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We present the Python Materials Genomics (pymatgen) library, a robust, open-source Python library for
materials analysis. A key enabler in high-throughput computational materials science efforts is a robust
set of software tools to perform initial setup for the calculations (e.g., generation of structures and nec-
essary input files) and post-calculation analysis to derive useful material properties from raw calculated
data. The pymatgen library aims to meet these needs by (1) defining core Python objects for materials

;\(Aeywqrtis: data representation, (2) providing a well-tested set of structure and thermodynamic analyses relevant
Prgt.:?ta s to many applications, and (3) establishing an open platform for researchers to collaboratively develop
De sJign sophisticated analyses of materials data obtained both from first principles calculations and experiments.

The pymatgen library also provides convenient tools to obtain useful materials data via the Materials Pro-
ject’s REpresentational State Transfer (REST) Application Programming Interface (API). As an example,
using pymatgen’s interface to the Materials Project’s RESTful API and phasediagram package, we demon-
strate how the phase and electrochemical stability of a recently synthesized material, Li,SnS,4, can be ana-
lyzed using a minimum of computing resources. We find that Li4SnS, is a stable phase in the Li-Sn-S
phase diagram (consistent with the fact that it can be synthesized), but the narrow range of lithium
chemical potentials for which it is predicted to be stable would suggest that it is not intrinsically stable
against typical electrodes used in lithium-ion batteries.

Thermodynamics
High-throughput

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

First principles calculations have the potential to greatly acceler-
ate the design and optimization of new materials. In the past dec-
ade, electronic structure calculation codes [1-4] have reached a
level of maturity such that it is now possible to reliably automate
and scale first principles calculations across any number of com-
pounds, subject only to the limits of available computing resources.
Indeed, there are currently several parallel initiatives that employ
high-throughput first principles calculations in materials design.
For example, the Materials Project [5] (http://www.materialspro-
ject.org) aims to calculate the properties of all known inorganic
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materials and make this data publicly available to the materials
community to accelerate innovation in materials research. The
Materials Project is based on the high-throughput framework
developed by Jain et al. [6] and subsequently extended by collabo-
rators at the Lawrence Berkeley Laboratory and National Energy
Research Scientific Computing Center (NERSC). This framework
has been used to screen over 80,000 inorganic compounds for a
variety of applications, including Li-ion and Na-ion batteries
[7-11]. Similarly, Curtarolo et al. [12] have developed the AFLOW
(Automatic Flow) software framework for high-throughput calcula-
tion of crystal structure properties of alloys, intermetallics and inor-
ganic compounds and applied it to the investigation of the effect of
structure on the stability of binary alloys [13] and superconductors
[14], and the search for topological insulators [15]. Yet another
example of high-throughput materials design can be found in the
CatApp developed by Hummelshoj et al. [16] which provides a
web application to access activation energies of elementary surface
reactions and is part of a larger database of surface reaction data
being developed under the Quantum Materials Informatics Project
(http://www.qmip.org). On the molecular front, the Clean Energy
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Project [17] uses high-throughput computational chemistry to look
for the best organic molecules for various applications, including or-
ganic semiconductors [18] and polymers for the membranes used in
fuel cells for electricity generation.

In this paper, we describe the Python Materials Genomics
(pymatgen) library, a robust, open-source Python library for mate-
rials analysis. A key enabler in high-throughput computational
materials science efforts is a robust set of software tools to perform
initial setup for calculations (e.g., generation of structures and nec-
essary input files) and post-calculation analysis to derive useful
material properties from raw calculated data. The aims of pymat-
gen are as follows:

1. Define core Python objects for materials data representation.

2. Provide a well-tested set of structure and thermodynamic anal-
ysis tools relevant to many applications.

3. Establish an open platform for researchers to collaboratively
develop sophisticated analyses of materials data obtained both
from first principles calculations and experiments.

The pymatgen library is currently used in the Materials Project
for structure generation, manipulation and thermodynamic analy-
sis. As such, it has been robustly tested over the large database of
compounds in the Materials Project database. However, it should
be noted that while the pymatgen library supports the Materials
Project, its is designed to be a standalone library, and most of its
analysis tools are flexible enough to be used by any materials
researcher with other electronic structure codes and sources of
data. The latest stable version of pymatgen (version 2.2.4 as of this
paper) can be obtained via the Python Package Index at http://py-
pi.python.org/pypi/pymatgen, while the “bleeding edge” develop-
mental version can be obtained from the official GitHub repo at
http://github.com/materialsproject/pymatgen.
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2. Overview of pymatgen

The pymatgen library is written in the Python programming
language, and leverages the large number of available standard
and scientific programming libraries, including the widely used
numpy and scipy libraries [19]. It is compatible with Python
version 2.7.x, but a transition to Python 3 is planned when the
necessary libraries become available. It is primarily based on the
object-oriented programming paradigm to facilitate code reuse
and ensure modularity in design. In terms of development, we
adopt a test-driven approach, and pymatgen includes unit tests
for all non-trivial classes and methods. We also place an emphasis
on clear and concise documentation, which is available at http://
materialsproject.github.com/pymatgen/.

Fig. 1 provides an overview of the pymatgen library. A typical
workflow would involve a user converting data (structure, calcula-
tions, etc.) from various sources (first principles calculations, crys-
tallographic and molecule input files, Materials Project, etc.) into
Python objects using pymatgen’s io packages, which are then used
to perform further structure manipulation or analyses. The pymat-
gen library is structured in modular Python packages. The main
packages are as follows:

1. The core package, as its name implies, provides the core defini-
tions of various objects used by the rest of the library. Core
objects include representations of elements in the periodic
table (Element class in the core.periodic_table module), periodic
lattices (Lattice in the core.lattice module), non-periodic and
periodic sites (Site and PeriodicSite classes in the core.structure
module respectively), molecules and structures (Molecule and
Structure classes in the core.structure module respectively)
and compositions (Composition class in the core.structure mod-
ule). The core objects encapsulates information relevant to
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Fig. 1. Overview of the pymatgen library. Text in italics represent names of Python packages, modules or classes.
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Fig. 2. Bandstructure of Fe,0s, plotted using data from the Materials Project and
pymatgen’s electronic_structure package. Up spins are in blue while down spins are
in red. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

many materials applications. For example, the Element class
includes useful properties such as electronegativity, atomic
numbers and atomic masses.

2. The electronic_structure package defines objects representing
various electronic structure analyses, including density of states
(electronic_structure.dos module) and bandstructures (elec-
tronic_structure.bandstructure module). Plotting capabilities for
these analyses are also provided using the matplotlib library
(see Fig. 2).

3. The entries package defines the basic ComputedEntry object (in
the computed_entries module) for performing analyses. The Com-
putedEntry object is essentially a flexible container for materials
information. At the most basic level, a ComputedEntry comprise
a composition and an energy, which are necessary for phase dia-
gram generation (using the phasediagram package) and calculat-
ing reaction energies (using the analysis.reaction_calculator
package). However, a ComputedEntry is designed to be flexible
enough to encompass any data of interest for a material, such
as its structure and spacegroup. The ComputedEntry object is
also designed to be agnostic to the source of the information,
e.g., the energy can be obtained from VASP [1], ABINIT [3,4] or
any other electronic structure calculation. A similar ExpEntry
object (in the exp_entries module) is also available as a container
for experimental thermochemical data to be used in analyses.

4. The io (input/output) package provides facilities to read and
write common structure and molecule file formats as well as
input and output files for various electronic structure codes.
Support for the commonly used Crystallographic Information
File (CIF) format is provided using the PyCifRW library [20],
and support for a large number of molecular file formats is sup-
ported via an adaptor to the OpenBabel library [21]. Among the
io modules for electronic structure codes, the vaspio module is
currently the most mature and supports most Vienna Ab initio
Simulation Package (VASP) [1] input and output files. VASP
input parameters based on those used in the Materials Project
as well as the originating MIT high-throughput project [6] are
provided in the vaspio_set module. Limited support is currently
available for Gaussian [2] input files as well, though we expect
this to improve considerably in future. In addition, pymatgen
also provides an adaptor (the aseio module) to provide conver-
sion between pymatgen’s Structure object and the Atoms object
used by the Atomic Simulation Environment (ASE) [22]. A trivial
use of the io package is for the conversion between various file
formats (e.g., converting CIF files to VASP POSCAR files). A more
powerful use is converting flat files into Python objects (such as

Structure or ComputedEntry), which can then be used for fur-
ther structure manipulation or analysis. The pymatgen library
is highly extensible in terms of electronic structure code sup-
port, and parsers for ABINIT and other first principles codes
are currently under development.

5. The serializers package implements customized modules for the
serialization of pymatgen objects. Serialization allows users to
save pymatgen objects easily for subsequent reuse. In pymat-
gen, most non-trivial objects implement a to_dict property,
which is a Python dictionary representation that can be serial-
ized in the lightweight JavaScript Object Notation (JSON) for-
mat, and a from_dict static method that regenerates that
object from a JSON representation. The JSON representation
can be easily stored on a user’s hard disk or inserted into a data-
base such as the MongoDB used by the Materials Project.

In addition to the above packages, several packages have been
implemented to aid structure manipulation and transformation
and to perform thermodynamic analyses. These packages are out-
lined in the following sections.

3. Compound generation and structure transformations

Pymatgen provides a powerful framework for performing com-
pound generation and structure transformations via the transfor-
mations package. A transformation is essentially a well-defined
algorithm for generating new compounds and structures from
existing structures. For example, a common approach to develop-
ing new materials from existing materials involve the substitution
of existing species in the structure for others. Users can, for in-
stance, use the data-mined substituted rules developed by Hautier
et al. [23] to obtain new materials. Such a manipulation can be per-
formed using the SubstitutionTransformation class in the transfor-
mations.standard_transformations module. Other supported
transformations include the partial or complete removal of a spe-
cies in a structure, ordering of disordered structures, and genera-
tion of supercells and primitive cells.

In addition, pymatgen also provides the facility to perform high-
throughput compound generation and electronic structure run
generation via the alchemy package. Using the alchemy package, a
developer can define a sequence of transformations to be applied
to a set of structures to generate a corresponding set of new
structures. The set of structures can be conveniently provided as a
directory of CIF files, VASP POSCAR files, etc. These structures can
then be output to the necessary input formats for electronic
structure calculations. Furthermore, the alchemy package provides
ameans to store the history of all transformations applied on a structure,
allowing one to trace back the origins of a new structure. The alchemy
package is currently used in the CrystalToolkit of the Materials
Project (http://www.materialsproject.org/apps/crystal_toolkit/) to per-
form structure manipulations with unlimited undo and redo
capabilities (see Fig. 3).

4. Analysis tools

The pymatgen library provides many tools for high-throughput,
automated assimilation of data from electronic structure calcula-
tions, and for subsequent analysis of the assimilated data.

4.1. Data assimilation and processing

The borg package can automatically traverse a directory tree to
search for calculations and assimilate calculation data, utilizing
multiple processors where available using Python’s multiprocess-
ing package. A predefined algorithm for converting VASP runs into
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(a) CrystalToolkit

(b) PhaseDiagramApp

Fig. 3. The CrystalToolkit and PhaseDiagramApp in the Materials Project, utilizing pymatgen’s alchemy and phasediagram packages respectively.

a list of ComputedEntry objects has been implemented. Computed-
Entry objects, which are essentially containers for calculated data,
serve as the basic unit for subsequent analysis.

Sometimes, some post-processing of the list of ComputedEntry
objects is necessary before they can be reliably used in analyses. In
the pymatgen library, the entries.compatibility module implements
the scheme for mixing energies calculated using different function-
als, in particular, those calculated using the generalized gradient
approximation (GGA) and the +U extension to it (GGA + U) [24-26]
as outlined by Jain et al. [27] While standard GGA is reasonably accu-
rate for calculating energy differences between delocalized states, it
generally fails when the degree of electronic localization varies
greatly between the products and reactants, such as in a redox reac-
tion [28]. For the latter, the addition of a Hubbard U parameter gen-
erally improves the accuracy of calculated reaction energies
considerably. The “mixing” scheme adjusts the GGA + U energies
using known experimental binary formation enthalpies in a way that
makes them compatible with GGA energies. In addition, it also ad-
justs the energy of well-known gaseous elements such as O, and
N to correct for well-known tendency of GGA to overbind such mol-
ecules [29]. Jain et al. demonstrated that this “mixing” scheme pro-
vides reasonably accurate results for formation enthalpies and phase
diagrams [27]. With some modifications, this module could be used
to combine energies obtained with any set of different functionals.

It should be noted that the set of pseudopotentials and Hubbard
U parameters used by the Materials Project are different from those
originally used by Jain et al.; the pseudopotentials used by the

Materials Project generally include more electrons in the valence
shell and the Hubbard U parameters have been fitted using the ap-
proach of Wang et al. [29] for this set of pseudopotentials. Thus, the
necessary “mixing” scheme corrections have been refitted for the
Materials Project parameter set. Two Compatibility classes, Materi-
alsProjectCompatibility and MITCompatibility, are provided, and it
is recommended that users use the appropriate class to process
their runs prior to other analyses. The Materials Project parameters
and corrections are provided in the Supplementary Information.

4.2. Calculating reactions

The analysis.reaction_calculator module provides classes for the
analysis of reactions, including reaction balancing and calculation
of reaction energies. A user can calculate reactions energies from
computed data (using ComputedEntry objects) or experimental
data (using ExpEntry objects). These features are currently used
in the ReactionCalculator of the Materials Project to provide calcu-
lated reaction energies and comparison of those energies with
experimental reaction energies where available.

4.3. Phase diagrams

The phasediagram package provides facilities to generate and
plot phase diagrams. The methodology and algorithms are based
on those developed by Ong et al. [30,31]. Both “standard”
compositional and grand canonical phase diagrams (representing
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phase equilibria in systems open to one or more components) are
supported. Phase diagrams representing the thermodynamic phase
equilibria of multicomponent systems reveal fundamental mate-
rial aspects regarding the processing and reactions of materials.
For example, two key considerations in designing a new material
are its stability and potential synthesis routes. By comparing a
new material’s energy relative to competing phases in the phase
diagram, a user can assess the new material’s phase stability and
the predicted phase equilibria at a particular composition.

The phasediagram package is currently used in the Phase Dia-
gram App of the Materials Project (see Fig. 3b) to generate phase
diagrams from calculated materials data. Currently, only 0 K phase
diagrams are available in the Materials Project as only energies are
available at this point.

5. Integration with the Materials Project RESTful API

One of the key impediments to materials design is the availabil-
ity of materials information. The Materials Project aims to meet this
need by providing open, public access to a large database of calcu-
lated data on known materials. Currently, there are several user-
friendly “apps” available on the Materials Project that use this data.
In order to reach a broader materials community, we have created
an application programming interface (API) based on a subset of the
principles of REpresentational State Transfer (REST) [32]. This APl is
known as the Materials API. Like the APIs of many well-known sites,
the Materials API uses some shared knowledge about the form and
semantics of URIs, as well as pre-determined media types, to reduce
the number of round-trips needed to discover and use the interface.
By convention, this deviation from the full set of requirements of a
REST API are indicated by the term “RESTful”. The Materials API al-
lows users to directly access Materials Project data via the Hyper-
text Transfer Protocol (HTTP), and provides a powerful way for
users to programmatically query for materials information instead
of relying on browser-based interfaces. We hope that this capability
to query the database directly spurs the creation of applications for
other materials properties and applications.

Under RESTful design, each object is represented as a unique re-
source and can be queried in a uniform manner. A RESTful HTTP
service exposes a consistent set of semantics that uses HTTP meth-
ods (GET, POST, PUT, DELETE, etc.) in conjunction with unique Uni-
form Resource Identifiers (URIs) to access the underlying
resources. This allows for the creation of an API using a combina-
tion of HTTP methods and URIs. For the purposes of the Materials
Project, this means that each object (such as a material) can be rep-
resented by a unique URI (e.g., http://www.materialsproject.org/
rest/v1/[unique-id]) and an HTTP verb can be used to act on that
object. In most cases, this action returns structured data that rep-
resents the object or the result of an operation against the object.
The JavaScript Object Notation (JSON) is used as the data inter-
change format to represent this structured data.

In conjunction with this beta release, the pymatgen library has
released the matproj package to provide a convenient set of tools
for users to obtain pymatgen objects and data via the Materials
API. For instance, users can obtain formation energies, calculated
VASP energies and calculation parameters for all database entries
with given formula. Users can also query the Materials Project’s
database of experimental thermochemistry data. In addition, users
can obtain pymatgen Structure and ComputedEntry objects, which
can serve as the starting point for further structure manipulation
or thermodynamic analysis.

6. Application example - phase stability of a new material

To illustrate the power of the pymatgen library, we will present
a practical example of how it can be used to determine the phase

stability of a new material. One of the main obstacles to perform-
ing phase stability analyses on new materials is that the phase sta-
bility of a particular material depends on its energy relative to that
of competing phases. Without relying on an external database of
pre-computed materials data, such an effort requires the materials
researcher to identify all competing phases of interest and invest a
fairly large amount of computational resources to calculating their
energies. For example, to determine the phase stability of a new
A:B,C, phase, the materials researcher needs to calculate the ener-
gies of all known A, B, C, A:B,, ACy, B, and A,B,C, phases. Using
pymatgen’s analysis tools and interface with the Materials API, this
can be accomplished with a minimal of computational resources.

We will use the example of Li;SnS4, a material of interest as a
lithium superionic conductor, which has been just recently synthe-
sized by Kaib et al. [33] LisSnS, is isostructural with LisGeSy4, a
well-known compound for which data is available in the Materials
Project. The structure of LiySnS, itself is currently not reported in
the Inorganic Crystal Database (ICSD) [34] or the Materials Project.
Using the Materials Project’s CrystalToolkit, we performed a Sn for
Ge substitution on Li,GeS,4, downloaded the necessary input files
based on the parameters used in the Materials Project and
performed first principles calculations using VASP to obtain the
ground state structure and energy for Li;SnSy.

We then combined the data from the LisSnS; VASP calculation
(assimilated using pymatgen’s borg package) with the data avail-
able on other Li-Sn-S phases in the Materials Project (using the
matproj.rest module) to generate the Li-Sn-S phase diagram shown
in Fig. 4 (see Supplementary Information for the code snippet used
to perform this analysis). We may observe that Li;SnS, is indeed
predicted to be stable in the Li-Sn-S phase diagram.

A slightly more advanced example is given in Fig. 5, where we
have plotted the Li-Sn-S phase diagram in the Li and S chemical
potential space. From Fig. 5, we may observe that Li,SnS, is stable
only over a narrow range of p; indicating that when used as an
electrolyte in a lithium-ion battery, this material will likely react
via lithium absorption at the anode and lithium desorption at the
cathode to form a solid electrolyte interphase [35]. In this example,
we have determined the phase stability of the newly-synthesized
LisSnS; compound by performing only a single first principles
ground state calculation and using pymatgen’s analysis tools and
interface to the Materials API. This determination would otherwise
have required the user to obtain all relevant crystal structure, gen-
erate the necessary input files, and perform first principles calcula-
tions on more than 30 structures (based on the number of Li-Sn-S
phases in the Materials Project), incurring significantly greater

Li

. \
S SnS, SnS Sn

Fig. 4. The Li-Sn-S phase diagram generated using a single Li4SnS, calculation and
data from the Materials Project using pymatgen’s borg, matproj and phasediagram
packages.
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Fig. 5. The chemical potential stability map for the Li-Sn-S system generated using
a single LiySnS4 calculation and data from the Materials Project using pymatgen’s
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energies of lithium and sulfur respectively. This map shows the ranges of 1y; and s
for which each phase is stable. Note that chemical potential values to the right of
the Li,S line (shaded in grey) are forbidden ranges.

computational expense. There is also significant time savings for
the user, in that he/she needs only to obtain initial candidate struc-
tures and perform calculations and analysis for the particular
phase he/she is interested in (Li;SnS,4), while querying the Materi-
als Project for pre-computed data for the other phases.

7. Conclusion

The Python Materials Genomics (pymatgen) library is a robust,
open-source python library for materials data analysis. By defining
core Python objects for materials data representation, providing a
well-tested set of structure and thermodynamic analysis tools rel-
evant to many materials applications, and establishing an open
platform for researchers to collaboratively develop sophisticated
analyses of materials data, the pymatgen library is a key enabler
of the Materials Project, powering several of the Project’s web appli-
cations. The pymatgen library also provides convenient tools to ob-
tain useful materials data via the Materials Project’s RESTful API
(Materials API). Using pymatgen’s interface to the Materials API
and phasediagram package, we demonstrate how the phase and
electrochemical stability of a recently synthesized material, Li4SnS,,
can be analyzed using a minimum of computing resources. We
hope that the open source dissemination of this library and the free
access to the Materials Project data will spur the creation of more
property apps that use computed data, and ultimately to a broader
impact of computational modeling on the materials community.
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