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Structured information extraction from
scientific text with large language models

John Dagdelen 1,2,3, Alexander Dunn 1,2,3, Sanghoon Lee1,2, Nicholas Walker1,
Andrew S. Rosen 1,2, Gerbrand Ceder1,2, Kristin A. Persson 1,2 &
Anubhav Jain 1

Extracting structured knowledge from scientific text remains a challenging
task formachine learningmodels. Here, we present a simple approach to joint
named entity recognition and relation extraction and demonstrate how pre-
trained large language models (GPT-3, Llama-2) can be fine-tuned to extract
useful records of complex scientific knowledge. We test three representative
tasks in materials chemistry: linking dopants and host materials, cataloging
metal-organic frameworks, and general composition/phase/morphology/
application information extraction. Records are extracted from single sen-
tences or entire paragraphs, and the output can be returned as simple English
sentences or a more structured format such as a list of JSON objects. This
approach represents a simple, accessible, and highly flexible route to obtain-
ing large databases of structured specialized scientific knowledge extracted
from research papers.

The majority of scientific knowledge about solid-state materials is
scattered across the text, tables, and figures of millions of academic
research papers. Thus, it is difficult for researchers to properly
understand the full body of past work and effectively leverage existing
knowledge when designing experiments. Moreover, machine learning
models for direct property prediction are being increasingly employed
as screening steps formaterials discovery and design workflows1–3, but
this approach is limited by the amount of training data available in
tabulated databases. While databases of materials property data
derived from ab initio simulations are relatively common, they are
limited to the subset of computationally accessible properties whereas
databases of experimental property measurements and other useful
experimental data are comparatively small (if they exist at all).

In recent years, researchers havemade significant advances in the
application of natural language processing (NLP) algorithms for
materials towards structuring the existing body of textual materials
science knowledge4–7. Themajority of this work has focused on named
entity recognition (NER), where entity labels such as “material" or
“property" are applied towords from the text. These tagged sequences
of words can sometimes be used with additional post-processing to
construct auto-generated tabular databases ofmaterials property data

aggregated from text entries8–12. Prior information extraction studies
in the domain of solid-statematerials include NER labeling of chemical
synthesis parameters in methods section texts13–16, quantitative results
of battery cycling experiments17, or peak absorption wavelengths for
UV-Vis experiments18, among others4,5,9–12,19. Regular expressions,
BiLSTM recurrent neural networks, and smaller transformer-based
language models such as BERT are sufficient for such tasks. In these
studies, entities (e.g., LiCoO2, "350K") rather than relations (e.g.,
"350K" is an experimental synthesis parameter for LiCoO2) are the
primary target of extraction.

Yet, a key challenge in scientific natural language processing is the
development of robust, simple, and general relation extraction (RE)
techniques to accurately extract the relationships between named
entities. Downstream tasks such as supervisedmachine learning or the
construction of knowledge graphs require the transformation of
unstructured text into sets of structured relationships between
semantic entities of interest. RE models are used to determine which
entities are linked by a predefined set of relations. For example, in the
sentence “LiCoO2 is studied as a Li-ion battery material", the material
entity “LiCoO2" is linked to the application entity “Li-ion battery". Until
recently, there has been relatively little work on relation extraction in
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materials science text, but there has beenmuch research interest in RE
on general-purpose text, especially related to linking people, organi-
zations, locations, and dates20,21. These methods have traditionally
relied on pipeline-based approaches where named entity recognition
is the first step followed by one or more additional steps and a final
relation classification step (see Fig. 1, top row). Each of these steps
typically uses a separate machine learning model, which may or may
not share weights or architectures with each other. State-of-the-art
transformer-based implementations of pipeline implementations have
been shown to perform document level relation extraction relatively
well on a variety of general-knowledge corpora22 andmore specialized
domains such as chemical-disease relations23 and gene-disease
relations24. Recently, this kind of two-step approach was demon-
strated on a benchmark dataset of procedures for the synthesis of
polycrystalline materials encoded as directed graphs extracted from
materials science text25.

However, scientific information often cannot be modeled as
simple pairwise relations between entities. This is particularly apparent
in inorganic materials science, where a compound’s properties are
determined by a complex combination of its elemental composition,
atomic geometry, microstructure, morphology (e.g., nanoparticles,
heterostructures, and interfaces), processing history, and environ-
mental factors such as temperature and pressure. Furthermore, inor-
ganic materials knowledge is often inherently intertwined such that
the relations may only be valid between one entity type and a com-
pound entity (itself comprised of several entities and relationships).
For example, wemay consider zinc oxide nanoparticles (a compostion
“ZnO" linked to the morphology “nanoparticles") to be a catalyst, but
“ZnO" and “nanoparticles" alone are not necessarily catalysts in

themselves. When parts of these compound relations are lost, scien-
tificmeaning will change. A sample of an “epitaxial La-doped thin film"
of HfZrO4 will have different physical properties than a “La-doped thin
film" of HfZrO4 and a “La-doped" sample of HfZrO4. In theory, rela-
tionships between n entities can be modeled as n-tuples (e.g., ("ZnO",
“nanoparticles", “catalyst")), but comprehensively enumerating all
possible variations is both impractical and not amenable to conven-
tional relation extraction methods, since a sufficient number of train-
ing examples is required for each relation type. For example, a model
extracting 10 distinct entity classes may have 10C3 = 120 3-tuple entity
relation types, each requiring at least several annotation examples.
Current relation extraction models are not designed to practically
extract or preserve such kinds of highly complex, intricately related,
and hierarchical relationships between arbitrary numbers of named
entities; a more flexible strategy is required.

Large language models (LLMs) such as GPT-3/426,27, PaLM28,
Megatron29, LLaMA1/230,31,OPT32, Gopher33, andFLAN34 havebeen shown
to have remarkable ability to leverage semantic information between
tokens in natural language sequences of varying length. They are parti-
cularly adept at sequence-to-sequence (seq2seq) tasks, where text input
is used to seeda text response fromthemodel. In thispaper,wewill refer
to these inputs as “prompts" and theoutputs as “completions." Use cases
for seq2seq are broad35 and include machine translation36, answering
general factual knowledgequestions33,37, performing simple arithmetic33,
translating between languages36,38, summarizing text28,39, and chatbot
applications26,40. It stands to reason that thesemodelsmay also be adept
at complex scientific information extraction.

Recently, end-to-end methods that use a single machine learning
model have been investigated for joint named entity recognition and

Fig. 1 | Schematic comparison of previous relation extraction (RE) methods to
this work. The objective of each method is to extract entities (colored text) and
their relationships from unstructured text. a An example multi-step pipeline
approach first performs entity recognition, then intermediate processing such as
coreference resolution, andfinally classificationof linksbetween entities.b seq2seq

approaches encode relationships as 2-tuples in the output sequence. Named enti-
ties and relationship links are tagged with special symbols (e.g., “@FORMULA@",
“@N2F@"). c Themethod shown in this work outputs entities and their relationships
as JSON documents or other hierarchical structures.
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relation extraction (NERRE)41–43. These methods take a sequence-to-
sequence approachwhere amodel is trained to output tuples of twoor
more namedentities and the relation label belonging to thepredefined
set of possible relations between them (Fig. 1, middle row). These
methods perform well on relation extraction, but they fundamentally
remain n-ary relation extraction systems that are not suited to highly
intricate and hierarchical NERRE.

In the domain of materials science, Huang & Cole recently fine-
tuned a BERT model on battery publications and trained a model to
enhance a database of NLP-extracted battery data11. Their approach
employed a “question and answer" (Q/A) approach that extracted
limited device-level information (e.g., “What is the cathode?", “What is
the anode?", “What is the electrolyte?") in tandem with conventional
information extraction methods11. We note that this approach cannot
be used on passages that contain information about more than one
device, and it required the BERT language model to be trained on
hundreds of thousands of battery research papers before being fine-
tuned on the Q/A task. More recently, Zheng et al.44 designed a
prompt-engineering approach (ChemPrompt w/ ChatGPT45) for
extracting data from scientific papers. This method is focused on
structuring text into tabular forms, creating semi-structured summa-
ries, and collating existing knowledge from the pretraining corpus.
Similarly, Castro Nascimento and Pimentel46 examined ChatGPT’s
general knowledge of chemistry; however, they find that, as opposed
to methods using considerable prompt engineering47, ChatGPT with-
out prompting “tricks" performs poorly on several simple tasks in
chemistry. Xie et al.’s48 approach utilizes LLMs fine-tuned on a large,
broad materials science corpus for a range of Q/A, inverse design,
classification, and regression tasks. While these methods44,46–48

demonstrate LLMs might act as materials science knowledge engines,
they have not been shown to extract structured representations of
complex hierarchical entity relationships generalizing outside of the
pretraining corpus.

In this work, we investigate a simple approach to complex infor-
mation extraction where a large language model is fine-tuned to
simultaneously extract named entities and their relationships. This
method is able to flexibly handle complex inter-relations (including
cases where information exists as lists of multiple items) without
requiring enumeration of all of possible n-tuple relations or pre-
liminary NER. Our approach differs from the supervised learning (e.g.,
regression and classification for chemistry) and inverse design
approaches of Jablonka et al.49,50 andXie et al.48; rather than using LLMs
to directly influence design or predict properties, we aim to (accu-
rately) extract structured hierarchies of information for use with
downstream models. We fine-tune a pretrained large language model
(e.g., GPT-326 or Llama-231) to accept a text passage (for example, a
research paper abstract) andwrite a precisely formatted “summary" of
knowledge contained in the prompt. This completion can be for-
matted as either English sentences or a more structured schema such
as a list of JSON documents. To use thismethod, one only has to define
the desired output structure—for example, a list of JSON objects with a
predefined set of keys—and annotate ~100–500 text passages using

this format. The LLM is then fine-tuned on these examples, and the
resulting model is able to accurately output extracted information in
the same structured representation, such as the format shown in Fig. 1.
In essence, a domain expert can show an LLM-NERREmodel both what
it should extract and how that information should be represented, and
then the model learns how to perform the task independently.

Thismethod shows strongperformance using bothOpenAI’sGPT-3
(closed source) and Llama-2 (open access) on both sentence-level and
document-level materials information extraction. Moreover, the
method can leverage online LLM APIs, which allows users to train
bespoke models without extensive knowledge of how LLMs work
internally; the LLMmay be simply treated by the user as a black-box that
transforms passages into precisely-formatted, structured summaries of
scientific text. Therefore, researchers may use this method with little
NLP experience. We also discuss how intermediate models can be used
to pre-suggest entities for annotation, vastly increasing the speed and
ease of annotating documents so that large training sets can be con-
structed relatively quickly. Although the example tasks shown are from
materials science, the generality and accessibility of themethod implies
it may be readily applied to other domains such as chemistry, health
sciences, or biology. In particular, this approach does not appear to
require fine-tuning on a large corpus of domain-specific data (e.g., mil-
lions of article abstracts or paragraphs) as in previous methods; rather,
thecomprehensivepretrainingof theLLMsalongwith theuser-provided
annotations are sufficient to accomplish a broad array of complex tasks.

Results
We use the described approach on three joint named entity recogni-
tion and relation extraction (NERRE) materials information extraction
tasks: solid-state impurity doping, metal–organic frameworks (MOFs),
and general materials information extraction. Details for each dataset
are summarized inTable 1. Further details of each task are presented in
the Methods section. Briefly, the solid-state impurity task is to identify
hostmaterials, dopants, and potentially additional related information
from text passages (sentences). The MOF task is to identify chemical
formulae, applications, guest species, and further descriptions ofMOF
materials from text (materials science abstracts). The generalmaterials
information task is to identify inorganic materials, their formulae,
acronyms, applications, phase labels, and other descriptive informa-
tion from text (materials science abstracts). The general and MOF
models were trained on data including normalization and error cor-
rection, while doping models were trained to extract data exactly as it
appears in text. Each base LLM model is fine-tuned per-task to adhere
to a particular schema that encapsulates the entities of interest, rele-
vant relationships, and format. All schemas are shown in Table 1 and
further details are available in theMethods and Supplementary Note 1.

Relation extraction performance
A comparison between GPT-3 and Llama-2 on NERRE precision, recall,
and F1 scores across the three tasks using a JSON schema is shown in
Table 2. Details on each of the task’s JSON schemas are explained in the
Methods section. The performances are calculatedwith an exactword-

Table 1 | Overview of approaches tested on the three materials information extraction tasks

Task Schema Training samples Task level Completion format

Doping Doping-JSON 413 sentences Sentence JSON

Doping Doping-English 413 sentences Sentence English sentences

Doping DopingExtra-English 413 sentences Sentence English sentences

MOFs MOF-JSON 507 abstracts Abstract JSON

General Materials General-JSON 634 abstracts Abstract JSON

All three tasks are tested with a JSON schema, and we additionally test the doping task with alternate schemas resembling written English. The MOF and general materials models are trained and
evaluated on abstracts, while doping tasks are evaluated on sentences.
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match basis, a lower-bound metric described in more detail in the
Methods section. Because this joint task involves both named-entity
recognition and relation extraction, it reflects both the NER and RE
performance of the models (a relation cannot be correctly identified if
the entities are not correct.) GPT-3 achieves the highest F1 scores for
theGeneral andMOF tasks across all the entity relationshipswe tested.
Exactmatch F1 scores for these two extraction tasks are generally ~30%
lower than in thehost-dopant task. The highestF1 for the general task is
found for relationships between formulae and applications (F1 = 0.537)
while formula-acronym and formula-description relationships are
much less reliable. A similar finding occurs for theMOF task, where the
name-application (F1 = 0.573) and name-guest species (F1 = 0.616)
relationships are extractedmost accurately. The Llama-2NERRE scores
are on average 20 − 30% lower than their GPT-3 counterparts, indi-
cating a significant advantage for GPT-3. In the dopant task, Llama-2
has the highest precision (0.836), recall (0.807), and F1 (0.821),
representing an improvement of 13% over GPT-3 wrt. F1.

The F1 scores for the general and MOF tasks in Table 2 are gen-
erally 0.3–0.6, which is, on first inspection, seemingly too low to be
useful for a large scale information extraction task. However, the
scores for the MOF and general tasks are subject to an important
caveat. These tasks’ annotations include implicit normalization (e.g.
“Lithium ion"→ “Li-ion") and error correction ("silcion"→ “silicon"),
while the doping task aims to extract hosts and dopants exactly as they
appear in text. Thus, the exact word-match basis scores shown above
are an approximate lower bound on information extraction perfor-
mance, since thismetric compares only exactmatches betweenwords.
When outputs of the general and MOF models are read by human
experts, it becomes obvious that the models are often extracting true
information with slight changes in phrasing or notation. There is also
an effect on performance from inherent ambiguity in real-world
information extraction tasks. For example, in MOF information
extraction, MOF names (e.g., “ZIF-8") are qualitatively easier to delimit
than descriptions (e.g., “mesostructuredMOFs formed by Cu2+ and 5-
hydroxy-1,3-benzenedicarboxylic acid"), which can be written with
many different wordings.

To account for these factors, we manually scored outputs against
the original human (true) annotations for a random 10% test set of the
general materials information extraction dataset. We calculated
“manual scores" by marking extractions as correct if the core infor-
mation from entities is extracted in the correct JSON object (i.e.,
grouped with the correctmaterial formula) and incorrect if they are in
the wrong JSON object, are not extracted at all, or are not plausibly
inferred from the original abstract. In contrast to the exact match

scores (Table 2), manual scores allow for flexibility with respect to
three aspects: (1) entity normalization, (2) error correction, and (3)
multiple plausible annotations of an entity under different labels (e.g.,
“thermoplastic elastomer" may be considered either an application or
description). Whereas Table 2 assesses whether the model can extract
pairs of words exactly as they appear in the true annotation, the
manual scores shown in Table 3 assess if themodel extracts equivalent
information to that of the true annotation - regardless of the exact
form. Simply, if a domain expert would agree the model’s extraction
and the true extraction are equivalent, the model’s extraction is
marked as correct. We provide precise details on this procedure in the
Methods section and detailed examples with explanations in Supple-
mentary Discussion 4.

Table 3 shows the adjusted scores based on manual scoring. We
stratify these scores by entity; the “name", “acronym", “application",
“structure", and “description" manual scores can be compared to
Table 2’s exact-match formula-{name, application, structure,
description} relation scores. For example, “description" reflects
how often the model extracts a description entity which is both
equivalent in meaning to that of the true annotation (according to a
domain expert) and is grouped in the correct JSON object (linked to
the correct formula). We see that exact-match scoring severely under-
predicts performance for materials’ names (0.456 vs 0.818), applica-
tions (0.537 vs 0.832), structures/phases (0.482 vs 0.829), and
descriptions (0.354 vs 0.704). Manual scoring reveals that our models
are actually able to correctly extract structured knowledge from sci-
entific text on a wide variety of materials science topics, and readers
can inspect the model’s output on test set examples (included in the
Supplementary Discussion 4) for themselves. We observe that

Table 2 | Namedentity recognition and relation extraction scores for three tasks inmaterials science usingmodelswith a JSON
output schema

Task Relation E.M. Precision
(GPT-3)

E.M. Recall
(GPT-3)

E.M. F1
(GPT-3)

E.M. Precision
(Llama-2)

E.M. Recall
(Llama-2)

E.M. F1 (Llama-2)

Doping host-dopant 0.772 0.684 0.726 0.836 0.807 0.821a

General formula-name 0.507 0.429 0.456 0.462 0.417 0.367

General formula-acronym 0.500 0.250 0.333 0.333 0.250 0.286

General formula-struc-
ture/phase

0.538 0.439 0.482 0.551 0.432 0.47

General formula-application 0.542 0.543 0.537 0.545 0.496 0.516

General formula-description 0.362 0.35 0.354 0.347 0.342 0.340

MOFs name-formula 0.425 0.688 0.483 0.460 0.454 0.276

MOFs name-guest specie 0.789 0.576 0.616 0.497 0.407 0.408

MOFs name-application 0.657 0.518 0.573 0.507 0.562 0.531

MOFs name-description 0.493 0.475 0.404 0.432 0.411 0.389

Exactmatch (E.M.) scores are evaluated on a per-word basis, and links are only correct if both entities and the relationship are correct. The exactmatchmetric scores output that contains the correct
information but is written differently as incorrect, making such scores a rough lower bound on the true performance of models. F1, precision, and recall reflect the scores on a hold out test set for
doping models and averages over five cross-validation sets for the general and MOF models.
aBest F1 scores for each task are shown in bold.

Table 3 | Manual scores for the general materials task using
GPT-3 with General-JSON schema

Entity Extraction recall Extraction
precision

Extraction F1

formula 0.943 0.943 0.943

name 0.692 1.0 0.818

acronym 0.667 0.400 0.500

applications 0.797 0.870 0.832

structure or phase 0.754 0.920 0.829

description 0.576 0.905 0.704

Scores measure the model’s ability to extract inter-related data together (i.e. assigning entities
correct labels and grouping them appropriately).
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acronyms have the lowest information extraction scores, which we
attribute to the fact that acronyms are relatively rare in the training
class compared to the others (appearing in only 52 abstracts across the
entire dataset, ~9% of the documents) and that the model can confuse
acronymswith chemical formulae (e.g., “AuNP" is the acronym for gold
nanoparticle but is also a valid chemical formula). Usually, context
clues are the only way to disambiguate cases like this, and we expect
includingmore training datawith acronymsmay improve the acronym
extraction score.

Overall, these scores indicate the model is highly capable at
extracting meaningfully complex representations of material knowl-
edge from passages. Precision scores for the various categories (other
than acronyms) are all roughly 0.87 or better, which indicates that
when information is extracted, it contains true relational information
from the passage rather than spurious connections.

The advantage of the LLM-NERRE method reflected in these
manual scores is the ability to automatically correct errors and nor-
malize common entity patterns.While the dopingmodels were trained
to extract snippets of text exactly as they appeared in the text prompt,
the General-JSON model’s training data included simple normal-
izations and error corrections of entities. For example, the erroneous
inclusion of white spaces in chemical formulae is common in the raw
abstract text. We observe that including corrected formulae instead of
the raw string in the output training sequences results in LLMs that
automatically resolve extracted entities to cleaner forms. For example,
“Li Co O2" is corrected to “LiCoO2" by the model without additional
post-processing. Similarly, because there are sufficient training
examples, the models using General-JSON schema resolve text such
as “PdO functionalized with platinum" to a normalized form such as
{formula: “PdO", description: ["Pt-functionalized"]}. The
built-in normalization and correction abilities of LLM models may
prove useful for domain specialists who desire structured entity for-
mats rather than exact string excerpts pulled directly from the text, as
entity normalization is a common post-processing task.

Effect of different schemas
For the host-dopant extraction task, we evaluated three different
output schemas to determine whether one format of output is exclu-
sively better than any other. The models using the Doping-English
schema output English sentences with a particular structure (e.g., “the
host ’<host entity>’ was doped with ’<dopant entity>’.") and the
DopingExtra-English models likewise output English sentences but
also includes some additional information (e.g., if one of the hosts is a
solid solution and/or the concentration of a particular dopant). For the
Doping-JSON schema,weused a JSONobject schemawith keys “hosts",
“dopants", and “hosts2dopants" (which in turn has a key-value object
as its corresponding value). For readers familiar with the Python pro-
gramming language, these are identical to python dictionary objects
with strings as keys and strings or other dictionaries as values. We
include a baseline comparison to seq2rel41, a comparable sequence-to-
sequence method, trained on the same doping dataset. We also com-
pare to MatBERT-Doping5, an NER model trained on ~450 abstracts,
combined with a simple heuristic for determining host-dopant rela-
tionships; that is, all hosts and dopants within the same sentence
(sample) are related.We refer to thismodel asMatBERT-Proximity. Full
descriptions and examples of all schemas are available in the Methods
section, and further details on seq2rel and MatBERT-Proximity are
available in Supplementary Notes 4–5. Because the general materials
information extraction and MOF information extraction tasks are far
more complex, we did not attempt to train models to output English
sentences (as opposed to JSON formatted strings), as the resulting
sequences would be difficult to parse into structured database entries.

We find that all three of our LLM-NERRE host-dopant extraction
models perform significantly better than either the MatBERT-
Proximity or seq2rel baseline models. Of the two baselines, the

seq2rel model achieves higher precision (0.420) and recall (0.605)
resulting in F1 = 0.496,which is slightly higher thanMatBERT-Proximity
(0.390) but substantially lower than any of the LLM-NERRE models.
This seq2rel benchmark model is derived from the PubMedBERT51

pretrained BERT model as per the original implementation41, and it
maybepossible to improve the seq2relmethodbyusing a BERTmodel
pretrained exclusively on materials text rather than biomedical text.
However, this improvement is not expected to be dramatic because
previous comparisons between SciBERT and MatBERT show relatively
minor differences in materials NER tasks5. We also observe that all
three LLM-NERREmodels exceed theperformance of the twobaselines
in pure NER performance (see Supplementary Discussion 2) despite
being trained on less text than theMatBERT-NERmodel (413 sentences
vs. 455 abstracts.) Of the six LLM-based models, the Llama-2 model
with Doping-JSON schema performs the best (F1 = 0.821) with GPT-3/
DopingExtra-English (F1 = 0.809) and Llama-2/Doping-English
(F1 = 0.814) both within a 2% margin. We summarize both LLMs' per-
formances with all three schemas alongside the baseline models in
Table 4.

Within the GPT-3 results, the DopingExtra-English and Doping-
English schemas have the highest F1. In particular, GPT-3/DopingExtra-
English tops the GPT-3 models despite being trained on the same
number of samples as the Doping-English and Doping-JSON models.
This is notable because GPT-3/DopingExtra-English is both more
accurate and more capable (i.e., this model extracts “results" and
“modifiers" entities in addition to host-dopant relationships) than the
GPT-3 models using other schemas. The opposite observation is true
of the Llama-2 models, where the JSON format outperforms both
English schemas and theDopingExtra-English schema suffers from low
precision (0.694). Roughly, the GPT-3 models tend to perform opti-
mally when using natural language like schemas, while Llama-2 per-
forms optimally using JSON.

Human-in-the-loop annotation
As a separate experiment, we evaluated the use of partially trained
LLMs in a “human-in-the-loop" annotation process for constructing
outputs with the GPT-3/General-JSON, as seen in Fig. 2. In each trial of
the experiment, the human annotator received 10 abstracts and
10 schemas that were pre-populated by an intermediate version of the
model which was trained on n samples of training data (n = 1, 10, 50,
100, 300). Instead of completing annotations from scratch, the human
annotator corrected these intermediate models’ suggestions, and the
time to complete each annotationwas recorded. As shown in Fig. 3, the
annotation time sharply decreases as the number of training samples
used in the intermediate models increases; the n = 300 intermediate
model was able to reduce the average annotation time per abstract by
57% in comparison with the n = 1 model, indicating that the model was
completing many sections of the annotation correctly.

At low numbers of training samples, the models’ predictions are
not valid JSON objects, and the annotator had to redo annotations
from scratch. At higher numbers of training samples, particularly those
above 50, the intermediatemodel predictions required very little error
correction from the annotator. As a lower bound, we also report the
time needed by the annotator to simply verify whether an entry was
entirely correct (verification time)which reflects the annotation rate of
a human annotator using a perfect model, which only requires the
human annotator to check the outputs. We find that by three metrics
(time per abstract, time per material entry, and time per prompt
token), the human annotator annotated substantially fasterwith awell-
trained model in the loop (n samples > 50) than with a poorly trained
model (n samples < 50) or no model. For example, the n = 300 model
reduced the annotation time per token ~60% compared to the n = 1
model and is only 38% slower than the verification time. Given addi-
tional training samples for intermediate models, we expect the anno-
tation to asymptotically approach the verification time. Thus, this
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methodmay serve as a useful tool for building even larger benchmark
datasets for information extraction tasks.

We note that the LLM-NERREmethod requires the model to learn
both the correct structure of the output data as well as the information
to populate into that data structure, particularly when asking the
model to output English sentences that can later be parsed to a
structured format. To determine the minimum number of training
examples required for models with sentence-format outputs that have
a parseable sentence structure, we trained intermediate models on
varying training set sizes for the GPT-3/Doping-English model. Preci-
sion, recall, and F1 scores as a function of training set size are plotted in
Fig. 4. We observe that output sequences are not properly structured
for training set sizes below ~10 samples, but there is a sharp increase in
the number of correctly structured outputs at ~20 samples, which
seems to be the minimum number of examples GPT-3 needs to learn a
desired output format when using simple sentence-type schemas.

Discussion
Overall, we find excellent performance on three diverse tasks for
materials science and engineering: solid-state impurity doping,
metal–organic frameworks, and general materials relations. The non-
technical nature of this approach implies scientists without NLP
training can utilize existing models such as GPT-3 to extract large
structured relational datasets for highly-specific problems. As the LLM
is treated essentially as a black-box, we anticipate this approach may
beused for LLMsother thanGPT-3 or Llama-2, including LLMs released
in the near future. We hope this approach enables domain specialists
to rapidly extract relational datasets for the advancement of scientific
knowledge.

The NERRE scores in Tables 2–4 provide a quantitative score for
performance, but some of the best features of this method are not
directly shown by F1 scores. The primary advantage of this method is
its accessibility and ease-of-use, as LLM-NERRE requires only

Fig. 3 | Annotation time as a function of intermediate large language model
(LLM) fine-tuning samples for the named entity recognition and relation
extraction (NERRE) method. We show the time taken for a domain expert to
annotate new abstracts for the general materials chemistry task with assistance

from intermediate (partially-trained) LLM-NERRE models on a (a) word basis, (b)
material entry basis, and (c) tokenbasis. Outputs frommodels trainedonmoredata
contain fewermistakes and require less time to correct. Sourcedata are providedas
a Source Data file.

Fig. 2 | Overview of the proposed sequence-to-sequence approach to
document-level joint named entity recognition and relationship
extraction task. In the first step, lists of JSON documents are prepared from
abstracts according to a predefined schema, and the large languagemodel (LLM) is
trained. In the second step, this preliminary (intermediate) model is used to
accelerate the preparation of additional training data by pre-annotation with the

partially trained model and manual correction. An example error is shown high-
lighted in red. This step may be repeated multiple times with each subsequent
partialfine-tuning improving inperformance. In the final step, the LLM is fine-tuned
on the completedataset andused for inference to extractdesired information from
new text.
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specifying a basic schema, annotating a minimal number of examples,
and fine-tuning a model via a publicly available API without extensive
NLP knowledge or hyperparameter tuning; the final result is a useful
model with the ability to extract specialized technical information that
is nuanced and semantically complex. Additionally, error correction
and normalization may be embedded directly into training examples
to reduce the need for post-processing. In essence, one can show an
LLM-NERRE model both what it should extract and how it can be
condensed and presented.

Like many others, we have found using a human-in-the-loop
process can help decrease the time required to collect a full training
set52. Our particular process is shown in Fig. 2. Annotation for scientific
information extraction tasks is often a tedious and error-proneprocess
whereas checking intermediate model outputs for errors is qualita-
tively easier than creating annotations from scratch. Additionally, fine
tuning GPT-3/Llama-2 requires fewer training examples to match or
exceed the performance of BERT-based models. Figure 4 shows how
performance of the fine-tuned models improves quickly at relatively
small training set sizes. However, more and more text-completion
pairs are required to achieve the same rate of improvement as training
set size is increased.

One limitation of our model is that valid output schema format-
ting is not rigorously enforced in the generation step. The LLM may,
for any given sample, output an unparsable sequence. This is parti-
cularly apparent when the inference token limit is less than 512 tokens
and the schema is JSON, as JSON schema typically requires a larger
number of tokens for correct formatting. For example, a nearly-correct
output sequence containing 10+ correct entities may be missing a “}"
ending character and thereforewill not be parsable. Outputs are nearly
always parsable (~99% success rate), especially as the number of
training examples increases. Failures predominantly occur when the
sample exceeds the prompt-completion token limit of the LLM (early
termination), which in this work was 512-1024 tokens for both GPT-3
and Llama-2. Because of this, some abstracts that are too long or too
densewith information to be processedwith thismethod. Thiswas the

case in the few unparseable completionswhere the passage and partial
completion exceed the token limit and cut off early before the full
completion could be output by the model. This limitation may be
mitigated by increasing the token limit up to 2048 (GPT-3) or 4096
(Llama-2); we expect the token limitationwill become less of a concern
as the maximum token size of such models increase.

Another limitation is the tendency of LLMs to generate or invent
information that is not actually present in the input text, a phenom-
enon termed “hallucination"53,54 in LLM literature. The main manifes-
tation of hallucination we observed was the addition of names or
chemical formulae for a material when only one or the other was
mentioned (for example writing “SiO2" in the formula field even
though the paragraph only mentions “silica"). Although these halluci-
nations could potentially be correct, because the source text does not
include them, we believe they should not be included in the output of
information extraction models. We could enforce this by the require-
ment that all extracted entities should occur word-for-word in the
source text, but the fact that these models do not extract phrases
exactly can also be a useful feature because it allows for automatic
entity normalization. For example, an abstract may mention both “p-
ZnSe dopedwithN" and “nitrogen-dopedZnSe" in the samepassage. Is
“dopedwithN" or “nitrogen-doped" the correct description to extract?
Clearly, both are correct and either one could be reasonably chosen.
Moreover, “N-doped" could also be extracted and would be factually
correct even though “N-doped" never occurs in the passage. Because
LLMs can learn implicit normalization rules, if the annotator is con-
sistent in how they normalize cases like this (such as always using “X-
doped" and/or “p(n)-type"), the model generally follows the same
normalization scheme and it can greatly reduce the amount of entity
normalization post-processing required later. We differentiate this
from hallucination in that the inference is fully justified by the content
in the source text rather than simply plausible.

Finally, the choice of LLM poses a practical tradeoff for
researchers: essentially, ease of use vs. control. Using a proprietary
LLM such as GPT-3 through an online API enables the LLM in our
method to be treated as a “black box", and abstracting away LLM fine-
tuning details allows researchers to focus entirely on their domain-
specific information extraction tasks. However, the underlying LLM is
exclusively controlled by a private entity, posing problems of

Table 4 | Comparison of large languagemodelswith different
joint named entity recognition and relation extraction
(NERRE) schemas to baseline models on host-dopant
extraction task

Model Schema Precision
(exact match)

Recall
(exact
match)

F1
(exact
match)

MatBERT-
Proximity

n/a 0.377 0.403 0.390

Seq2rel n/a 0.420 0.605 0.496

GPT-3 Doping-JSON 0.772 0.684 0.725

GPT-3 Doping-English 0.803 0.754 0.778

GPT-3 DopingExtra-
English

0.820 0.798 0.809

Llama-2 Doping-JSON 0.836a 0.807 0.821

Llama-2 Doping-English 0.787 0.842 0.814

Llama-2 DopingExtra-
English

0.694 0.815 0.750

NERRE exact match scores are evaluated on a per-word basis, and links are only correct if both
entities and relationship are correct. DopingExtra-English scores here refer to only host-dopant
relationprediction.Wenote that exactmatch scores output that contains thecorrect information
but is written differently as incorrect, making such scores an approximate lower bound on the
trueperformance ofmodels. F1, precision, and recall arecomputedonahold-out test set from77
sentences. Best scores for precision, recall, and F1 are shown in bold.
aBest scores among all models in each category (exact match precision, recall, F1) are shown
in bold.

Fig. 4 | Test set performance vs. number of training samples for the doping
extraction task using GPT-3 with the Doping-English schema. This schema
specifically requires themodel to learn a new and specific sentence structure to use
as the output. We separate scores by (a) host-dopant links (relations), (b) host
entities alone, and (c) dopant entities alone. We note that below approximately
10 samples, the scores are zero because the model has not learned the specific
structure of the desired output sentences. Source data are provided as a Source
Data file.
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reproducibility and security. Regarding security, potentially sensitive
or confidential data must be sent to the entity for processing;
regarding reproducibility, themodels cannot be shared, and the entity
controlling the LLMmay at any time change themodel, amend thefine-
tuning method, or revoke access to the model altogether. More, the
cost for inference on large datasets using trained models may be
prohibitive. In contrast, using self-hosted models such as Llama-231 or
GPT-NeoX 20B55 favors control over ease of use. The weights and code
for the model are fully accessible, and inference cost is restricted only
by the user’s budget on a cluster with capable GPUs. However, suc-
cessfully running, fine-tuning, and deploying LLMs such as Llama-2 on
cluster infrastructure is non-trivial for many scientists. Cloud-hosted
open-access models (e.g., Llama-2 hosted on a managed cloud
instance)mayprovide a solution to the ease of use vs. control tradeoff,
as the technical details offine-tuning are abstracted away fromtheuser
but the fine-tuned models themselves can remain open-access. Simi-
larly, zero-shot approaches without fine-tuning may make scientific
information extractionmoreaccessible at the expenseof accuracy (see
Supplementary Discussion 6). Methods for reducing the number of
parameters needed for LLM inference and fine-tuning56–59 are also a
promising avenue for reducing the complexity and cost of self-hosting
LLMs. As these methods advance and LLM codebases become more
mature, we expect fine-tunable models compatible with LLM-NERRE
will become simultaneously powerful, easy to self-host, reproducible,
and under researchers’ full control. We hope the code examples of
both fine-tuning and running inference using the published model
weights we provide in Methods are a first step in the direction of
powerful and open source NERRE models.

In summary, this workdemonstrates that LLMs that arefine-tuned
on a few hundred training examples are capable of extracting scientific
information from unstructured text and formatting the information in
user-defined schemas. This is in contrast to past models which were
successful in extracting entities from text but struggled to relate those
entities or structure them inmeaningfulways. Theproposedmethod is
simple and broadly accessible given the APIs and interfaces currently
available such as GPT-3. Furthermore, we havemade the Llama-2 LoRA
weights of all models shown in this paper available for download (see
Methods and Code Availability), allowing researchers to investigate
the LLM-NERRE method on their own hardware. We expect these
advancements to greatly facilitate the rate and accuracy by which
historical scientific text can be converted to structured forms.

Methods
General sequence-to-sequence NERRE
We fine-tune Llama-2 and GPT-3models to performNERRE tasks using
400−650 manually annotated text-extraction (prompt-completion)
pairs. Extractions contain the desired information formatted with a
predefined, consistent schema across all training examples. These
schemas can range in complexity from English sentences with pre-
defined sentence structures to lists of JSON objects or nested JSON
objects. In principle, many other potential schemas (e.g., YAML,
psuedocode) may also be valid, though we do not explore those here.
Oncefine-tunedon sufficient data adhering to the schema, amodelwill
be capable of performing the same information extraction task on new
text data with high accuracy. The model outputs completions in the
same schema as the training examples. We refer to this approach
generally as “LLM-NERRE".

Our general workflow for training GPT-3 and Llama-2 to perform
NERRE tasks is outlined in Fig. 2. Annotations are performed by human
domain experts to create an initial training set, and then a partially
trainedmodel (GPT-3) is used to accelerate the collection of additional
training examples. Fine-tuning is then performedon these examples to
produce a “partially trained" model, which is used to pre-fill annota-
tions that are subsequently corrected by the human annotator before
being added to the training set. Once a sufficient number of

annotations have been completed, the final fine-tuned model is cap-
able of extracting information in the desired format without human
correction. Optionally, as illustrated in Figs. 5 and 6, the structured
outputs may be further decoded and post-processed into hierarchical
knowledge graphs.

Task and schema design
Solid-state impurity doping schema. The Doping-English and
Doping-JSON schemas aim to extract two entity types (host and
dopant) and the relations between them (host-dopant), returned as
either English sentences or a list of one ormore JSONobjects.Hosts are
defined as the host crystal, sample, or material class along with crucial
descriptors in its immediate context (e.g., “ZnO2 nanoparticles",
“LiNbO3", “half-Heuslers"). Dopants are taken to be any elements or
ions that are minority species, intentionally added impurities, or spe-
cific point defects or charge carriers ("hole-doped", “S vacancies").One
host may be doped with more than one dopant (e.g., separate single-
doping or co-doping), or the same dopantmay be linked tomore than
one host material. There may also be many independent pairs of
dopant-host relations, often within a single sentence, or many unre-
lateddopants andhosts (no relations).We imposeno restrictionon the
number or structure of the dopant-host relations beyond that each
relation connects a host to a dopant. The Doping-JSON schema
represents the graph of relationships between hosts and dopants
within a single sentence, where unique keys identify dopant and host
strings. The model aims to learn this relatively loose schema during
fine-tuning. A separate key, “hosts2dopants", describes the pairwise
relations according to those unique keys. The Doping-English schema
encodes the entity relationships as quasi-natural language summaries.
The Doping-English schema represents the same information as the
Doping-JSON schema, but more closely mimics the natural language
pre-training distribution of the LLMs we tested. When there are mul-
tiple items to extract from the samesentence, theoutput sentences are
separated by newlines.

For the DopingExtra-English schema, we introduce two additional
entities: modifiers and result, without explicit linking (i.e., NER
only). The results entity represents formulae with algebra in the
stoichiometric coefficients such as AlxGa1−xAs, which are used for
experiments with samples from a range of compositions or crystalline
solid solutions (e.g., CaCu3−xCoxTi4O12). We also include stoichiome-
tries where the algebra is substituted (i.e., x value specified) and the
doped result is a specific composition (e.g., CaCu2.99Co0.1Ti4O12).
Modifiers are loosely bounded entity encapsulating other descriptors
of the dopant-host relationship not captured by dopant, host, or
result. These can be things like polarities (e.g., “n-type", “n-SnSe"),
dopant quantities (e.g., “5 at.%", “x < 0.3"), defect types (e.g., “sub-
stitutional", “antisite", “vacancy") and other modifiers of the host to
dopant relationship (e.g., “high-doping", “degenerately doped").
These entities (host, dopant, result, and modifiers) were chosen to
define a minimal effective schema for extracting basic doping
information.

All doping-related models are trained to work only on single
sentences. The main motivation for this design choice is that the vast
majority of dopant-related data can be found within single sentences,
and the remaining relational data is often difficult to resolve con-
sistently for both human annotators and models. We expand on pro-
blems with annotations and ambiguity in Supplementary Discussion 5
and we further explain the doping task schemas in Supplemen-
tary Note 1.

General materials information schema. In our previous work4,5, we
focused on NER for a specific set of entity types that are particularly
relevant in materials science: materials, applications, structure/phase
labels, synthesis methods, etc. However, we did not link these labeled
entities together to record their relations beyond a simple “bag-of-
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entities" approach. In this work, we train an LLM to perform a “general
materials information extraction" task that captures both entities and
the complex network of interactions between them.

The schema we have designed for this task encapsulates an
important subset of information about solid compounds and their
applications. Each entry in the list, a self-contained JSON document,
corresponds one-to-one with a material mentioned in the text. Mate-
rials entries are ordered by appearance in the text. The root of each

entry starts with a compound’s name and/or its chemical formula. If a
nameor formula is notmentioned for amaterial, no information about
that material is extracted from the text. We also extract acronyms
mentioned for a material’s name/formula, although in cases where
only an acronym ismentionedwedonot create amaterial entry for the
compound. Compounds that are not solids (ions, liquids, solvents,
solutions, etc) are generally not extracted. The name, formula, and
acronymfields are exclusively given string value in the JSONdocument

Fig. 6 | Diagrams of general information extraction and metal organic frame-
work (MOF) information extraction using large language models (LLMs) for
joint named entity and relation extraction (NERRE). In both panels, an LLM
trained using a particular schema (desired output structure, far left) is prompted
with raw text and produces a structured completion as JSON. This completion can
then be parsed to construct relational diagrams (far right). Each task uses a dif-
ferent schema representing the desired output text structure from the LLM.
a Schema and labeling example for the generalmaterials-chemistry extraction task.
Materials science research paper abstracts are passed to an LLM using General-

JSON schema, which outputs a list of JSON objects representing individualmaterial
entries ordered by appearance in the text. Eachmaterialmay have a name, formula,
acronym, descriptors, applications, and/or crystal structure/phase information.
b Schema and labeling example for the metal-organic frameworks extraction task.
Similar to the General-JSON model, the MOF-JSON model takes in full abstracts
from materials science research papers and outputs a list of JSON objects. In the
example, only MOF name and application were present in the passage, and both
MOFs (LaBTB and ZrPDA) are linked to both applications (luminescent and VOC
sensor).

Fig. 5 | Diagrams of doping information extraction using large language
models (LLMs) for joint named entity and relation extraction (NERRE). In all
three panels, an LLM trained to output a particular schema (far left) reads a raw text
prompt and outputs a structured completion in that schema. The structured
completion can then be parsed, decoded, and formatted to construct relational
diagrams (far right). We show an example for each schema (desired output struc-
ture). Parsing refers to the reading of the structured output, while decoding refers
to the programmatic (rule-based) conversion of that output into JSON form. Nor-
malization and postprocessing are programmatic steps which transform raw
strings (e.g., “Co+2") into structured entities with attributes (e.g., Element: Co,

Oxidation state +2). a Raw sentences are passed to the model with Doping-English
schema, which outputs newline-separated structured sentences that contain one
host and one ormoredopant entities.bRaw sentences are passed to amodel with
Doping-JSON schema, which outputs a nested JSON object. Each host entity has its
own key-value pair, as does each dopant entity. There is also a list of host2dopant
relations that links the corresponding dopant keys to each host key. c Example for
the extractionwith amodel using theDopingExtra-English schema. This first part of
the schema is the same as in a, but additional information is contained in doping

modifiers, and results-bearing sentences are included at the end of the schema.
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for each material whereas the description, structure_or_phase,
and applications fields are lists of an arbitrary number of strings.
We label this model General-JSON, and an example is shown in
Fig. 6 (a).

Description entities are defined as details about a compound’s
processing history, defects, modifications, or the sample’s morphol-
ogy. For example, consider the hypothetical text “Pt supported on
CeO2 nanoparticles infused with Nb...". In this case, the description
value for the material object referring to “Pt" might be annotated as
"['supported on CeO2']", and the description entities listed for
“CeO2" would be "['nanoparticles', 'Nb-doped']".

Structure_or_phase entities are defined as information that
directly implies the crystalline structure or symmetry of the com-
pound. Crystal systems such as “cubic" or “tetragonal", structure
names such as “rutile" or “NASICON", and spacegroups suchas “Fd3m"
or “space group No. 93" are all extracted in this field. We also include
any information about crystal unit cells, such as lattice parameters and
the angles between lattice vectors. “Amorphous" is also a valid struc-
ture/phase label.

Applications are defined as high-level use cases or major
property classes for the material. For example, a battery cathode
material may have "['Li-ion battery', 'cathode']" as its
applications entry. Generally, applications are mentioned in the order
they are presented in the text, except for certain cases such as battery
materials, in which case the type of device is generally mentioned
before the electrode type, and catalysts, where the reaction catalyzed
is generally listed following the “catalyst" entity in the list (e.-
g.,"['catalyst', 'hydrogenation of citral']").

More details about the general materials information task schema
are provided in the Supplementary Discussion 4.

Metal–organic framework (MOF) schema. The schema used for the
MOF cataloging task is based on the general materials information
schema described in the previous section, which was modified to
better suit the needsofMOF researchers.Wedeveloped this schema to
extract MOF names (name), an entity for which there is no widely
accepted standard60, and chemical formulae (formula), which form
the root of the document. If no name or formula is present, no infor-
mation is extracted for that instance. In addition, because there is a
great deal of interest in using MOFs for ion and gas separation61,62, we
extract guest species, which are chemical species that have been
incorporated, stored, or adsorbed in the MOF. We extract applica-
tions the MOF is being studied for as a list of strings (e.g., "['gas-
separation']" or "['heterogeneous catalyst', 'Diels-
Alder reactions']") as well as a relevant description for the
MOF, such as its morphology or processing history, similar to the
general information extraction schema. Entries in the list are generally
added in theorder thematerial names/formulae appear in the text. The
MOF extraction model is labeled MOF-JSON, and an example is shown
in Fig. 6 (b).

Comparison baselines and evaluation
To compare our model with other sequence-to-sequence approaches
to information extraction, we perform a benchmark of two methods
on the doping task to compare to the LLM-NERRE models. The first
employs the seq2rel method of Giorgi et al.41 for the host-dopant task.
We formatted host-dopant relationships under tags labeled @DOPANT@
and @BASEMAT@ (base/host material), with their relationship signified
by @DBR@ ("dopant-base material relationship"); these sequences were
constructed from the same training data as the Doping-JSON and
Doping-English models. We trained seq2rel to perform sentence-
level extraction with 30 epochs, batch size of 4, encoder learning rate
2 × 10−5, decoder learning rate 5 × 10−4, and pretrained BiomedNLP
BERT tokenizer51 (further training details can be found in the Supple-
mentary Note 4). Additionally, we compare against the previously

published MatBERT doping-NER model5 combined with proximity-
based heuristics for linking (see Supplementary Note 5). With this
method, a MatBERT NER model pretrained on ~50 million materials
science paragraphs and fine-tuned on 455 separate manually anno-
tated abstracts first extracts hosts and dopants and then links them if
they co-occur in the same sentence.

Datasets
Datasets were prepared from our database of more than 8 million
research paper abstracts63. Annotations were performed by human
annotators using a graphical user interface built using Jupyter64,
although in principle annotations could be conducted via a simple text
editor. To accelerate the collection of training data, new annotations
are collected via a “human in the loop" approach where models are
trained on small datasets and their outputs are used as starting points
and corrected by human annotators (see Fig. 2.) This process of
training and annotation is completedmultiple times until a sufficiently
large set of training data was achieved. Each dataset was annotated by
a single domain expert annotator. Class support for each annotated
dataset is provided in Supplementary Tables 1-3.

Doping dataset. Training and evaluation data was gathered from our
database of research paper abstracts using the keywords “n-type", “p-
type", “-dop", “-codop", “doped", “doping", and “dopant" (with exclu-
sions for common irrelevant keywords such as “-dopamine"), resulting
in ~375k total abstracts. All doping tasks were trained on text from 162
randomly selected abstracts, comprising 1215 total sentences and fil-
teredwith regular expressions to only include 413 relevant (potentially
including doping information) sentences. Doping tasks were tested on
an additional 232 sentences (77 relevant by regex) from a separate
holdout test set of 31 abstracts.

General materials dataset. Training and evaluation data was gathered
from our abstract database by using keywords for a variety of materials
properties and applications (e.g., “magnetic", “laser", “space group",
“ceramic", “fuel cell", “electrolytic", etc). For each keyword a materials
science domain expert annotated ~10–50 abstracts, which resulted in
≈650 entries manually annotated according to the general materials
information schema. Results were evaluated using a 10% random sam-
ple for validation, and this procedurewas averaged over five trials using
different random train/validation splits with no hyperparameter tuning.

Metal–organic framework dataset. Training and evaluation data was
selected from our database using the keywords “MOF", “MOFs",
“metal-organic framework", “metal organic framework", “ZIF", “ZIFs",
“porous coordination polymer", and “framework material", which
produced approximately 6,000 results likely containing MOF-related
information. From these, 507 abstracts were randomly selected and
annotated by a MOF domain expert. Results were evaluated using the
same repeated random split procedure as the general materials data-
set in the previous section.

GPT-3 fine tuning details
For all tasks, wefine-tuneGPT-3 (‘davinci’, 175Bparameters)26 using the
OpenAI API, which optimizes the cross-entropy loss on predicted
tokens. Doping models were trained for 7 epochs at a batch size of 1,
with inference temperature of 0 and output limited to a maximum
length of 512 tokens (all dopingmodels) or 1024 tokens (General-JSON,
MOF-JSON). The intermediatemodels shown in Fig. 4were trainedwith
a number of epochs depending on the number of training samples t: 2
epochs for 20≤t < 26, 4 epochs for 26 < t ≤ 27, and 7 epochs for t ≥ 28.
Models for the MOF and general materials extraction tasks were
trained for 4 epochs with a batch size of 1. We use a learning rate
multiplier of 0.1 and a prompt loss weight of 0.01 but have not per-
formed hyperparameter tuning for these hyperparameters. For all
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tasks, the start and end tokens used were "\n\n\n###\n\n\n" and
"\n\n\nEND\n\n\n".

Llama-2 fine-tuning details
Llama-231

fine-tunes were performed using a modified version of the
Meta ResearchLlama-2 recipes repository; themodified repository can
be found at https://github.com/lbnlp/nerre-llama. Llama-2 fine-tunes
were performed using the 70 billion parameter version of Llama-2
(llama-2-70b-hf) with quantization (8 bit precision). The number of
epochs was set to 7 for doping tasks and 4 for the MOF/general tasks.
Llama-2 fine-tunes used parameter efficient fine-tuning (PEFT) using
low rank adaptation (LoRA)58 with LoRA r = 8, α = 32 and LoRA dropout
of 0.05. Further hyperparameter tuning was not performed. Decoding
was done without sampling using greedy decoding to be consistent
with GPT-3 decoding setting of temperature = 0, withmax tokens = 512
for doping task and 1024 for general andMOF task.Moredetails on the
fine tuning and inference parameters are available in the modified
repository and Supplementary Note 3. All fine-tuning and inference
was performed on a single A100 (Ampere) tensor core GPU with
80GB VRAM.

The fine-tunedweights for eachmodel are provided in the NERRE-
Llama repository (url above) along with code and instructions for
downloading the weights, instantiating the models, and running
inference.

Evaluation criteria
The fuzzy and complexnatureof the entities and relationships detailed
in the previous section necessitates the use of several metrics for
scoring. We evaluate the performance of all models on two levels:
1. A relation F1 computedon a stringent exactword-matchbasis (i.e.,

how many words are correctly linked together exactly as they
appear in the source text prompt).

2. A holistic information extraction F1 based on manual inspection
by a domain expert, which doesn’t require words to match
exactly.

We separately provide a sequence-level error analysis in Supple-
mentary Note 7 and Supplementary Discussion 1.

NERRE performance. We measure NERRE performance as the ability
of the model to jointly recognize entities and the relationships
between them.

Exact word-match basis scoring
We score named entity relationships on a word-basis by first

converting an entity E into a set of constituent kwhitespace-separated
words E = {w1,w2,w3,…,wk}.When comparing two entities Etrue and Etest

that donot contain chemical formulae,we count thenumber of exactly
matching words in both sets as true positives (Etrue∩ Etest) and the
mathematical set differences between the sets as false positives
(Etest − Etrue) or false negatives (Etrue − Etest). For example, if the true entity
is “Bi2Te3 thin film" and the predicted entity is “Bi2Te3 film sample",
we record two true positive word exact matches ("Bi2Te3", “film"), one
false negative ("thin"), and one false positive ("sample"). Formula-type
entities are crucial for identifying materials, so in cases where entities
contain chemical formulae, Etest must contain all wi that can be
recognized as stoichiometries for any of wi∈ Etest to be considered
correct. For example, if the true entity is “Bi2Te3 thin film", and the
predicted entity is “thin film", we record three false negatives. Thus,
any formula-type entity (Doping host, Doping dopant, General
formula, andMOF mof_formula) containing a chemical composition
is entirely incorrect if the composition is not an exact match. This
choice of evaluation was made to avoid metrics measuring the per-
formance of the model in a misleading way. For example, “Bi2Te3
nanoparticles" and “Bi2Se3 nanoparticles" have very high similarities
via Jaro-Winkler (0.977) and character-level BLEU-4 (0.858), but these

two phrases mean entirely different things—the material’s chemistry is
wrong. Under our scoring system, they are recorded as entirely
incorrect because the compositions do not match.

We score relationships between entities on a word-by-word basis
to determine the number of correct relation triplets. Triplets are
3-tuples relating wordwn

j of an entity En to wordwm
k of an entity Em by

relationship r, represented as ðwn
j ,w

m
k ,rÞ. The total set of correct rela-

tionships Ttrue for a text contains many of these triplets. A test set of
relationships Ttest is evaluated by computing the number of triplets
found in both sets (Ttrue∩ Ttest) as true positives and the differences
between these sets as false positives (Ttest − Ttrue) or false negatives
(Ttrue − Ttest). Entity triplets are also bound to the same requirement for
composition correctness if either of the words in the triplet belong to
an formula-type entity (host, dopant, formula, mof_formula), i.e.,
we count all triplets for two entities as incorrect if the formula is not an
exact string match. With correct and incorrect triplets identified, F1
scores for each relation are calculated as:

precision =
No. of correct relations retrieved

No. of relations retrieved
ð1Þ

recall =
No. of correct relations retrieved

No. of relations in test set
ð2Þ

F1 =
2ðprecision � recallÞ
precision + recall

ð3Þ

To compute triplet scores across entire test sets in practice, we
first select a subset of relations to evaluate. We note that this is not a
full evaluation of the task we are training the model to perform, which
involves linkingmany interrelated entities simultaneously, but is rather
provided to help give a general sense of its performance compared to
other NERRE methods. For the doping task, we evaluate host-dopant
relationships. For the general materials and MOF tasks, we evaluate
relationships between the formula field (formula for general materi-
als, mof_formula for MOFs) and all other remaining fields. For
description, structure_or_phase, and applications fields, all
of whichmay containmultiple values, all of the possible formula-value
pairs are evaluated.

Manual evaluation
The metrics provided in prior sections demonstrate automatic

and relatively strict methods for scoring NERRE tasks, but the under-
lying capabilities of the LLM models are best shown with manual
evaluation. This is most apparent in the case of the General-JSON
model, where exact boundaries on entities are fuzzier, precise defini-
tions are difficult to universally define, and annotations include some
implicit entity normalization. For example, the text “Pd ions were
intercalated into mesoporous silica" may have equivalently have a
correct description field for the material “silica" including “Pd-
intercalated", “Pd ion-intercalated", “intercalated with Pd ions", etc.;
the exact choice of which particular string is used as the “correct"
answer is arbitrary.

To better address scoring of these fuzzy tasks, we introduce an
adjusted score based on a domain expert’s manual evaluation of
whether the information extracted is a valid representation of the
information actually contained in the passage. We term this adjusted
score “manual score"; it constitutes a basis for precision, recall, and F1
that quantifies the quality of overall information capture for cases
where there may be equivalent or multiple ways of representing the
same concept. This score was constructed to better estimate the per-
formance of our model for practical materials information
extraction tasks.

We score entities extracted by annotators but not present in the
model’s output as false negatives, except when reasonable variations
are present. The criteria for a true positive are as follows:
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1. The entity comes from the original passage or is a reasonable
variation of the entity in the passage (e.g., “silicon"⟶ “Si"). It is
not invented by the model.

2. The entity is a root entity or is groupedwith a valid root entity. For
the General-JSON model, a root entity is either a material’s
formula or name. If both are present, the formula is used at
the root.

3. The entity is in the correct field in the correct root entity’s group
(JSON object).

Manual scores are reported per-entity as if they were NER scores.
However, the requirements for a true positive implicitly include rela-
tional information, since an entity is only correct if is groupedwith the
correct root entity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used for this study are available at https://github.com/
LBNLP/NERREand via Zenodo65, which contains the annotated data-
sets and test and train splits. Intermediate files for each step of the
pipeline reported in this method are stored in this repository with
corresponding documentation. Data for running Llama-2 models are
available in the supplementary repository https://github.com/lbnlp/
nerre-llama66; LoRA weights for all Llama-2 models reported in this
paper can be downloaded directly from Figshare (https://doi.org/10.
6084/m9.figshare.24501331.v1)67. Source data are provided with
this paper.

Code availability
The code used for this study is available at https://github.com/LBNLP/
NERREand via Zenodo65 alongside the data. This code includes Jupyter
notebooks for annotation as well as Python scripts for annotation,
preprocessing, model training, and model evaluation on the train and
test sets presented in this publication. The supplementary repository
https://github.com/lbnlp/nerre-llama66 contains code and data for
fine-tuning and inference with Llama-2 models trained in this study,
including access to the complete sets of weights via a script.
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