-equivariance using tensor products based on spherical
harmonics3,10, Fourier basis19, or Cartesian-coordinates-based atomic

density expansion20. Additionally, the incorporation of chemical informa-
tion, such as charge21 or atomic magnetic moment8, has been shown to
enhance the predictive power of MLIPs.

In addition, recent efforts have beenmade to pre-trainMLIPs on large
open-sourced materials datasets such as the Materials Project17, which
primarily consists of DFT ionic relaxation trajectories of various com-
pounds and elements across the periodic table. While initial benchmarks
have shown the promising applicability of universal MLIPs in predicting
bulk materials energetics14,16, their performance and limitations in OOD
atomic configurations require more benchmarking as the energy of these
configurations is often directly relevant for practicalmaterials behavior. The
following sections present a systematic assessment of the uMLIPs’ ability to
extrapolate to low-symmetry OOD atomic configurations that are crucial
for atomic-modeling tasks.

Surface energies
Surface energies play an important role in determining the stability and
morphology of materials, especially at the nano-scale where the surface-to-
volume ratio is significant. Accurate prediction of surface energies is crucial
for various applications such as catalysis22, corrosion23, adhesion24,
nucleation25, and thin film growth26. In this section, we assess uMLIP’s
performance in predicting surface energies, which are calculated as

γsurface ¼
Eslab � Ebulk

2Aslab
; ð2Þ

where Eslab/Ebulk are the relaxed energies of the slab/bulk structures that can
be obtained independently usingDFT orMLIPmethods in a large supercell
approach. Aslab denotes the surface area of the slab.

he energies of 147 surfaces with multiple Miller indices of 29 elements
and binary compounds are evaluated, including Si, Cu, Al2O3, LiF, ZnS, etc.
The DFT and uMLIP calculation details are listed in the Methods section
andSupplementaryTable 1 lists the full setof elementsandcompoundswith
their corresponding prediction errors. Figure 2a shows the uMLIP surface
energies versus theDFT surface energies for the three uMLIPs tested, where
MAE stands for the model’s mean absolute error. MACE exhibits relatively
better performance compared to CHGNet andM3GNet, achieving a MAE
of 0.032 eV/Å2. All three uMLIPs consistently underestimate the surface
energies compared toDFT, except for a fewpredictionsmadebyMACEand

Fig. 1 | Potential energy surface softening in uMLIPs. Left: schematic repre-
sentation of the potential energy surface (PES) described in density functional theory
(DFT), with two arbitrary coordinate axes. Right: PES described by universal
machine learning interatomic potentials (uMLIPs), which well describes the PES
regions sampled by near-equilibrium states in the pre-training dataset (orange), but

experience larger errors in high-energy regions (red) with underprediction of
energies and forces. The softening behavior is largely systematic in a given chemical
space and, can therefore be efficiently fixed locally with a small amount of data
augmentation. Using a linear correction, we demonstrate the data efficiency of
uMLIP fine-tuning.
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M3GNet. The trend in our result is consistent with the recent evaluation of
Focassio et al.15 on the surface energies of elemental crystals.

Defect energies
Wealso analyze the accuracy of uMLIPs in calculating point defect energies,
which is crucial for understanding a material’s vacancy formation27,
dopabilities28, mechanical properties29, and ionic mobilities30. Specifically,
we perform benchmarks for point defects including vacancies, interstitials,
and anti-site defects. In metallic systems, the point defect energy can be
calculated from the energy of a defect structure referenced to the corre-
sponding perfect structure and the external chemical potential of the species
added or removed

Epoint defect
i ¼ Edefect

i � Ebulk � ΣμiΔNi; ð3Þ

where μi is the chemical potential of the species i forming the defect andΔNi

is the number of atoms of i added (+ 1) or removed (− 1) at the defect. To
avoid additional errors in the defect energy introduced by the equilibrium
chemical potentials determined from the phase diagram,we used the energy
of the pure elemental phases μi for this benchmark section. This choice does
not affect the benchmark, but only shifts the value of the point defect energy.

Figure 2b presents a comparison between uMLIP and DFT defect
energies for 129 point defects across 32 chemical systems, including AlNi,
CaSn3, Cu3Au, NaPb3, NaAg4, etc. Calculation details are listed in the
Methods section and the complete list of materials is provided in Supple-
mentary Table 2. Interestingly, the uMLIP calculated defect energies are
mostly underestimated, similar to the trend observed in the surface energies
in Fig. 2a.

Solid-solution energetics
Thermodynamic modeling of solubility in solid-state systems such as
metallic alloys31 and high-entropy ceramics32 requires accurate energetics to
capture the dependence of the energy on substitutional arrangements33,34.

This dependence, relative to kBT, determines the temperature scale at which
mixing or order/disorder transitions occur35. In this section, we use the
mixing of Ca2+ and Mg2+ in the CaxMg2−xO2 rocksalt as an example to
examine the ability of uMLIPs to predict the behavior of the solid solution.
The end members of the system, MgO and CaO are both rocksalts and the
phase diagram has been previously studied both experimentally36 and
computationally37.

We explore different possible Ca-Mg cation arrangements in the
rocksalt at various CaO-MgO ratios and evaluate the corresponding ener-
gies (seeMethods). These 0K formation energies are shown in Fig. 2c,where
each point corresponds to the energy of a specific Ca-Mg cation arrange-
ment at a given Ca fraction. The predicted formation energies from all
uMLIPs are positive, consistent with the low T immiscibility of CaO and
MgO37.Weobserve a systematic underpredictionof themixing energies and
the energy difference between the uMLIPs andDFTat a specificCa fraction.
Among the uMLIPs, CHGNet’s predictions closely approximate those of
DFT, followed by those of M3GNet and MACE. We note that an under-
prediction of the formation energy would lead to an underestimation of the
solubilization temperature in phase diagram calculations and an over-
estimation of the solubility limits at a given temperature35.

Ion migration barriers
The migration barrier for an ion to move through a crystal structure forms
the basis for evaluating the diffusion constants in a material and as such is
critical to understand its functional or processing behavior. An accurate
description of ion mobility is directly relevant in various applications, such
as lithium-ion conductors for battery technologies38, and proton conductors
for fuel cells39, etc. Because the migration barrier is determined by the
extrapolation of the energy along the path between two stable sites, it is by
definition also a poorly sampled configuration when uMLIPs are only fitted
to local equilibrium configurations.

We employ uMLIPs andDFT to conduct a comprehensive assessment
of 470 Mg-ion migration pathways in 110 distinct structures including

Fig. 2 | uMLIP performance on surfaces, defects,
and solid solutions. a Comparison of DFT surface
energies and MLIP surface energies, evaluated on
147 surfaces from 29 chemical systems.
b Comparison of DFT defect energies and MLIP
defect energies, evaluated on 134 point defects from
32 chemical systems. c Formation energies in
CaxMg2−xO2 solid solution from DFT and uMLIPs.
Each point corresponds to the energy of a specific
Ca-Mg cation arrangement at a given Ca fraction.
The distributions of energies are collectively
underestimated, which would lead to an under-
prediction of the miscibility gap temperature in
uMLIPs compared to DFT.
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oxides, halides, and sulfides40. For all ion migration paths, we generate an
initial guess of the minimum energy pathway based on the DFT charge
density41 and subsequently evaluate it with the approximate nudged elastic
band (ApproxNEB)method42(seemethod section). ApproxNEB is different
from regularNEB in that it doesnot performa relaxation of the pathway but
solely evaluates the energy along the predefined trajectory42. Figure 3a
presents the energy landscape of oneMg ionmigration path inV2O3ðSO4Þ2
(Materials Project IDmp-28207),where the energies of the initial andfinal
images have been referenced to 0. The kinetically resolved activation (KRA)
migration barrier is defined as the highest energy along the reaction coor-
dinate after the reference, which presents the relevant migration barrier in
kinetic theories43. While all three uMLIPs are shown to capture the overall
shape of the DFT energy along the path, we observe systematic energy
underpredictions of uMLIPs resulting in underpredictions of KRA migra-
tion barriers. MACE achieves the best performance with a 0.34 eV MAE
against DFT, followed by CHGNet (0.39 eV) and M3GNet (0.49 eV). The
parity plot of uMLIP barriers vs. DFTbarriers is provided in Supplementary
Fig. 1 and shows that the majority of uMLIP barriers are underpredicted,
similar to the result of the surface anddefect benchmarks. Figure 3bpresents
the distribution of the energy barrier difference between uMLIPs and DFT,
fromwhichwe observe that all three uMLIPs show negative shifts in barrier
predictions.

Phonon Properties
Accurate descriptions of vibrational properties and phonon spectra are
crucial for understanding a wide range of material characteristics, such as
thermodynamic44, mechanical45, and thermal transport properties46. Pre-
dicting phonon frequencies represents a stringent test of the MLIPs’ ability
to capture the subtle energy and force landscape around equilibrium con-
figurations. Compared to the previous modeling benchmarks, phonon
properties assess the uMLIPs’ accuracies in PES regions that are closer to
training distribution. In this section, we benchmark the uMLIPs’ perfor-
mance on phonon frequencies by applying thefinite displacementmethod47

to calculate harmonic phonons.

Figure 4a shows an example of uMLIP and DFT calculated phonon
frequency on CsF (Materials Project ID mp-1784), where the solid red
lines representDFTphonon frequencies without non-analytical corrections
(NAC) taken from the PhononDB48,49 and the dashed lines show uMLIP
phonon frequencies. While the overall shapes of the phonon bands are
generally well-captured by the uMLIPs, a systematic reduction of the
vibrational frequencies (i.e., the frequency magnitude difference of the
branches at a given wave vector) is observed across all models compared to
the DFT reference, particularly for the optical modes predicted byM3GNet
(blue dashed line). The reduced vibrational frequency is an indication that
the forces described by uMLIPs are systematically lower than the DFT
values.

To quantify this softening behavior, we evaluate the ratio between the
maximum phonon frequencies predicted by the uMLIPs and the corre-
sponding DFT value for a diverse set of 229 materials (see Supplementary
Table 3) from thePhononDB48,49. The distributionof these ratios is shown in
Fig. 4b, which demonstrates that themajority (>90%) ofmaterials are found
to be softened in uMLIPs compared to DFT, with the phonon frequency
underpredicted. The result suggests that both the energy and forcedescribed
by uMLIPs are softened for almost all chemical systems.

PES softening scale for high-energy states
By definition, a machine learning model with only random errors should
have its prediction error distribution centered at 0. However, all three
uMLIPs are shown to not satisfy such criterion in both OOD atomic con-
figurations and PES regions that are closer to equilibrium like phonons.
These consistent underpredictions can come from two possible causes: (1)
Systematic underpredictions of energies and forces that soften the PES. (2)
Ionic relaxations that optimize the output energy towards lower values due
to modified PES minima created by random errors. While the latter cause
arises from random errors that are challenging to eliminate, the former
cause arises from systematic errors that can be easily quantified by separ-
ating out relaxations and directly benchmarking uMLIPs against DFT at
fixed checkpoints in the PES.

Fig. 3 | Underpredicted ion migration barriers in
DFT and uMLIPs. a An example of a Mg-ion
migration path in V2O3ðSO4Þ2 (mp-28207) with 5
intermediate images. The energies of initial and final
images are referenced to 0, and the kinetically
resolved activation (KRA) migration barrier is
defined as the highest energy along the path. b The
distribution of 477 energy barrier differences
between uMLIPs and DFT, showing uMLIPs' ten-
dency to underestimate the ion migration barriers.

Fig. 4 | Softened phonon vibration modes in
uMLIPs. a the phonon dispersion relation and
density of states (DOS) of CsF(mp-1784) calcu-
lated with DFT and uMLIPs. Systematic under-
predictions of phonon vibration frequencies are
observed with all uMLIPs. b Distribution of ratios
between uMLIP maximum frequency to DFT
maximum frequency for 229 different compounds.
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To quantify the extent of systematic softening in uMLIP PES, we
propose the softening scale parameter, which is calculated as the linearfitted
slope of uMLIPs vs. DFT forces in a material. As an example, Fig. 5a shows
an exemplary parity plot of uMLIPs vs. DFT forces from sampled high-
energy OOD atomic configurations of Li6Zn2In2ðIO3Þ16 (derived from
Materials Project ID mp-973966). These OOD atomic configurations are
sampled away from the energy minimum in the PES, by applying high-
temperature molecular dynamics (MD) simulations(see method section).
The corresponding forces of each sampled state are subsequently evaluated
using static calculations with uMLIPs and DFT.

The systematicPES softeningeffect showsup inFig. 5aby the clockwise
tilting of the distribution away from the diagonal. The slope of this dis-
tribution, extractable by linear regression, can be defined to be the PES
softening scale. In Fig. 5a, we provide the fitted slopes and forceMAEs of the
three uMLIPs. When the softening scale is 1, the MLIP’s force distribution
aligns with the diagonal, indicating that the curvature of the MLIP-PES
systematically agrees with DFT with only random errors present. A soft-
ening scale smaller than 1.00 indicates a systematic underprediction of
energy and forces that leads to an overall smoother PES curvature as illu-
strated in Fig. 1.

To investigate how broadly across chemistry the PES softening
occurs, we collected 1000 different compounds from the WBM mate-
rials dataset by Wang et al.50, which was generated by elemental sub-
stitution of Materials Project compounds and therefore contains only
crystalline structures that are not included in the pre-training dataset of
the three uMLIPs. For each of these compounds, 10 high-energy states
away from the PES energy minimum are sampled with a 1000K MD
simulation, and the softening scale is extracted from a linear fit with
uMLIP and DFT forces. Figure 5b presents the distribution of the PES
softening scale for these 1000WBM compounds, and shows that for the
majority (>90%) of the compounds, the softening scale is smaller than 1
for all 3 uMLIPs we have tested. This result indicates the systematic
softening behavior is universal across all chemical systems in current
uMLIP models.

Data-efficient fine-tuning
Within a local PES region of a specific chemical system, the softening
issue appears as a tilted distribution of forces in the parity plot as shown
in Fig. 5a for mp-973966. Intuitively, one can rotate the distribution
back to the diagonal to reset the softening scale to 1 hereby reducing the
prediction error. In this scenario, we define cMAE as the linearly cor-
rectedmean absolute error if the uMLIP force distributions were rotated
back to align with the diagonal. As shown in Fig. 5a, the cMAEs are
considerably reduced from the original MAE from 0.220/0.190/0.176
eV/Å to 0.184/0.162/0.155 eV/Å for M3GNet/CHGNet/MACE,
respectively. This observation suggests that a considerable fraction of
force errors from uMLIP are likely to be systematic and can be easily
corrected locally to reduce force errors.

Mathematically, rotating the force distribution is equivalent to multi-
plying every force value by a scalar, which can be realized bymultiplying the
MLIP energy by a scalar term

Ecorr ¼ c �MLIPðf r!ig; fCigÞ;
f corri ¼ � ∂Ecorr

∂ r!i

¼ c � f i: ð4Þ

It is noted that the above formulation is equivalent tofine-tuning aMLIP by
fixing all model weights except a scalar linear layer, which essentially
modifies only the scalar parameter c in Equation (4). Since only a scalar
parameter requires modification, only one single label (1 force component)
is needed for the training. Since the crystal cell typically consists of multiple
atoms, with each atom carrying three force components, a single training
structure already contains enough information for the proposed linear
correction. In the left part of Fig. 6a, we show the result when pre-trained
CHGNet is fine-tuned with an added hypothetical scalar linear layer (see
Methods), trained on only a single high-energy configuration of mp-
973966. The test forces, which originate from the same set of atomic
arrangements in Fig. 5a, are labeled in orange and the training forces from
the single additional configuration are labeled in red. The linear corrected
CHGNet exhibits a softening scale of 0.965 and a forceMAE of 0.166 eV/Å,
improved from 0.859 and 0.190 eV/Å in the pre-trained CHGNet as shown
in Fig. 5. The estimated cMAE is 0.162 eV/Åwhen the softening is corrected
to 1, which is close to the forceMAE of 0.166 eV/Å that is achieved by fine-
tuning the scalar linear layer. Hence, a linear correction with one high-
energy OOD configuration indeed operates as a rotation of the force
distribution back to the diagonal, substantially eliminating the systematic
softening error and considerably reducing the force MAE.

Wepropose that the cMAEderived from the linear correction serves as
an approximate lower bound for the expected error reduction from fine-
tuning uMLIPs. In Supplementary Fig. 5, we show that the errors in
materials modeling tasks, such as surface calculation, can be similarly
reduced after a linear correctionwith one label. Consequently, the proposed
linear correction serves as a baseline for fine-tuning error reduction in
uMLIPs. In practice, a typical fine-tuning process involves hundreds and
thousands of structure labels that can further reduce theMAE of themodel.
We tested fine-tuning the pretrained CHGNet by optimizing all model
parameters with 10 training structures, and the resulting force parity plot is
shown on the right of Fig. 6a. Compared to the linear correction with only
one configuration, the rightpanel in Fig. 6a shows that a very small dataset of
10 training structures further reduces theMAE to 0.125 eV/Å, whichproves
the linear-corrected cMAE approximates a safe lower bound. By statistically
evaluating the distribution of force MAEs and cMAEs for the 1000 WBM
structures, we present their fine-tuning error-reduction lower-bounds in
Fig. 6b. From the observed distribution, considerable error reduction
(~15%) can be adequately achieved with a simple linear correction.

Fig. 5 | The PES softening scale from shifted force
predictions. a uMLIP forces vs. DFT forces in high-
energy states, sampled from high-temperature MDs
of a Materials Project structure (mp-973966).
Systematic softening of PES is indicated by the tilted
distribution of forces from the diagonal. The soft-
ening scale is defined as the slope of the distribution,
where softening is indicated by slope < 1. cMAE
stands for corrected mean absolute error, which is
the MAE if the softening scale is corrected to 1,
equivalent to having the force distribution rotated
back to diagonal. b Distribution of softening scales
of 1000 compounds sampled from the WBM data-
set, showing the PES softening behavior is universal
across various chemical systems.
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These results suggest a theoretical explanation for the commonly
observed data-efficient performance boost that is achievable by fine-tuning
foundational uMLIPs compared to training randomly initialized MLIPs.
The data efficiency arises from the observation that a significant part of the
MAEs in pre-trained uMLIPs are highly systematic, which can be efficiently
amended by optimizing a fractionofmodel parameterswith a small amount
of data. The linear correction demonstrates the fine-tuning mechanism in
the extreme case of one structure label and one trainable parameter. In
practice, one doesn’t necessarily need to fine-tune only a linear layer since a
realistic fine-tuning dataset is far larger and richer than a single structure
label. In Supplementary Figs. 3 and 4, we present a comparison between the
force error in the fine-tuned CHGNetmodels to those trained from scratch.
The result demonstrates that the fine-tuning process can achieve sig-
nificantly higher data efficiency compared to training MLIPs from scratch.
Our theory of systematic error correction provides a mechanistic explana-
tion of these advantages of foundational MLIPs.

Discussion
The design and discovery of novel materials raises the need for advanced
simulation tools capable of efficiently and accurately describing the intricate
details of atomic interactions. MLIPs offer a potential solution to bridge the
gap between quantum mechanical accuracy and affordable computation
cost by learning and emulating complex atomic interactions. Recent work
on pre-training foundational MLIPs with comprehensive material datasets
has opened up the possibility for out-of-box use of robust universal
interatomic potentials7,8,10,12,13.

Unlike DFT,MLIPs cannot by default be expected to performwell in a
configurational space where they have not been trained. We therefore
benchmark the performance of three uMLIPs for multiple modeling tasks
including surfaces, defects, solid-solution energetics, phonon vibration
modes, ion migration barriers, and more general high energy states. These
states are under-represented in thewidely-used pre-training dataset7,8,17 that
only consists of bulk crystalline materials. For the properties tested in this
work, we observe a universal softening of the PES, characterized by the
uMLIPs’ underprediction of energies and forces.

The uMLIPdatasets are primarily drawn fromMaterials Project17 ionic
relaxation trajectories and are therefore largely distributed around the
energy minima of the PES. Consequently, the uMLIPs are exposed to a
limited range of atomic configurations and force gradients, leading to dif-
ficulties in accurately capturing the energy landscapes and steep gradients
associated with OOD states and processes like ion migrations and phase
transformations.

We found similar signs of softening in the published literature,
though less attention was dedicated to an in-depth examination of the
softening issue. Pandey et al.51 and Bartel52 presented an extrapolation
issue arising from a distribution shift when training a CGCNN18 energy
predictor with ICSD data53. The CGCNN model trained with only

experimental stable materials experienced a six-fold increased predic-
tion MAE when applied to hypothetical crystal structures in the Mate-
rials Project17. Furthermore, the Google DeepMind’s GNoME uMLIP
exhibited pronounced softening tendencies when trained on the
M3GNet dataset7, as evidenced in Supplementary Information of ref. 12,
similar to our observation in Fig. 5a. After being trained on the expanded
dataset of 89 million structures, the softening issue in GNoME was
shown to be mitigated but not fully eliminated, which is shown in
Supplementary Figs. S34–S37 from ref. 12. These examples underscore
the universality of the PES softening issue across various models and
datasets, highlighting the importance of the systematic benchmark and
analysis undertaken by our study to address this challenge.

Another possible cause of underpredicted energies arises from mod-
ified PESminima. Even if the uMLIP would be unbiased with only random
errors, uMLIP ionic relaxation may further relax the atoms into positions
that are at lower energy, resulting in underpredictions of the relaxed ener-
gies. To illustrate this, consider an unbiased uMLIP. When comparing the
result of static energy calculations the uMLIP energy predictions would be
unbiased compared to the DFT energies. However, when ionic relaxations
are performed with the uMLIP on these DFT-relaxed structures, the
relaxation may further displace the atoms away from the DFT minimum
and reduce the energy. As a result, the expected uMLIP relaxed energymay
show a bias to be lower than the DFT energy, even when only random error
is present. Compared to the systematic softening discussed in the current
manuscript, these erroneous relaxations are much more challenging to
resolve as multiple factors are involved: optimization algorithm, relaxation
convergence criterion, PES training and validation error, etc. As most
physical properties are determined by the energy difference of various
configurations, this error arising from the “re-optimization” of the atomic
position will affect both states from which the energy difference is derived.
For example, in anNEB calculation, the re-optimization error can affect the
initial state of the ion as well as the saddle point. Nonetheless, if the random
error is larger in high-energy configurations, one expects the re-
optimization error to be larger in the high-energy configurations, effec-
tively showing up as softening.

The observed limitations of current uMLIPs raise questions about the
effect of model size and expressive capacity on their ability to capture the
intricate details of the PES54. The MACE model with 4.69 Million para-
meters, which is around 11 times the size of the CHGNet and 21 times the
size of M3GNet, shows improvedMAE and decreased softening compared
to the smaller uMLIPs. The better performance of larger uMLIPs alignswith
the previous study by Frey et al.55 on the scaling of model performance as a
function of MLIP capacity. The observed relationship between model
capacity and performance prompts further inquiry into the extent to which
theparameter sizeof currentuMLIPs influences thePES softening issue, and
whether the softening canbeminimizedby scaling to a larger, yet reasonable
model size without expanding the dataset. In Supplementary Figs. 6 and 7,

Fig. 6 |Data efficientfine-tuning demonstrated by linear correction. aParity plots
of fine-tuned CHGNet predictions on mp-973966, with the training force labels
plotted in red and pre-excluded test force labels plotted in orange. Left: fine-tuned
CHGNet with a linear correction and a single DFT label solves the softening issue and
greatly reduces forceMAE from0.190 eV/Å to 0.166 eV/Å. Right: amore realistic fine-

tuning example that optimizes all model parameters with 10DFT labels, which further
decreases the force MAE. b Distribution of force MAEs and linear corrected MAEs
(cMAEs) for 1000 WBM compounds, showing uMLIP force errors can be greatly
reduced by fine-tuning with a single data point. Quartiles are labeled by dashed lines.
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we show the distribution of softening scale and force MAEs for two addi-
tional uMLIPs: CHGNet-matgl and M3GNet-matgl, which were also
pre-trained using Materials Project database. The CHGNet-matgl with
increased model size and M3GNet-matgl with enhanced sampling56

demonstrate decreased softening effect and improved force predictions.
Furthermore, previous investigations byXu et al.57 showed the extrapolation
behavior of neural networks tends to be linear, which aligns with our
observation of underpredicted curvatures in the uMLIP PES. While the
scope of current work does not explicitly investigate the effect of model size
and design, further studies could provide a better explanation of the number
ofmodel parameters needed to describe a universal potential energy surface.

Fortunately, we demonstrate the softening issue can be effectively
resolvedby including aminimal amountof high-energyOODtrainingpoints
in fine-tuning. Our result not only provides a guideline to avoid softening
issues when applying uMLIPs to atomic modeling, but more importantly,
derives an explanation for the frequently observed data-efficient fine-tuning
of foundational MLIPs. Our result suggests that a significant portion of the
MAEinuMLIPs ishighly systematicand therefore canbeefficiently corrected
by a small amount of data. In addition to the robustness of uMLIPs that has
been acknowledged as an advantage obtained frompre-training8,12, our study
elucidates another benefit of fine-tuning foundational MLIPs – the data-
efficient systematic error correction that is unavailable for training a ran-
domly initialized MLIP. Our study serves as a guideline for researchers
attempting to fit interatomic potentials for their systems of interest.

In summary, our work presents an in-depth analysis of the softening
effect of uMLIPs observed in a series of materials benchmarks, from which
we provide guidelines for the fine-tuning effects of uMLIPs. With the
observed limitation of current uMLIPs, we advocate the need for an
improved next-generation dataset for training foundational atomicmodels,
and more investigation in the role of model complexity. Despite significant
efforts dedicated to model design and training strategies, less emphasis has
been placed on constructing comprehensive and well-curated open-source
materials datasets58. Most current foundational models still rely on datasets
that were not originally generated for machine learning purposes. Apart
from diversifying the chemical space, our findings highlight the importance
of ensuring a comprehensive sampling of the PES in generating a reliable
MLIP dataset. We believe a next-generation foundational atomic dataset
with improved sampling will be pivotal for the development of MLIP and
atomistic simulations.

Methods
uMLIP versions
The table below shows the details and versions of the uMLIPs testedTable 1.

Materials modeling tasks
For surface energy calculations, stoichiometric and symmetric slabs are
generated with up to a maximum Miller index of 2 in three directions.
Minimum slab thickness of 10Å andminimum vacuum length of 10Å are
used for DFT to ensure convergence of surface energy59. When relaxing the
slab, in-plane lattice vectors are fixed to their bulk value. The ionic relaxa-
tions are converged to a maximum interatomic force criteria of 0.05 eV/Å
for all uMLIPs.

For defect energy calculations, defects in elemental phases as well as
binary metallic compounds are considered. The defect structures are fully
relaxed and referenced to the bulk energy. The off-stoichiometric defect
energies (ex: vacancy defect) are referenced to the chemical potential of the
pure elemental phase, instead of any chemical potential corresponding to

multi-phase equilibria in the phase diagram. This is done deliberately to
avoid additional errors associated with calculating the phase diagram using
the uMLIPs. For all uMLIPs, the ionic relaxations are converged while a
maximum interatomic force is 0.05 eV/Å.

For solid-solution calculation in CaxMg2−xO2, we randomly select
different Ca-Mg orderings (up to 52 number of configuration) at each Ca
concentration and evaluate the energy of the configuration with ionic
relaxation with DFT or uMLIPs.

For phonon calculations, we use the phonopy workflow as imple-
mented in atomate260 with relaxation convergence and supercell settings
identical to those used in Batatia et al.10. The DFT referenced data are taken
from the PhononDB48,49. We restrict benchmarking materials without
magnetism and U-corrections. Moreover, we removed the non-analytic
corrections (NAC) from the PBEsol phonons which are derived from the
Born effective charges as these are unavailable from uMLIPs which have no
concept of electronic structure. In practice, a future hybrid uMLIP-DFT
workflow could perform a single DFT static at the uMLIP relaxed structure
to obtain Born charges and post-hoc apply non-analytic corrections to the
uMLIP phonon spectrum. However, such a hybrid workflow while neces-
sary in practice, would not affect the results of this benchmark concerned
specifically with the ML-obtainable parts of the spectrum.

The ionmigration barrierDFTdata are collected from theworkofRutt
et al.40, in which the ApproxNEB algorithm42 was used to evaluateMg2+ ion
migration barriers. The key difference between ApproxNEB with regular
NEB61 is that ApproxNEB relaxes each image along the migration path
independently, while NEB relaxes the migration path collectively. In the
ApproxNEB method, an initial guess of the ion migration path is inter-
polated based on the charge density of the host structure. The energies
associatedwith suggested image structures are calculated by the constrained
relaxation that fixes the moving ion and lattice vectors. The ApproxNEB
methodwas shown to provide a comparable barrier within 20meV error of
NEB and reduce the computational time significantly for materials where
the path is not too complex42.

The high-energy states are sampled by high-temperature molecular
dynamics.Theatomic configurations inFig. 5aare sampled froma1000Kab-
initio MD run, and the 1000materials in Fig. 5b are selected from theWBM
dataset50 and sampled with CHGNet MD run. For each structure selected, a
20 ps, 1000 K molecular dynamics simulation is performed under constant
number of particles, volume, and temperature (NVT) ensemble with the pre-
trainedCHGNet, and 10 structures are subsequently sampled from eachMD
trajectory56. + 3% strain and a − 3% strain are applied along three lattice
dimensions for 4 out of the 10 structures to sample strained configurations.
All the forceMAEs andfine-tuning are calculatedwith the three-dimensional
force components rather than the absolute magnitude of forces.

Fine-tuning
Every fine-tuning and linear correction experiment in the current
manuscript is trained separately for each material system. For the fine-
tuning of CHGNet uMLIP, the models are trained with energy, force, and
stress labels with 0.1-100-0.1 loss fractions under the mean squared error
(MSE) loss criterion. The structures and labels are taken from a DFT ab-
initio MD trajectory data of Li6Zn2In2ðIO3Þ16 (mp-973966) from Jun
et al.62, where 100 structures are reserved for the test set, as shown by the
orange points in Fig. 6a. The train-validation ratio is set to be 9:1. As a
result, 9 out of the 10 training structures in the right panel of Fig. 6a are
actually used for gradient back-propagations. The Adam optimizer63 is
used with a learning rate of 1e-3 that cosine decays to 1e-5 in 100 epochs.
Themodel checkpoint of best validation forceMAE is collected for test set
predictions. For the model trained with only 1 structure, the last-epoch
checkpoint is used instead.

The linear correction of CHGNet is realized by adding a hypothetical
scalar linear before the energy prediction. The weight of the scalar linear
layer is initialized to be 1, therefore not influencing the energy prediction
before being optimized. During the linear correction, all CHGNet model
parameters are frozen except for the added scalar linear layer.

Table 1 | uMLIP Model Specifications

Model Version ModelSize DataSet DataSize

M3GNet7 2021.2.8 227.5K MPF7 188.3K

CHGNet8 v0.3.0 412.5K MPtrj8 1.58M

MACE10 2023.12.03 4.69M MPtrj 1.58M
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DFT calculations
DFT calculations were performed with the Vienna ab initio simulation
package (VASP) using the projector-augmented wave method64,65. All cal-
culation settings are generated using pymatgen MPRelaxSet to ensure
all DFT results are compatiblewithMaterials ProjectDFT calculations66. All
the calculations were converged to at least 10−5 eV in total energy for
electronic steps and 0.02 eV/Å in interatomic forces for ionic steps.

Data availability
The dataset used to extract the softening scales of uMLIPs is available at
https://doi.org/10.6084/m9.figshare.2730777667.
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