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The use of high-throughput density functional theory (DFT) calculations to screen for new materials and
conduct fundamental research presents an exciting opportunity for materials science and materials
innovation. High-throughput DFT typically involves computations on hundreds, thousands, or tens of
thousands of compounds, and such a change of scale requires new calculation and data management
methodologies. In this article, we describe aspects of the necessary data infrastructure for such projects
to handle data generation and data analysis in a scalable way. We discuss the problem of accurately com-
puting properties of compounds across diverse chemical spaces with a single exchange correlation func-
tional, and demonstrate that errors in the generalized gradient approximation are highly dependent on
chemical environment.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction band structure calculations [17]. Ortiz et al. screened about 22,000
The benefits of density functional theory (DFT) [1] calculations
in the design and optimization of new materials have now been
demonstrated across several research fields [2–7]. The scalability
of computations makes it possible – at least in principle – to make
predictions on thousands of compounds, and potentially for all
known inorganic materials. The objective of the ‘‘Materials Gen-
ome’’ project [8] described in this paper is to enable accelerated
materials discovery, and ultimately to develop a database of calcu-
lated properties and structural information on all known inorganic
compounds for the materials community. In this paper, we de-
scribe the calculation infrastructure used to compute some proper-
ties of approximately 80,000 compounds, encompassing the
majority of unique compounds in the inorganic crystal structure
database (ICSD) [9,10], as well as many newly predicted systems.
The number of calculations achievable is limited only by the pre-
vailing computing technology and resources. Subsets of calcula-
tions performed with this methodology have been applied to
structure prediction [11], screening of Hg sorbents [12], band gap
prediction [13], and battery design [14,15].

The potential benefits of automating and scaling computational
property predictions have been demonstrated in recent years by
several research groups. Curtarolo et al. investigated the effect of
structure on the stability of binary alloys using about 14,000 ener-
gies calculated from first principles [16]. More recently, Curtarolo
et al. presented an overview of technical issues in high-throughput
ll rights reserved.

: +1 617 258 6534.
materials to suggest new materials for radiation detectors [18].
Several smaller DFT studies, involving hundreds of materials, have
been performed by various research groups for catalysis and
hydrogen storage [19–24]. In addition, a small number of gen-
eral-purpose online electronic structure databases are now emerg-
ing [18,25–29], including a large (�81,000 DFT calculations) alloys
database by Munter et al. [30]. Given the rising interest in high-
throughput DFT, we describe in this paper some of the unique
challenges faced when scaling to high-throughput as well as tech-
niques to overcome these challenges.

Fig. 1 is the data flow diagram for this work, which we expect to
be typical of most high-throughput computational screening pro-
jects. Because high-throughput calculations inherently involve
generating, storing, and analyzing large amounts of data, a formal
data flow strategy is needed to manage data efficiently. Fig. 2 is a
visual overview of the technologies and techniques we used to
implement the abstract steps in the data flow diagram. In the
remaining sections, we examine each of the data flow stages in
more detail.
2. Data selection

In this paper, we do not focus on data selection for high-
throughput; however, several algorithms exist to optimize data
selection when screening materials for a particular application.
Many of these algorithms, such as tiered screening and evolution-
ary algorithms [37–46], have been outlined previously by Bligaard
et al. [47]. If the intent is to create a general-purpose database, one
additional approach is to compute compounds tabulated in a
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Fig. 1. Data flow diagram highlighting important steps in high-throughput com-
putational screening. An external crystal structure database contains atomic
positions and crystal parameters of known materials (either experimentally
determined or from previous calculations), which can be used as a starting point
for high-throughput screening. In the data selection phase interesting compounds
are selected for computational testing. As an example, compounds may be taken
directly from the external crystal structure database, or modified (e.g. via chemical
substitution) from previously computations to generate new candidate materials,
as discussed in Section 2. In the data generation phase, the structural data from the
data selection phase are transformed into appropriate DFT input parameters and
distributed over available computational resources. In the data storage step, the
raw output files from the computations are sent to an efficient data storage/
retrieval system (i.e., a database system). This internal database contains the results
of all computations and may also contain experimental data. In data analysis, the
user operates on a set of data to produce new information that may guide future
data selection.

Fig. 2. Data flow implementation in our high-throughput project. Data selection is larg
coded in Java [11,31,32]. The Java backend is used to create batches of DFT jobs. These job
structure two times and handles some aspects of job convergence. The batches of jobs a
converged using Perl [34] scripts. Completed jobs are entered into a PostgreSQL [35,36] d
(JDBC). A graphical front-end allows for data exploration and analysis, facilitating know
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commercially-available external database such as the ICSD [9,10]
or the Pauling File [48]. Because the materials in these databases
are generally characterized experimentally, one can be confident
that they can be synthesized. The computational space can further
be expanded by using analysis of existing compounds to predict
the existence of novel materials [11,31,32]. We have used a mix-
ture of external crystal data and the prediction of novel materials
to create our data set, having now computed most of the unique
elements, binaries, ternaries, and quaternary compounds in the
ICSD [9,10].

The search space accessible to high-throughput DFT calcula-
tions is presently limited to periodic unit cells containing up to
approximately 200 atoms to ensure that accurate total energies
can be obtained using reasonable computing time and memory re-
sources. At present, the limited cell size restricts, for example, the
degree of disorder that can be modeled for disordered/amorphous
materials and the compositional resolution that can be probed
when investigating doping or defect effects.
3. Data generation

After selecting compounds for computation, the next step in
high-throughput screening (Fig. 1) is the generation of ab initio
property data on these compounds. Although DFT calculations
are well suited for high-throughput due to their relatively small
number of adjustable parameters, automating DFT calculations is
not yet trivial. As we will discuss, DFT calculations require making
choices related to the accuracy of the computation, including the
choice of the exchange–correlation functional, pseudopotentials,
initial spin states, energy cutoffs, and k-point grid. In addition,
ely handled via researcher knowledge and crystal structure prediction algorithms
s are wrapped by the Automatic FLOW (AFLOW) [17] software, which optimizes each
re submitted to a Grid Engine [33] queuing system. Active jobs are monitored and

atabase, which interfaces with the Java backend through Java Database Connectivity
ledge extraction.
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numerical convergence must often be monitored and tuned
through choice of matrix diagonalization schemes, charge mixing
strategies, and k-space integration methods. High-throughput data
generation thus involves both theoretical problems regarding the
accurate treatment of diverse chemical systems and practical prob-
lems in attaining numerical convergence and monitoring DFT jobs.
We describe in this section first the theoretical aspects, and then
move to practical aspects of performing high-throughput DFT.
Our calculations were performed using the Vienna Ab Initio Simu-
lation Package (VASP) [49]; however, the vast majority of our dis-
cussion should be relevant for all DFT software.

3.1. Functional choice and +U correction

The Hohenberg–Kohn Theorem [1], which forms the foundation
for DFT, states that (i) all ground state properties of a system,
including the total energy, are some functional of the ground state
charge density; and (ii) the correct ground state charge density
minimizes the energy functional. In principle, this theorem implies
that the ground state for any system can be determined by varying
the charge density until the global minimum in the energy func-
tional is found. However, the true functional relating the charge
density to the energy is unknown. Much research in the DFT com-
munity is now focused on the development of approximate func-
tionals that accurately represent the true energy functional. The
different functionals, such as those based on the local density
approximation (LDA) [50] and the generalized gradient approxima-
tion (GGA) [51], generally differ in the way the exchange–correla-
tion component of the electron energy is treated. Although many
other functionals exist with varying accuracies, computational ex-
pense, and target chemistries, no known functional is universally
appropriate for all compounds and all materials properties. We
chose the GGA functional as parameterized by Perdew et al. [52]
as a good compromise between speed and accuracy when accurate
ground state energies are targeted. The GGA is known to overesti-
mate lattice constants (by an average of 0.076 Å in one test set of
40 semiconductors) [53], but is generally more accurate than
LDA in computing cohesive energies and bulk moduli [54,55].

One of the challenges in high-throughput DFT is to accurately
predict materials properties across wide chemical spaces that span
a range of electronic arrangements (e.g., delocalized, localized). For
example, both the LDA and GGA contain a spurious electron self-
interaction energy (SIE) that generally over-delocalizes electrons
Table 1
U values as fit using Wang et al.’s method [57]. All U values are for the d or
fit explicitly. We only employed a U correction for chemical systems whe
fluorides, and sulfides. Other chemical systems were run using conventi
determined by Wang et al. for oxides (last column) [57].

Element Environment U val

Ag Oxides/fluorides 1.5
Co Oxides/fluorides 3.4
Cr Oxides/fluorides 3.5
Cu Oxides/fluorides 4.0⁄

Fe Oxides/fluorides 4.0⁄

Fe Sulfides 1.9
Mn Oxides/fluorides 3.9
Mn Sulfides 2.5
Mo Oxides/fluorides 3.5
Nb Oxides/fluorides 1.5⁄

Ni Oxides/fluorides 6.0
Ti (All chemistries) 0.0
Re Oxides/fluorides 2.0⁄

Ta Oxides/fluorides 2.0⁄

V Oxides/fluorides 3.1
W Oxides/fluorides 4.0⁄

Y (All chemistries) 0.0
in localized states. The SIE can result in large error in calculated
reaction energies when electrons are transferred between delocal-
ized states (as in metallic bands) and localized states (as in d or f
orbitals in transition metal oxides) [56,57].

One method to address the SIE is the DFT + U framework [58],
which adds an energy correction term to (typically) the d or f orbi-
tals. There are several formulations of DFT + U. In this work, we use
the rotationally invariant form as proposed by Dudarev [59].
Although the magnitude of the U correction can be determined
self-consistently using a linear response scheme [56,60], a more
common method of determining this correction is by fitting to
some experimentally known quantity. We chose to use Wang
et al.’s method [57] of fitting the U parameter to experimental bin-
ary formation enthalpies, which is simple and accurately repro-
duces phase stabilities. We apply the U correction to d orbitals
only, and currently do not determine f electron U values; the full
list of U values used is described in Table 1. The application of U
is considered for oxides, fluorides, and sulfides, for which electron
localization is particularly a problem. The choice of systems to
which we apply U was largely determined by our experience and
by systematic benchmarking [56,61–66]. All chemistries not listed
in Table 1 are calculated without U, i.e., with the conventional GGA
approach.

One disadvantage to the GGA + U framework is that energies
from this technique cannot be directly compared with energies cal-
culated using GGA. Our strategy to address this issue is to break
down reaction energies into component reactions into one of three
categories: (i) well-represented in GGA, (ii) well-represented in
GGA + U, or (iii) binary reactions that produce systems with local-
ized states (e.g., oxides, fluorides) from systems with delocalized
electrons (such as elemental metals). The idea is that the last reac-
tion is the source of the incompatibility between the GGA and
GGA + U, and we can accurately bridge GGA and GGA + U calcula-
tions by using experimental formation enthalpies for these
reactions.

Finally, we note that functionals that reduce the self-interaction
error present in GGA might avoid the issue of mixing two theoret-
ical frameworks. Hybrid functionals [67–70] are one such option
and have been demonstrated to achieve good redox energies, tran-
sition metal oxide formation energies, and band gaps without the
need for an adjustable U parameter [53,71]. However, they are at
present too computationally expensive to be used on a large scale,
and recent evidence indicates that they do not resolve some issues
bitals. Values marked with an asterisk are hypothesized and were not
re we expect a large degree of electron localization, i.e., the oxides,

onal GGA. Our U values are shown alongside the values previously

ue (eV) U value reported by Wang et al. [57]
(eV) (various reactions, oxides)

3.3
3.5
4.0⁄

3.9, 4.1

3.5, 3.8, 4.0⁄

6.4

3.0, 3.1, 3.3



Fig. 3. Distribution of energy (DE) and cell volume (DV) differences computed
using the ‘‘default’’ parameter set for convergence and the ‘‘increased k-point’’
parameter set (see text for details). The majority of compounds show close
agreement between the two parameter sets (energies are within 5 meV/atom or
less and volumes within 2.5%). We find two broad classes of disagreement:
materials whose energies are in agreement but volumes are not, and vice versa.
Examining the most egregious of these disagreements indicates that energy
differences are likely to be related to the size of the k-point mesh, and volume
differences are related to the convergence cutoff (see text and Table 3 for additional
details).
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with phase stability in oxide mixtures [72]. The development of an
efficient exchange–correlation functional that can deal with metal-
lic and localized states in a consistent manner would greatly facil-
itate high-throughput searches through diverse chemical spaces.

3.2. Pseudopotentials, basis sets, and k-point meshes

DFT wavefunctions are expanded in a set of basis functions; for
periodic solids, this basis set typically comprises plane waves.
Although the computational accuracy increases with the number
of plane waves in the basis set, so does the computational expense.
In particular, accurately modeling the rapid changes in the wave-
function near core electrons requires large basis sets. It is often
possible to obtain results with comparable accuracy using much
smaller basis sets by using a pseudopotential to reproduce the
behavior of core electrons in each element, explicitly modeling
only valence or semi-core electrons [73–75]. As with the exchange
correlation functional, many types of pseudopotentials are avail-
able. We chose the projected-augmented-wave (PAW) method
[76,77], which can accurately reproduce the nodes in the core re-
gion of the valence wavefunctions while retaining small basis sets.
For some elements with shallow semi�core states, we chose a ver-
sion of the pseudopotential that explicitly solves a greater number
of electrons, treating fewer electrons as core.

Calculation accuracy also depends on the number and choice of
k-points used for Brillouin zone integrations. The standard method
for converging DFT calculations is to increase the energy cutoff (or
k-point density) until the result of interest no longer changes sig-
nificantly with further parameter increases. When the energies of
multiple compounds are being compared (such as when evaluating
formation enthalpies), the standard procedure is to use the highest
k-point density and energy cutoff of all compounds to eliminate
systematic errors.

In a high-throughput project, this standard method of k-point
convergence is impractical for multiple reasons. First, rigorously
converging each of thousands of compounds requires considerable
computational resources and complicates the data infrastructure.
In addition, it does not remove the problem of systematic errors.
Because compounds are calculated a priori, i.e., before one knows
how their properties will be combined, the computed properties
may have errors relating to different energy cutoffs and k-point
densities within the set of compounds. More importantly, conver-
gence is typically performed with regard to a particular computa-
tional property, such as final energy, position of the d-band center,
or band gap. For a general-purpose database, the property of inter-
est will not be known in advance, and there is no universal way to
specify a convergence criterion.

The alternative approach we have adopted is to perform conver-
gence calculations only after identifying a material and a property
of interest. Materials are thus initially run with a ‘‘default’’ set of
parameters that are likely to converge the total energy relatively
well but that are unlikely to converge many other properties (such
as band structure). We set the ‘‘default’’ energy cutoff to 1.3 times
the maximum energy cutoff specified by pseudopotential [78]. We
use a ‘‘default’’ k-point grid of (500)/n points, where n represents
the number of atoms in the unit cell, distributed as uniformly as
possible in k-space. A Gamma-centered grid is used for hexagonal
cells, and a Monkhorst–Pack grid [79] for all other cells. We set the
‘‘default’’ electronic energy difference required for convergence to
n � 5 � 10�5 eV, and the energy difference required for ionic con-
vergence to 10 times the electronic energy difference (n � 5 �
10�4 eV).

To test if our relatively sparse k-point grids and somewhat loose
electronic/ionic energy cutoffs produce reasonable total energies,
we calculated 182 chemically diverse compounds with two sets
of parameters:
(a) Our ‘‘default’’ parameters, as specified above.
(b) ‘‘Accurate’’ parameters, where the electronic energy differ-

ence and ionic energy differences for convergence were
tightened to a constant value (5 � 10�7 eV for electronic
convergence, 5 � 10�5 eV for ionic convergence), and a finer
k-point mesh equal to (5000)/number of atoms in the unit
cell was used.

Full ionic and electronic convergence was achieved starting
from experimental lattice constants in the ICSD [9,10] for both
the ‘‘default’’ and ‘‘accurate’’ parameters.

The results of our calculations are tabulated in Table A1 in the
Appendix. We summarize these results in Fig. 3. In most cases,
the ‘‘default’’ parameter set produces energies and cell volumes
that are very close to the much more expensive ‘‘accurate’’ param-
eter set. The majority of compounds (�71%) show less than a
5 meV/atom difference in energy and less than a 2.5% difference
in cell volume (Table 2) between the two parameter sets. Almost
all compounds (�96%) are within a 15 meV/atom difference in
energy and a 7.5% difference in cell volume (Table 2). From these
results, we expect that the ‘‘default’’ parameters should be reason-
ably sufficient for screening purposes in applications for which
energetics and structural details are targeted. However, screening
applications that are particularly sensitive to small differences in
energy or cell volume may benefit from using the ‘‘accurate’’ input
parameters exclusively. In addition, we suggest that promising re-
sults be re-run with accurate input parameters after initial
screening.

In a small number of compounds (�4%), we find that results
from the two parameter sets differ by over 15 meV/atom in energy
or by more than 7.5% in cell volume. We find that these disagree-
ments fall roughly into two classes. The first class encompasses
compounds for which the energies obtained with the two parame-
ter sets are in fairly good agreement, but the cell volumes are



Table 2
Summary of differences in results using ‘‘default’’ and ‘‘accurate’’ parameters. More detailed results are presented in Fig. 3 and in Table A1 in the Appendix. When comparing
parameter sets, the majority of compounds (�71%) show very similar energies (<5 meV/atom difference) and very similar volume (<2.5% difference). However, almost 4% of
compounds show fairly large disagreement of either over 15 meV/atom in energy or over 7.5% in cell volume. More information on these compounds can be found in Table 3.

Difference between ‘‘default’’ and ‘‘accurate’’ parameter sets Number of compounds Percent of compounds (%)

<5 meV/atom energy difference, <2.5% volume difference 130 71.4
<10 meV/atom energy difference, <5% volume difference 157 86.3
<15 meV/atom energy difference, <7.5% volume difference 175 96.2

Total compounds 182 100

Table 3
Compounds for which ‘‘default’’ and ‘‘accurate’’ parameters show large (>15 meV/atom or >7.5% cell volume) differences. The ‘‘tight’’ parameters employ the k-point mesh of the
‘‘default’’ parameters (500/atom) with the convergence criteria of the ‘‘accurate’’ parameters (5 � 10�7 eV for electronic convergence, 5 � 10�5 eV for ionic convergence). In cases
where the ‘‘default’’ parameters show large disagreements in cell volume, but fairly good agreement in energy (MoCl5, Mo(CO)6, TiBr4), the ‘‘tight’’ parameters reasonably
reproduce the ‘‘accurate’’ parameters. However, in other cases, a large k-point mesh is needed to obtain accurate energies. In Cu2S, the difference in energy between the ‘‘default’’
and ‘‘accurate’’ parameters is related to small atom rearrangements that can be modeled using the ‘‘tight’’ parameters.

Compound Cell volume (Å3),
‘‘default’’ parameters

Cell volume (Å3),
‘‘tight’’ parameters

Cell volume (Å3),
‘‘accurate’’ parameters

Energy (eV/atom),
‘‘default’’ parameters

Energy (eV/atom),
‘‘tight’’ parameters

Energy (eV/atom),
‘‘accurate’’ parameters

MoCl5 1024.75 1112.03 1113.51 �4.135 �4.138 �4.138
Mo(CO)6 913.27 990.16 995.99 �7.754 �7.758 �7.758
TiBr4 1613.71 1815.48 1825.56 �4.068 �4.074 �4.074
TiB2 25.75 25.71 25.70 �8.070 �8.070 �8.085
Mo2B 73.03 72.97 73.08 �9.869 �9.869 �9.853
Zn 29.42 29.43 30.71 �1.242 �1.241 �1.267
Cu2S 180.08 179.24 179.63 �3.956 �3.985 �3.985

A. Jain et al. / Computational Materials Science 50 (2011) 2295–2310 2299
largely in error. In Fig. 3, we have labeled MoCl5, Mo(CO)6, and
TiBr4 as compounds in this class. We find that in these compounds,
the results can be greatly improved by using the tighter conver-
gence cutoffs in the ‘‘accurate’’ parameters (5 � 10�7 eV for elec-
tronic convergence, 5 � 10�5 eV for ionic convergence), but
without changing the k-point density (Table 3). These results sug-
gest that if accurate cell volumes are targeted, tight convergence
parameters may be more important than large k-point meshes. A
second class of compounds shows large differences in energy be-
tween parameter sets but with similar cell volumes. In Fig. 3, we
have labeled TiB2, Mo2B, Zn, and Cu2S as compounds in this class.
With the exception of Cu2S, we find that simply increasing the con-
vergence cutoffs do not significantly improve the ‘‘default’’ results
for these materials (Table 3). We expect instead that these materi-
als have somewhat complex Fermi surfaces for which large k-point
meshes are necessary for accurate energy integration. For Cu2S, we
find somewhat anomalous behavior in that the energy difference is
largely due to small atom rearrangements when running with
higher convergence cutoffs. In this sense, Cu2S behaves more like
MoCl5, Mo(CO)6, and TiBr4 in which improvements to the conver-
gence cutoff are more important than the k-point mesh (Table 3).
3.3. Spin state and magnetic ordering

Spin state and magnetic ordering pose further challenges for
high-throughput DFT. The true ground state is the global minimum
of the energy functional, but current DFT codes typically only find
local minima within this landscape. Hence, DFT calculations often
do not converge to the correct spin state or the correct magnetic
ordering unless they are initialized near that state. To obtain a
magnetic ground state, one must in practice compute many initial-
izations of magnetic ordering and treat the lowest-energy result as
the ground state.

Although it is possible that automated magnetic ground state
searches could be scaled to high-throughput, we have thus far
found it to be computationally prohibitive to search for the correct
magnetic state for all compounds. Instead, we initialize all ions
that can be magnetic (Ag, Au, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe,
Gd, Hf, Hg, Ho, Ir, La, Lu, Mn, Mo, Nb, Nd, Ni, Os, Pa, Pd, Pm, Pr,
Pt, Re, Rh, Ru, Sc, Sm, Ta, Tb, Tc, Th, Ti, Tm, U, V, W, Y, Yb, Zn, Zr)
in our compounds ferromagnetically with high-spin, relying on
the minimization algorithm to converge the magnetic ground
state. Unfortunately, this strategy does not always find low-spin
states correctly; for example, LiCoO2 is known to contain low-spin
Co3+ [80], but when initialized ferromagnetically, our calculations
maintain Co3+ as high-spin. Initializing the LiCoO2 calculation with
a low-spin configuration correctly reproduces Co3+ low-spin as the
lower-energy state.

To compromise between speed and accuracy, we initialize both
high- and low-spin calculations for several ions that are known to
often display low-spin configurations. These ions currently include
Co-containing oxides (Co3+ in octahedral environments, for exam-
ple, is well-known to be low-spin in several compounds due to a d6

electron configuration [81]) and Mn, Fe, Cr, and Co-containing sul-
fides. As this list is not exhaustive, additional ions may be added in
the future. While this strategy doubles the number of calculations
performed for these compounds, it increases the possibility of find-
ing the correct spin ground state. In general, we do not find antifer-
romagnetic states with this strategy. The energy penalty in
incorrectly specifying the magnetic state depends heavily on the
chemical system. As an example, the difference between antiferro-
magnetic and ferromagnetic energies in the lithium metal phos-
phates was found to be about 10–60 meV per transition metal by
Zhou et al. [63]. However, other chemical systems may be more
sensitive to magnetic ordering.
3.4. Convergence to the electronic ground state and error handling

In practice, the electronic ground state is solved via the Kohn–
Sham formulation of DFT [50]. This formulation maps the physical
system of interacting electrons to a new system of non-interacting
electrons under an external potential (the Kohn–Sham Hamilto-
nian) that yields a solution charge density identical to the
original interacting system. We follow the conventional iterative
approach, which first chooses a trial charge density and initial
wave function, and then iteratively improves these quantities until
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a self-consistent solution is reached. An excellent and detailed
discussion on these topics has been compiled by Kresse and
Furthmuller [49]. The challenge in high-throughput DFT is to
choose an algorithm that efficiently, correctly, and reliably carries
out this procedure for many thousands of compounds without user
intervention.

The numerical convergence to the ground state is affected, for
example, by the choice of matrix diagonalization scheme used to
solve for the wavefunctions, the charge mixing strategy, and the
method of performing numerical integration of the energy over a
finite k-point grid. While simple systems often converge rapidly
and effectively using preset minimization algorithms and parame-
ters found in modern electronic structure codes, difficult systems
often require such parameters to be tweaked by the researcher
to converge in reasonable time frames and with available memory.
In high-throughput DFT, where hundreds or thousands of jobs are
executed simultaneously, manual intervention in job convergence
is rarely possible. We have therefore developed scripts coded in the
Perl language [34] to monitor errors and adjust convergence
parameters accordingly.

We describe our default convergence settings and some of the
automated changes that are triggered when the electronic struc-
ture code fails to converge or produces an error. As the diagnosis
and solution to some errors are specific to the electronic structure
code used (and even specific to different versions of the same soft-
ware), we will not discuss all errors, but instead focus on errors
common across several software implementations of DFT.

For our default Hamiltonian matrix diagonalization algorithm,
we use a built-in routine in VASP that uses the blocked Davidson
approach [82] for the first few iterations, and then switches to
the residual minimization method-direct inversion in the iterative
subspace (RMM-DIIS) method [83,84]. Such a scheme is attractive
because RMM-DIIS is known to be quite fast, but it requires good
initial wavefunctions to converge to the correct ground state
[49,78]; the initial iterations of the blocked Davidson method ide-
ally generate a reliable wave function to pass into the RMM-DIIS
method. However, this mixed scheme can still sometimes converge
extremely slowly. Our algorithm therefore switches to a pure
blocked Davidson approach, which is generally more reliable, if
the electronic ground state is not found after 100 iterations.

As suggested in VASP 5.2 [78], we use as our default charge mix-
ing strategy a Pulay mixer [84] that combines the input charge
densities from all previous iterations in a manner that minimizes
their residual vectors while conserving the number of electrons
in the system. To further aid in convergence, the charge densities
are preconditioned to dampen charge density changes at small
wavevectors according to a scheme proposed by Kerker [85].
Although the magnitude of this preconditioning can be varied, re-
sults from Kresse and Furthmuller [49] indicate that the conver-
gence behavior is quite good over a range of values. However, for
slabs, magnetic systems, and molecules, the mixing parameters
may need to be tuned [49,86]. When convergence problems are
encountered, our algorithm sets the Kerker cutoff wave vector to
0.001 (in effect leading to a ‘‘linear mixing scheme’’) and multiplies
the mixing parameter by the mean eigenvalue [78] to obtain more
reliable mixing.

Finally, convergence is affected by the method used for numer-
ical integration of the band structure energy over k space with a fi-
nite k-point mesh. By default, we employ the tetrahedron method,
which linearly interpolates energies between calculated k-points,
along with Blöchl’s corrections [87] that both simplify the imple-
mentation of this technique and correct quadratic errors. Although
the tetrahedron method converges quickly with respect to the
number of k-points [49,77], it can fail for a small number of
k-points and may require large meshes for metals and small-gap
insulators where the Fermi surface separating occupied and unoc-
cupied orbitals is complex and discontinuous. Therefore, when the
VASP software reports that it cannot determine the Fermi level
accurately by the tetrahedron method, we switched to a Gaussian
smearing method that smoothens the discontinuity in the Fermi
function at zero temperature.

Our software also handles many additional convergence issues
and job errors that are specific to the electronic structure software
employed. We do not discuss these errors here, and instead plan in
the future to release open source versions of our job control scripts.
4. Data storage and retrieval

Data storage and retrieval require dedicated attention when
scaling up to a high-throughput project. A well-designed architec-
ture for data storage allows researchers to explore large amounts
of data intuitively and naturally, greatly enhancing the possibility
of finding new and interesting compounds for an application or
discovering scientific trends in the data.

Many relational database systems for data storage are now
available to researchers. These include, for example, MySQL [88]
and PostgreSQL [35,36], which are free of charge, and commercial
database systems such as Sybase [89] and Oracle [90]. Relational
databases have the capability to store data compactly and effi-
ciently query data, making them a good option for data storage
in high-throughput projects. Such databases can also interface
with many popular programming languages. In our high-through-
put project, we chose the free relational database system Post-
greSQL and interfaced it with a Java codebase using Java
Database Connectivity (JDBC).

Considerable effort is involved in the setup and maintenance of
a database system for storing and managing ab initio calculations.
To design a relational database, the relevant data for storage
needs to be identified, split into atomic pieces, and the relations
between these individual pieces must be determined. Next, a
database blueprint, or schema, must be designed to minimize
redundant information while optimizing query and database
insertion speeds. Several standards and techniques, such as the
Atomicity, Consistency, Isolation, Durability (ACID) guidelines
[91], database normalization [92], and E�R diagrams [93] can
aid in database design.

While we do not discuss database architecture extensively in
this paper, we present in Fig. 4 a portion of our database schema
for storing periodic crystal structures. The aim of this schema is
to minimize redundant information by compartmentalizing infor-
mation into multiple tables. For example, the Elements table con-
tains basic properties of the elements (symbol, mass, atomic
number, common valences); each element is defined only once in
this table. Because the Elements table links to sites of our crystal
structures stored in the Site table (‘joins’ to the Site table, in this
case indirectly through the Species table), the basic element infor-
mation is automatically stored within each crystal structure. This
relational structure makes it possible, for example, to search for
all crystal structures containing an element with an atomic mass
greater than a specified value without individually storing the
atomic masses associated with each crystal structure. Compart-
mentalizing data into several tables thereby minimizes redun-
dancy, leading to more compact data storage and less potential
for error during data updates.

However, because table joins can slow query performance, a
relational database may need to balance query speed and data
compactness. In Fig. 4, the Element table and Entry table are sepa-
rated by four joins (through Structure, Site, Species, and finally Ele-
ments), which leads to somewhat slow performance when
searching for entries containing particular elements (even after
indexing). Because this is a very common query, we have created



Fig. 4. Basic database schema for storing periodic crystal structures. Black connections indicate table joins, and a forked end indicates a one-to-many relation. Primary keys
are indicated by (PK), and foreign keys are indicated by (FK). The Entry table contains basic chemical information about the entry, such as the chemical formula, the number of
unique elements in the entry, and the chemical system (e.g., ‘‘Li–O–P’’). An entry is not required to have a crystal structure; for example, in some experimental data the XRD
pattern is known but the structure has not yet been refined. For entries where the crystal structure is known, the Structure table stores the lattice vectors and cell angles, along
with somewhat redundant information, such as the cell volume and number of sites, for fast querying. The coordinates of the various sites are stored in the Site table, and the
content of the site is stored in the Species table. The Species may be atomic (e.g., ‘‘Fe’’), or it may be molecular (e.g., ‘‘H2O’’). The Species are composed of component elements,
of which the properties are stored in the Element table. The Lattice table categorizes the lattice type of the structure (e.g., ‘‘fcc’’). The spacegroup table contains basic
information such as the spacegroup number and Hermann–Mauguin symbol, while the SpacegroupOps table lists the symmetry operations. As discussed in the text, the
ElementEntry table allows for quicker searching over element symbols and contains redundant information with the Element table.
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an additional table ElementEntry, which bypasses these joins and
allows for quick searching over element symbols. Although the
ElementEntry table introduces redundant information (the element
symbols contained in a particular entry are stored both in Elements
and ElementEntry), it has improved query speeds over element
symbols.

The nine tables represented in Fig. 4 are only a small portion of
our overall database, which currently contains 108 tables. The
additional tables store properties of experimental crystal struc-
tures (e.g., journal information), properties of computed crystal
structures (e.g., computational input parameters, user information,
motivation for calculation), and post-processed information about
the crystals (e.g., structure prototype, formal valence on ions).

The large number of database tables, while minimizing redun-
dancy, can make the SQL statements for performing queries com-
plex and unwieldy for novice users. We have therefore coded
two types of mappings between the database and the Java code-
base. The first mapping allows database tables to be translated into
Java objects, so that users operate on high-level objects within Java
rather than query individual data pieces from the database. The
second mapping serves a translation layer between the user and
the SQL database; the user needs only specify the constraints and
the desired properties within a Java API, and the translation layer
creates the necessary SQL syntax (including JOIN statements). This
second mapping layer separates the content of the user query from
the database architecture, thus allowing changes in the architec-
ture to proceed without affecting user behavior.

We note that identifying the data that should be stored in the
database is itself a challenging problem. It is at present impractical
to store all data from a DFT calculation in the relational database,
as one calculation may easily produce several hundred megabytes
of uncompressed information. Our solution has been to compress
and archive the largest components of the computed data, such
as the charge densities and wavefunctions, to a dedicated file server.
The database stores only the most heavily queried items; for the
remaining data, the database stores links to the location of the ori-
ginal calculation files on the file server. With this setup, all data
from a calculation is linked by the database to the external file ser-
ver, and the most heavily accessed data can be quickly searched, re-
trieved, and sorted using the built-in functionality of the database.

We have included several features in the database that allow for
more robust searches. As an example, calculations are automati-
cally classified by their exchange–correlation functional type,
pseudopotentials, and use of the DFT + U methodology. The soft-
ware can thus automatically prevent combining the results of cal-
culations that use, for example, two separate pseudopotentials for
the same element. In addition, analysis codes can easily restrict
themselves to a chosen theoretical framework. For example, we
can create phase diagrams using GGA calculations only, GGA + U
calculations only, or a mixture of the two. We expect that the abil-
ity to naturally accommodate calculations with heterogeneous in-
put parameters will become increasingly important as more
theoretical frameworks are tested and added to our data set.

Almost all calculated compounds in the database are structur-
ally linked to experimental crystal data or other calculations. At
present, the links are documented at the time of input file genera-
tion; when the software creates DFT input files (e.g., by direct tran-
scription of an existing compound or by substitution of chemical
species), it also notes the original compound and the structural
transformations that were applied to it. The database later incorpo-
rates these links, so that it is possible to trace back the origin of any
compound in the database. These links are helpful in several ways.
For example, when discovering an interesting compound in the
database, it is possible to trace back the original experimental re-
search paper as a starting point for synthetic routes to that com-
pound. The structural links can also serve to restrict analysis to
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compounds known to exist experimentally, or to filter compounds
that were designed via chemical substitution or structure predic-
tion. An example of such a use is the generation of phase diagrams
based only on experimental crystal structures [11,14]. In the fu-
ture, we expect to complement these structural links with an algo-
rithm that crawls the database and automatically determines
relations between compounds.

We have added the ability for users to add custom notes to
compounds. Users can then search within their own notes or across
all notes. We are also beginning to add experimental data, such as
measured binary and ternary formation enthalpies, natively to the
database and link them with computed entries. Thus, a report of
computed properties of a compound may also list known experi-
mental data. We hope that by organizing materials data, new paths
to materials discovery and insight will be uncovered.
5. Data analysis

The data analysis process will depend heavily on the area of
application. In Section 6, we present one example of data analysis
that examines the error of binary and ternary formation enthalpy
calculations calculated with GGA. Here, we summarize several
types of analyses that have broad applications:

(i) Structural equivalence – Many properties of materials are
correlated to their crystal structure, but it can be difficult
to determine equivalence between crystal structures. Raw
crystal structure data containing atomic positions may need
to be classified into crystal structure prototypes so that
structural ‘‘equivalence’’ or ‘‘similarity’’ to other structures
can be detected. We have implemented such a crystal struc-
ture prototyping scheme based on affine mapping [94,95]
and have used it to prototype entries in the ICSD. A version
of this algorithm is available online [8].

(ii) Valence states of ions – Similarly, to enable property correla-
tions to the formal valence state of ions, we have imple-
mented a valence designation scheme based on bond-
valence sums [96] and Bayesian probabilities.

(iii) Phase diagrams – The phase diagram of a multi-component
system is of interest in many materials design problems,
such as the design of multi-phase materials with optimized
functionality [97], the understanding of the stability of a
material under various experimental and usage conditions
[98,14], and reaction paths. With our comprehensive data-
base of energies for a large number of materials, the ground
state phase diagram for most multi-component systems can
be calculated almost instantaneously. We have developed
this capability in the form of a phase diagram module that
provides the ability to generate compositional and grand
canonical phase diagram constructions, perform thermal
stability analyses, and elucidate decomposition paths. As
an example, the thermal stability analysis of the delithiated
LiMPO4 (M = Fe, Mn) systems by Ong et al. [14] was per-
formed using this high-throughput infrastructure and the
above analysis tools.

(iv) Electronic structure – Electronic structures are of interest to
many applications, e.g., solar cells, thermoelectric, and
transparent conductors. We have developed tools to view
the calculated total and projected DOS of materials and
determine band gaps for high-throughput searching. Optical
properties and band structures may be pursued in the
future.

We have developed a user interface coded as a Java application
capable of performing the above analyses (Fig. 5). The authors are
currently working on a tool to bring these features to the larger
materials community over the World Wide Web [8].
6. Cancelation of errors in GGA and formation enthalpy
dependence on reference states

No single exchange correlation functional achieves consistent
accuracy across a diversity of chemical environments. High-
throughput data sets can be used to probe the accuracy of a partic-
ular exchange–correlational functional either within a single
chemical class or across chemistries. Such a study was carried
out by Curtarolo et al. for binary metals [16] and pure elements
[99] to evaluate the accuracy of LDA and GGA predictions of the
relative stabilities of crystal structures. More recently, Lany exam-
ined 61 binary formation enthalpies (from the elements) of
semiconducting and insulating compounds under the LDA and
GGA frameworks, and found large differences (an rms deviation
of 0.18 eV/atom for LDA and 0.24 eV/atom for GGA) between
experimental and computed values [100]. Lany subsequently fitted
an energy correction for each element in the study; by fitting 14
element energies, Lany was able to reduce the rms error to
0.07 eV/atom for both LDA and GGA in the 61-compound test set
[100].

In the same spirit as these earlier studies, we examined the
accuracy of GGA in predicting the formation of ternary polyan-
ion-containing compounds (silicates, borates, phosphates, carbon-
ates, sulfates) from the elements. In particular, we investigated
whether element corrections may be needed to accurately describe
ternary polyanion-containing formation reactions, as was found
previously by Wang et al. for binary oxides [57] and Lany for
semiconducting and insulating binary compounds [100]. We also
discuss the universality of such element corrections.
6.1. Methods and results

Our calculations were extracted from our database rather than
performed specifically for this analysis, demonstrating the value
of a general-purpose electronic structure database. The number
of compounds examined was largely limited by available experi-
mental data. In total, we examined 57 ternary compounds, 6 binary
oxides, and 15 other binary compounds. All calculations were gen-
erated using the methodology and parameters described in Section
3. For Na2O formation, we used a PAW pseudopotential that explic-
itly modeled 7 electrons; we found that a one-electron pseudopo-
tential gave inaccurate results. The O2 gas energy was calculated
using a 13 � 10 � 11 Å3 supercell with a Gamma-centered
2 � 2 � 2 k-point mesh. Our formation enthalpies were approxi-
mated using zero-temperature total energies that neglected pres-
sure and zero-point effects, as detailed in a prior publication
[12]. Experimental formation enthalpies were compiled from
Kubaschewski et al. [101].

The ternary test set includes compounds of the form AiXjOk, in
which A represents group I and II metals plus aluminum, X in-
cludes the nonmetals {Si, B, P, C, S}, and i, j, and k represent arbi-
trary coefficients. We have restricted our metals A to alkali,
alkaline earth, and Al to avoid errors arising from incomplete
cancelation of self-interaction errors due to localized d or f orbitals.
This latter problem is more appropriately addressed via the
GGA + U framework, as was demonstrated by Wang et al. for binary
oxides [57]. The full dataset of calculations is presented in Appen-
dix Table A2.

A known problem in computing GGA formation reactions
involving oxygen is the choice of O2 reference energy [57,
102,103]. Wang et al. earlier analyzed the oxidation energies for
a large number of binary oxides [57] and identified two sources



Fig. 5. Screenshot of Java application for performing exploratory data analysis. Clockwise from top-left: the main query window for finding results given user-defined
constraints, a detailed view of a single compound, a user-defined interactive chart for exploring data on Li ion battery compounds, and the phase diagram tool to generate
convex hull constructions. Not shown are interfaces for comparing structures, finding formal valence/coordination, calculating reaction energies, viewing density of states for
an entry, and interactively defining and generating VASP input files from database entries.
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of errors in the calculated formation energies: (i) an overbinding of
the O2 molecule in GGA by about 0.79 eV, and (ii) an additional er-
ror of 0.57 eV due to incomplete error cancelation when transfer-
ring electrons to the O2� p orbitals in oxides. Wang et al.
therefore proposed that the GGA O2 energy be destabilized by
the sum of both errors, or 1.36 eV/O2, when calculating metal oxi-
dation energies [57]. For the remainder of this section, we will refer
frequently to two O2 reference states based on Wang et al.’s results
[57]:

1. Binding Energy Corrected Oxygen (BECO), for which the O2

energy has been destabilized by 0.79 eV to correct for GGA
overbinding the O2 molecule.

2. Reduction + Binding Energy Corrected Oxygen (R + BECO), for
which the O2 energy has been destabilized by 1.36 eV (0.79 eV
for the binding energy error, plus 0.57 eV for the error of O2

to O2� reduction and incorporation into the solid phase).

Given the uncertainty in the proper oxygen reference state, we
present our ternary formation energy results so that they may be
evaluated independently of the O2 energy. Fig. 6 plots the differ-
ence between computed and experimental formation enthalpies
(per O2) for our AiXjOk test set against the X/O2 ratio when using
an uncorrected O2 gas energy. Also plotted in Figure are two
horizontal dashed lines representing the BECO and R + BECO
adjustments to the O2 energy. The distance of points from these
two lines represent the error if the O2 energy is corrected based
on the respective scheme. From Fig. 6, we may make the following
observations:

1. The binary AyOz oxides, corresponding to an X/O2 ratio of zero,
are positioned along the y-axis in Fig. 6 and are represented
by a brown ‘x’. In agreement with the previous results of Wang
et al. [57], we find that using the GGA O2 gas energy greatly
underestimates the magnitude of binary formation enthalpies
by an average of about 130.4 kJ/mol-O2. The R + BECO adjust-
ment of 131.22 kJ/mol-O2 reduces the mean absolute error
(MAE) over our oxides data set to about 8.5 kJ/mol-O2, which
is more than an order of magnitude improvement.

2. The error/O2 of ternary polyanion-containing compound data
(all points for which X/O2 > 0) in Fig. 6 are in general lower than
the R + BECO dashed line, demonstrating that this adjustment
overstabilizes ternary compounds. For example, the MAE for
carbonates and sulfates (orange ‘ + ’ symbols and green squares)
using the R + BECO adjustment is 54.3 and 55.4 kJ/mol-O2,
respectively. These errors are comparable to the reduction com-
ponent of the R + BECO adjustment. If this portion of the correc-
tion is removed and only a binding energy correction is
employed (BECO adjustment), the MAE is reduced by over an
order of magnitude to 6.6 and 6.5 kJ/mol-O2 for carbonates



Fig. 6. Difference in formation energies of experimental [101] and GGA formation
energies (DHf error) per O2 for AiXjOk compounds as a function of X/O2 ratio when
using an uncorrected GGA O2 energy (positive errors correspond to the compound
being under-stabilized in GGA). Each point represents one compound and is
classified by the type of nonmetal X bonded with oxygen in the polyanion group.
Errors when using two other O2 reference energies can be measured by distance
from the dashed lines labeled ‘O2 binding energy corrected (BECO)’ and ‘Wang et al.
O2 correction for oxides (R + BECO)’ [57]. No oxygen reference state accurately
describes all results, and errors per O2 appear to depend linearly on X/O2 ratio. We
have fit least-squares regression lines through the errors (dotted lines) to determine
the O2 energy (y-intercept of dotted lines) and X elemental energy (slope of dotted
lines) that best describes the data for each chemical class. These regression lines
suggest that we can model the errors fairly well by using the R + BECO oxygen
adjustment and applying a constant shift to the X elemental energies. The full data
set is presented in Appendix Table A2.

Table 5
Errors per mol-atom for binary phosphides, silicides, carbides, and sulfides when
using pure GGA (first data column) or the element corrections derived in Table 4 for
ternary polyanion-containing systems. Errors are with respect to experimental values
from the Kubaschewski table [101] as listed in Appendix Table A2. All formation
energies are underestimated both with GGA and GGA with element corrections. The
errors are much smaller when using pure GGA, suggesting that element corrections
derived for a particular chemical class should not be broadly applied outside that
class.

DHf error(kJ/mol-atom)
pure GGA

DHf error(kJ/mol-atom) element
corrections derived for ternary
polyanion-containing systems

AlP 23.19 49.62
Mg2Si 10.69 17.84
Carbides (4) 19.96 68.40
Sulfides (9) 26.34 73.42
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and sulfates, respectively. In all cases, the uncorrected GGA O2

calculation severely underestimates the formation enthalpy
(by about 60–130 kJ/mol-O2).

3. For phosphates, borates, and silicates, there appears to be a lin-
ear dependence of the error per O2 on the X/O2 ratio. We per-
formed a least-squares linear regression for each polyanion
series (dotted lines), where the y-intercept represents an O2

correction corresponding to that polyanion series, and the slope
represents a correction related to the X in the polyanion. We
note that the R2 coefficients of our regression analysis are not
particularly high (R2 of 0.32, 0.41, and 0.72 for phosphate, sili-
cates, and borates, respectively), which may partially be due
to the limited data available. Nonetheless, we may observe that
in all cases, the y-intercepts are within 15 kJ/mol of the
R + BECO adjustment. This suggests that we can model the
Table 4
Errors per mol-atom over ternary polyanion-containing compounds and binary oxides, di
experimental values from the Kubaschewski table [101] as listed in Appendix Table A2. The
data column represents errors when adjusting the O2 energy and fitting adjustments to th
contains the highest number of adjustable parameters. In addition, it appears that these ele
containing systems (discussed in Section 6.2).

System DHf error(kJ/mol-atom)
R + BECO adjusted O2

DHf error(kJ/mol-
atom) BECO adjusted
O2

DHf error(kJ/mol-ato
adjusted O2 plus fitt
corrections

Silicates 4.05 11.48 1.58
Borates 11.21 3.56 1.08
Phosphates 9.33 7.08 2.30
Carbonates 14.68 1.72 1.86
Sulfates 17.3 2.02 2.03
Binary

oxides
2.11 12.13 2.11
errors using constant element shifts by constraining the fitted
O2 energy to the R + BECO adjusted energy and fitting constant
energy adjustments to the elemental X reference states.

To present our errors in a more universal way, we compile in
Table 4 errors normalized per mol-atom rather than per mol-O2

for each chemical class and three methods of calculating ternary
formation enthalpies. In column (1) are the formation energy er-
rors if the O2 energy is corrected using the R + BECO adjustment.
The data in column (2) are the formation energy errors using the
BECO adjustment. In column (3), we present the formation energy
errors if the O2 energy is corrected using the R + BECO adjustment
and the element X energies are adjusted to minimize the least-
squares error, a strategy suggested by our linear fits in Fig. 6.

Table 4 demonstrates that neither the R + BECO nor the BECO
adjustments provide good results across several chemical spaces.
The R + BECO adjustment demonstrates errors of over 10 kJ/mol-
atom for the borates, carbonates, and sulfates, whereas the BECO
adjustment demonstrates errors of over 10 kJ/mol-atom for sili-
cates and binary oxides. Thus, correcting only the O2 reference
state does not provide good accuracy across both oxides and ter-
nary polyanion-containing compounds. Much better accuracy can
be obtained by combining R + BECO adjustment with constant
shifts to the set of element energies for X. Although this increases
the number of fitted elements over the data set from one to six, it
reduces the MAE over all 63 compounds in the test set to under
2 kJ/mol-atom.
6.2. Discussion

The GGA errors in the formation of of AyXOz ternary polyanion-
containing compounds depend on both the O2 reference employed
vided by chemical class and element adjustments to GGA. Errors are with respect to
first two data columns represent errors when adjusting only the O2 energy. The third

e X element energy energies. While this last method produces the best results, it also
ment adjustments do not generalize well beyond binary oxides and ternary polyanion-

m) R + BECO
ed element

Fitted adjustment to
elemental X energy (kJ/
X)

Pauling electronegativity
difference between oxygen
and X

�21.48 1.54
�39.03 1.4
�52.85 1.25
�79.77 0.89
�107.74 0.86
N/A N/A



Table A1
Results of computations for 182 compounds using ‘‘default’’ and ‘‘accurate’’ parameters as described in the text.

Formula Spacegroup Energy (eV/atom) Energy (eV/atom) Cell volume (Å3) Cell volume (Å3) DE (eV/atom) DV (%)
‘‘Default’’ parameters ‘‘Accurate’’ parameters ‘‘Default’’ parameters ‘‘Accurate’’ parameters

Elements
Al1 F m �3 m �3.752 �3.741 16.37 16.43 �0.011 �0.37
Au1 F m �3 m �3.275 �3.274 18.09 18.05 �0.001 0.22
B1 R �3 m R �6.652 �6.652 817.32 817.64 0 �0.04
Bi1 R �3 m H �3.871 �3.872 73.36 73.69 0.001 �0.45
Ca1 F m �3 m �2.001 �2.004 41.45 41.89 0.003 �1.05
Cu1 F m �3 m �3.735 �3.725 11.98 12 �0.01 �0.17
Fe1 I m �3 m �8.317 �8.317 11.36 11.36 0 0.00
I1 C m c a �1.515 �1.517 187.2 190.89 0.002 �1.93
K1 I m �3 m �1.096 �1.095 71.71 71.87 �0.001 �0.22
La1 P 63/m m c �4.928 �4.92 146.38 146.73 �0.008 �0.24
Li1 I m �3 m �1.899 �1.896 20.17 20.3 �0.003 �0.64
Mg1 P 63/m m c �1.534 �1.541 45.73 45.79 0.007 �0.13
Mo1 I m �3 m �10.933 �10.945 15.65 15.63 0.012 0.13
Na1 I m �3 m �1.305 �1.305 36.73 36.7 0 0.08
P1 P �1 �5.267 �5.269 759.68 800.35 0.002 �5.08
Si1 F d �3 m S �5.411 �5.422 40.81 40.76 0.011 0.12
Sm1 R �3 m H �4.715 �4.715 101.74 101.62 0 0.12
Ti1 P 63/m m c �7.767 �7.766 34.19 34.2 �0.001 �0.03
V1 I m �3 m �9.086 �9.083 13.5 13.47 �0.003 0.22
W1 I m �3 m �12.941 �12.948 16.19 16.17 0.007 0.12
Y1 P 63/m m c �6.455 �6.456 65.58 65.61 0.001 �0.05
Zn1 P 63/m m c �1.242 �1.267 29.42 30.71 0.025 �4.20

Binaries
Al1 Br3 P 1 21/c 1 �3.278 �3.28 647.57 692.06 0.002 �6.43
Al1 Cl3 C 1 2/m 1 �3.827 �3.828 198.81 206 0.001 �3.49
Al1 F3 C m c m �5.891 �5.891 307.5 307.42 0 0.03
Al1 H3 R �3 c H �3.462 �3.46 66.11 64.18 �0.002 3.01
Al1 I3 P 1 21/c 1 �2.747 �2.748 817.93 857.46 0.001 �4.61
Al1 N1 P 63 m c �7.446 �7.446 42.49 42.49 0 0.00
Al1 P1 F �4 3 m �5.184 �5.188 41.58 41.58 0.004 0.00
Al2 La1 F d �3 m S �4.646 �4.637 135.28 134.86 �0.009 0.31
Al2 O3 R �3 c H �7.481 �7.481 262.59 262.58 0 0.00
Al2 S3 P 61 �5.028 �5.028 662.8 671.92 0 �1.36
Al4 C3 R �3 m H �6.19 �6.189 81.57 81.57 �0.001 0.00
B1 Fe1 P b n m �7.868 �7.869 63.27 63.58 0.001 �0.49
B1 Fe2 I �4 2 m �8.086 �8.077 53.95 53.9 �0.009 0.09
B1 Mo1 I 41/a m d S �9.325 �9.328 83.01 83.01 0.003 0.00
B1 Mo2 I 4/m c m �9.869 �9.853 73.03 73.08 �0.016 �0.07
B1 N1 P 63 m c �8.784 �8.787 39.72 42.34 0.003 �6.19
B1 P1 F �4 3 m �6.445 �6.454 23.53 23.53 0.009 0.00
B1 Ti1 P n m a �8.04 �8.04 84.96 85.03 0 �0.08
B2 O3 P 31 �8.023 �8.024 146.83 147.99 0.001 �0.78
B2 S3 P 1 21/c 1 �5.577 �5.579 938.84 1012.32 0.002 �7.26
B2 Ti1 P 6/m m m �8.07 �8.085 25.75 25.7 0.015 0.19
Bi1 Cl3 P n 21 a �3.284 �3.29 476.3 510.11 0.006 �6.63
Bi1 F3 F m �3 m �4.567 �4.567 47.83 47.83 0 0.00
Bi1 I3 R �3 H �2.595 �2.597 394.27 399.47 0.002 �1.30
Bi2 O3 P 1 21/c 1 �5.753 �5.753 341.23 341.13 0 0.03
Bi2 S3 P b n m �4.378 �4.38 524.55 529.25 0.002 �0.89
Br1 Cu1 F �4 3 m �2.937 �2.938 46.29 46.72 0.001 �0.92
Br1 Li1 F m �3 m �3.315 �3.315 41.86 41.82 0 0.10
Br2 Fe1 P �3 m 1 �4.309 �4.309 86.07 84.92 0 1.35
Br2 Ti1 P �3 m 1 �4.737 �4.737 84.72 85.27 0 �0.65
Br3 La1 P 63/m �4.482 �4.482 258.44 257.32 0 0.44
Br4 Ti1 P a �3 �4.068 �4.074 1613.71 1825.56 0.006 �11.60
C1 Li1 I m m m �5.555 �5.555 47.75 47.22 0 1.12
C1 Mo2 P b c n �10.484 �10.484 150.43 150.33 0 0.07
C1 Si1 P 63 m c �7.525 �7.527 42 42 0.002 0.00
C1 Ti1 F m �3 m �9.251 �9.263 20.42 20.41 0.012 0.05
Cl1 Cu1 F �4 3 m �3.169 �3.169 39.98 39.83 0 0.38
Cl1 Li1 F m �3 m �3.687 �3.688 34.24 34.24 0.001 0.00
Cl2 Cu1 C 1 2/m 1 �2.961 �2.964 77.53 79.53 0.003 �2.51
Cl2 Fe1 R �3 m H �4.722 �4.722 69.13 70.29 0 �1.65
Cl3 Fe1 R �3 H �4.163 �4.166 206.02 218.97 0.003 �5.91
Cl3 Ti1 P �3 1 m �4.889 �4.89 208 215.33 0.001 �3.40
Cl5 Mo1 C 1 2/m 1 �4.135 �4.138 1024.75 1113.51 0.003 �7.97
Cu1 F2 P 1 21/n 1 �3.699 �3.7 70.72 71.2 0.001 �0.67
Cu1 I1 F �4 3 m �2.779 �2.781 56.64 56.09 0.002 0.98
Cu1 O1 C 1 2/c 1 �4.267 �4.267 44.31 44.28 0 0.07
Cu2 O1 P n �3 m Z �3.702 �3.701 79.97 78.9 �0.001 1.36
Cu2 S1 P 43 21 2 �3.956 �3.985 180.08 179.63 0.029 0.25
Cu3 P1 P 63 c m �4.17 �4.172 305.7 304.9 0.002 0.26

(continued on next page)
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Table A1 (continued)

Formula Spacegroup Energy (eV/atom) Energy (eV/atom) Cell volume (Å3) Cell volume (Å3) DE (eV/atom) DV (%)
‘‘Default’’ parameters ‘‘Accurate’’ parameters ‘‘Default’’ parameters ‘‘Accurate’’ parameters

F1 Li1 F m �3 m �4.853 �4.853 16.8 16.76 0 0.24
F2 Fe1 P 42/m n m �5.697 �5.697 76.26 76.08 0 0.24
F3 La1 P 63 c m �6.811 �6.811 335.29 334.96 0 0.10
F4 Ti1 P n m a �6.315 �6.317 882.81 905.08 0.002 �2.46
Fe1 Si1 P 21 3 �7.381 �7.382 88.48 88.09 0.001 0.44
Fe1 Ti1 P m �3 m �8.46 �8.458 25.8 25.61 �0.002 0.74
Fe2 O3 R �3 c R �6.781 �6.781 105.19 105.51 0 �0.30
Fe2 P1 P �6 2 m �7.809 �7.81 100.03 100.03 0.001 0.00
Fe2 Ti1 P 63/m m c �8.408 �8.409 152.45 152.59 0.001 �0.09
Fe3 O4 P 1 2/m 1 �6.823 �6.823 313.61 312.85 0 0.24
Fe3 P1 I �4 �7.949 �7.95 179.33 178.88 0.001 0.25
Fe4 N1 P m �3 m �8.352 �8.354 54.65 54.64 0.002 0.02
H1 Li1 F m �3 m �3.048 �3.05 15.58 15.68 0.002 �0.64
H2 La1 F m �3 m �4.525 �4.524 44.65 44.64 �0.001 0.02
I1 Li1 F m �3 m �2.911 �2.911 54.2 54.03 0 0.31
I3 La1 C c m m �3.921 �3.923 338.98 349.39 0.002 �2.98
I4 Si1 P a �3 �2.677 �2.679 2152.29 2203.12 0.002 �2.31
I4 Ti1 C 1 2/c 1 �3.486 �3.489 415.04 443.7 0.003 �6.46
La1 S1 F m �3 m �6.703 �6.696 50.78 50.74 �0.007 0.08
La2 O3 I a �3 �8.404 �8.405 741.12 740.74 0.001 0.05
La2 S3 P n m a �6.648 �6.648 504.65 503.52 0 0.22
Li1 O1 P 63/m m c �4.851 �4.851 66.56 66.45 0 0.17
Li2 O1 F m �3 m �4.771 �4.771 24.83 24.91 0 �0.32
Li2 S1 F m �3 m �3.99 �3.99 46.66 46.64 0 0.04
Li3 N1 P 6/m m m �3.898 �3.898 44.45 44.39 0 0.14
Mo1 O2 P 1 21/c 1 �7.508 �7.508 140.55 140.28 0 0.19
Mo1 O3 P b n m �7.181 �7.183 222.41 225.26 0.002 �1.27
Mo1 S2 P 63/m m c �7.265 �7.266 117.79 118.87 0.001 �0.91
Mo1 Si2 I 4/m m m �7.766 �7.767 40.57 40.52 0.001 0.12
Mo2 S3 P 1 21/m 1 �7.545 �7.542 166.07 166.57 �0.003 �0.30
Mo3 Si1 P m �3 n �9.922 �9.91 116.36 116.67 �0.012 �0.27
Mo5 Si3 I 4/m c m �9.281 �9.28 229.36 229.06 �0.001 0.13
N1 Ti1 F m �3 m �9.73 �9.725 19.26 19.27 �0.005 �0.05
N4 Si3 P 63 �8.182 �8.183 148.6 148.62 0.001 �0.01
O1 Ti1 A 1 1 2/m �8.856 �8.857 108.59 108.73 0.001 �0.13
O2 Si1 P 32 2 1 �7.905 �7.905 122.29 122.33 0 �0.03
O2 Ti1 I 41/a m d S �8.831 �8.831 70.94 70.89 0 0.07
O2 Ti1 P 42/m n m �8.804 �8.804 64.55 64.53 0 0.03
O3 Ti2 R �3 c R �8.919 �8.919 106.02 105.94 0 0.08
O5 P2 R 3 c H �7.011 �7.015 428.33 457.02 0.004 �6.28
O5 Ti3 C 1 2/m 1 �8.892 �8.893 178.23 177.76 0.001 0.26
P1 Si1 C m c 21 �5.568 �5.569 517.08 552.46 0.001 �6.40
P2 S3 P 1 21/c 1 �4.802 �4.804 1139.62 1230.15 0.002 �7.36
P4 S3 P m n b �5.005 �5.007 1707.66 1803.75 0.002 �5.33
S1 Ti1 P 63/m m c �7.358 �7.357 59.43 59.41 �0.001 0.03
S2 Si1 I c m a �5.235 �5.237 172.7 184 0.002 �6.14
S2 Ti1 C 1 2/m 1 �6.59 �6.589 86.06 85.98 �0.001 0.09
Si1 Ti1 P n m a �7.349 �7.35 118.94 118.96 0.001 �0.02
Si2 Ti1 F d d d S �6.748 �6.752 84.77 84.83 0.004 �0.07

Ternaries
Al1 Cl1 O1 P m n m S �5.864 �5.865 95.28 98.37 0.001 �3.14
Al1 F6 Li3 P n a 21 �5.299 �5.299 392.96 394.12 0 �0.29
Al1 H3 O3 P 1 21/n 1 �5.856 �5.857 439.45 432.91 0.001 1.51
Al1 La1 O3 P m �3 m �8.008 �8.008 55.3 55.35 0 �0.09
Al1 Li1 O2 R �3 m H �6.614 �6.614 33.06 33.06 0 0.00
Al1 O4 P1 R �3 H �7.476 �7.477 640.65 652.86 0.001 �1.87
Al2 Cu1 O4 F d �3 m S �6.518 �6.518 134.43 134.59 0 �0.12
Al2 Fe1 O4 F d �3 m S �7.338 �7.339 139.75 139.71 0.001 0.03
Al2 O12 S3 R �3 H �6.509 �6.51 410.15 414.18 0.001 �0.97
Al2 O5 Si1 P �1 �7.633 �7.633 303.08 303.25 0 �0.06
Al2 O5 Ti1 C m c m �7.976 �7.976 167.49 167.52 0 �0.02
Al4 B2 O9 P b a m �7.508 �7.509 162.99 163.42 0.001 �0.26
Al6 O13 Si2 P b a m �7.126 �7.126 226.28 226.59 0 �0.14
B1 H3 O3 P �1 �6.085 �6.088 276 287.1 0.003 �3.87
B1 Li1 O2 P 1 21/c 1 �7.018 �7.02 151.99 156.92 0.002 �3.14
B3 Li1 O5 P n a 21 �7.616 �7.616 328.65 331.2 0 �0.77
B4 Li2 O7 I 41 c d �7.446 �7.45 475.64 495.17 0.004 �3.94
Bi1 Cl1 O1 P 4/n m m Z �4.821 �4.824 116.32 119.98 0.003 �3.05
Bi2 O12 S3 R �3 H �6.052 �6.056 579.73 594.28 0.004 �2.45
Br1 H4 N1 P �4 3 m �4.46 �4.459 68.42 67.96 �0.001 0.68
C1 Cu1 O3 C 1 m 1 �6.231 �6.233 58.11 59.24 0.002 �1.91
C1 Fe1 O3 R �3 c H �7.31 �7.311 100.41 100.22 0.001 0.19
C1 Li2 O3 C 1 2/c 1 �6.56 �6.56 120.54 121.21 0 �0.55
C6 Mo1 O6 P n m a �7.754 �7.758 913.27 995.99 0.004 �8.31
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Table A1 (continued)

Formula Spacegroup Energy (eV/atom) Energy (eV/atom) Cell volume (Å3) Cell volume (Å3) DE (eV/atom) DV (%)
‘‘Default’’ parameters ‘‘Accurate’’ parameters ‘‘Default’’ parameters ‘‘Accurate’’ parameters

Cl1 Fe1 O1 P m n m S �5.469 �5.469 106.83 108.9 0 �1.90
Cl1 H3 N1 P a �3 �4.369 �4.375 617.63 632.47 0.006 �2.35
Cl1 La1 O1 P 4/n m m S �7.082 �7.082 119.71 119.12 0 0.50
Cl1 Li1 O4 P n m a �4.469 �4.47 295.17 300.37 0.001 �1.73
Cu1 Fe1 O2 R �3 m H �5.691 �5.691 140.07 140.16 0 �0.06
Cu1 Fe1 S2 I �4 2 d �5.047 �5.046 149.5 149.8 �0.001 �0.20
Cu1 Fe1 S2 I �4 2 d �5.046 �5.046 148.85 149.67 0 �0.55
Cu1 Fe2 O4 I 41/a m d S �6.06 �6.06 152.7 152.71 0 �0.01
Cu1 H2 O2 C m c 21 �4.634 �4.641 84.52 88.38 0.007 �4.37
Cu1 O4 S1 P n m a �5.485 �5.485 279.52 281.87 0 �0.83
Cu5 Fe1 S4 F 2 3 �4.353 �4.354 161.68 163.24 0.001 �0.96
Cu5 Fe1 S4 F 2 3 �4.353 �4.354 161.68 163.15 0.001 �0.90
F1 H4 N1 P 63 m c �4.898 �4.898 123.05 122.93 0 0.10
Fe1 H1 O2 C m c m �6.094 �6.094 72.25 72.1 0 0.21
Fe1 Mo1 O4 C 1 2/m 1 �7.194 �7.195 345.1 344.68 0.001 0.12
Fe1 O3 Ti1 R �3 H �8.072 �8.072 108.29 108.17 0 0.11
Fe1 O4 S1 C m c m �6.458 �6.458 143.77 144.19 0 �0.29
Fe1 O4 W1 P 1 2/c 1 �7.725 �7.725 140.53 140.53 0 0.00
Fe2 O12 S3 R �3 H �6.321 �6.322 449.73 453.76 0.001 �0.89
Fe2 O4 Si1 P b n m �7.358 �7.358 318.21 318.06 0 0.05
Fe2 O4 Ti1 F d �3 m Z �7.734 �7.734 322.64 322.14 0 0.16
H1 Li1 O1 P 4/n m m S �4.975 �4.975 55.54 55.76 0 �0.39
H4 N2 O3 P c c n �5.53 �5.534 625.17 650.91 0.004 �3.95
La1 O4 P1 P 1 21/n 1 �8.066 �8.066 314.1 315.39 0 �0.41
Li1 N1 O3 R �3 c R �5.986 �5.986 101.06 100.04 0 1.02
Li1 O3 P1 P 1 21/n 1 �6.725 �6.727 742.6 747.51 0.002 �0.66
Li2 O3 Si1 C m c 21 �6.563 �6.563 121.1 121.49 0 �0.32
Li2 O3 Ti1 F m �3 m �6.995 �6.995 158.9 159.31 0 �0.26
Li2 O4 S1 P 1 21/c 1 �5.887 �5.887 338.67 339.78 0 �0.33

Quaternaries
Al1 Cl3 H12 O6 R �3 c H �4.826 �4.827 488.22 492.29 0.001 �0.83
Cl1 H4 N1 O4 P n m a �4.685 �4.689 398.31 415.49 0.004 �4.13
Cl2 Fe1 H4 O2 C 1 2/m 1 �4.749 �4.753 115.07 118.96 0.004 �3.27
Cl2 Fe1 H8 O4 P 1 21/c 1 �4.828 �4.83 342.72 347.88 0.002 �1.48
Cu1 H10 O9 S1 P �1 �5.109 �5.112 369.16 372.24 0.003 �0.83
Cu1 H2 O5 S1 P �1 �5.325 �5.33 181.55 186.43 0.005 �2.62
Cu1 H6 O7 S1 C 1 c 1 �5.169 �5.178 275.26 275.19 0.009 0.03
Fe1 H4 O6 P1 P b c a �6.056 �6.057 890.14 901.24 0.001 �1.23
H8 N2 O4 S1 P n a 21 �5.365 �5.372 507.28 540.68 0.007 �6.18
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and the X/O2 ratio. We found that although Wang et al.’s O2 refer-
ence (R + BECO) [57] gave very good performance for binary oxides,
it failed to give results accurate to within 10 kJ/mol-atom for sev-
eral polyanion-containing systems (Table 4). Similarly, the O2 ref-
erence corrected for the GGA binding energy (BECO) reproduced
several polyanion-containing systems quite well but failed to ade-
quately describe oxides or silicates (Table 4). Finally, we found that
using the R + BECO adjustment along with shifting the X energies
could give accurate results across binary oxide and ternary polyan-
ion-containing systems (Table 4).

Our results do not clearly indicate whether the majority of the
error in GGA ternary polyanion-containing compound formation
reactions comes from an inadequacy of describing the reduction
of molecular O2 to solid oxygen in a lattice with a constant O2

adjustment, or from an error associated with oxidizing X from
the elemental state (e.g., moving from elemental P to P5+ in a phos-
phate). We note that the difference in electronegativity between O
and X correlates at least qualitatively with the magnitude of the fit-
ted correction to X (Table 4). This may suggest that the error de-
pends on the covalency of X–O bonds, and may explain why the
R + BECO adjustment gives better results for more ionic bonding
(oxides, silicates) where oxygen is strongly reduced, whereas
removing the oxygen reduction component of the adjustment
(BECO) gives better results for more covalently-bonded com-
pounds (carbonates, sulfates). However, because we obtain fairly
good accuracy by assuming the R + BECO adjustment for all sys-
tems and correcting the X elemental energy states (Table 4), we
may also interpret the data as suggesting that the R + BECO adjust-
ment is fairly universal for all gas to solid transitions, and the
majority of the error lies not in O2 but in oxidizing X from the ele-
mental state. Given the uncertainty, perhaps the most cautious
interpretation is to state that the pure GGA results tends to under-
stabilize the simultaneous reduction of O2 and oxidation of X, and
that the degree of this understabilization depends on X and can be
tuned by adjusting the O2 energy and X elemental energy.

While we find that using the R + BECO adjustment and fitting
constant shifts to the energies of elements X improves the accuracy
of ternary polyanion-containing systems (Table 4), this additional
accuracy comes at the expense of having several adjustable param-
eters in our model. These adjustable parameters have been fit only
for the ternary polyanion-containing data set, and should not be
interpreted to be universal for all reactions involving X. In particu-
lar, we find that while the elemental energy adjustments from Ta-
ble 4 increase the accuracy for the polyanion materials in which X
is oxidized, this correction reduces the accuracy of GGA energies
for AiXj binary systems such as phosphides, silicides, carbides,
and sulfides (Table 5). For example, computing carbide formation
using the elemental C correction derived for carbonates increases
the error by greater than a factor of 3.

Our data suggests that oxidation and reduction of an elemental
species may incur opposite errors in GGA. When artificially desta-
bilizing the O2 molecule by its reduction correction without adjust-
ing elemental X states, we tend to overstabilize the formation
energy of ternary polyanion systems (Fig. 6). To compensate for



Table A2
Experimental [101] and calculated (GGA) results for 57 ternary compounds, 6 binary
oxides, and 15 other binary compounds (silicides, phosphides, carbides, and sulfides).

System Enthalpy/f.u
(Kubaschewski et al.)

Enthalpy/f.u.
(pure GGA)

Silicates
Al2SiO5 2589.5 2281.2415
Ba2SiO4 2272.3 2011.0852
BaSiO3 1618 1436.8389
Ca2SiO4 2328.4 2090.3832
Ca3Si2O7 3942.6 3557.2451
Ca3SiO5 2928.8 2638.7545
CaSiO3 1635.1 1469.8907
K2Si2O5 2508.7 2202.4745
K2Si4O9 4315.8 3860.2417
Li2SiO3 1648.5 1480.4849
Mg2SiO4 2176.9 1927.1785
MgSiO3 1548.5 1369.3769
Na2Si2O5 2473.6 2216.9425
Na2SiO3 1563.1 1387.8741
Na4SiO4 2101.2 1853.8622
Sr2SiO4 2302.9 2054.2892
SrSiO3 1633.4 1467.3359

Borates
Ca2B2O5 2722.9 2487.1965
Ca3B2O6 3424.6 3102.5118
CaB2O4 2027.1 1854.5212
CaB4O7 3340.9 3049.4231
CsBO2 976.8 879.0976
K2B4O7 3326.3 3029.5551
KBO2 995 894.3966
Li2B4O7 3374.4 3069.2111
LiBO2 1019.2 929.3546
Na2B4O7 3284.9 3003.6231
Na2B8O13 5902.8 5395.9829
NaBO2 975.7 887.0226
RbBO2 974.9 880.5256
SrB4O7 3332.6 3041.5307

Phosphates
AlPO4 1733 1547.8092
Ca2P2O7 3336.7 2957.8971
Ca3(PO4)2 4117.1 3651.7584
LiPO3 1254.8 1112.5679
Mg3(PO4)2 3780.7 3344.5344
Na3PO4 1916.9 1714.7262
Na4P2O7 3166.5 2856.5327
NaPO3 1220.1 1088.7029

Carbonates
CaCO3 1206.9 1101.1919
Cs2CO3 1136.4 998.9219
K2CO3 1153.1 1032.0919
Li2CO3 1215.5 1110.7819
MgCO3 1095.8 989.4819
Na2CO3 1129.7 1022.7019
Rb2CO3 1133 1004.9419
SrCO3 1220.1 1107.3619

Sulfates
Al2(SO4)3 3441.3 3053.9646
BaSO4 1481.1 1308.1272
CaSO4 1434.1 1286.7482
Cs2SO4 1444.3 1276.8002
K2SO4 1438.5 1282.8582
Li2SO4 1437.2 1306.7682
MgSO4 1284.9 1138.8792
Na2SO4 1389.5 1249.4172
Rb2SO4 1437.2 1268.5762
SrSO4 1453.1 1295.3002

Binary oxides
Al2 O3 1675.7 1458.5
Ca O 634.9 573.61
K2 O 363.2 299.61
Li2 O 597.9 536.33
Mg O 601.6 530.23
Na2 O 415.1 354.06

Table A2 (continued)

System Enthalpy/f.u
(Kubaschewski et al.)

Enthalpy/f.u.
(pure GGA)

Binary compounds
Mg2Si 79.1 47.04
AlP 164.4 118.01
Al4C3 209.2 60.06
BaC2 74.1 27.30
CaC2 59.4 6.70
SrC2 84.5 8.34
Al2S3 723.4 508.86
BaS 463.6 401.92
CaS 473.2 416.39
K2S 376.6 309.72
Li2S 446.9 388.07
MgS 345.6 277.62
Na2S 366.1 318.32
Rb2S 361.1 287.88
SrS 452.7 415.40
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this overstabilization, we need to account for the oxidation of X,
which requires energy adjustments to X in the opposite direction
from O2. The magnitude and sign of GGA errors in formation
enthalpies from element reference states may thus depend on
the oxidation state and electronegativity of the elements in the
compound. With this interpretation, it is not surprising that our
X adjustments fitted for ternary polyanion systems (where X is oxi-
dized) penalize the accuracy of AiXj formation reactions (where X is
reduced). The AIXj formation reactions are understabilized in pure
GGA, and an artificial destabilization to X is needed to accurately
model these reactions rather than the artificial stabilization of X
needed for AiXjOk compounds.

Given that fitted element corrections can vary greatly by chem-
ical system in GGA, it is unlikely that such corrections will apply
broadly across several chemical spaces. Instead, we believe our re-
sults underscore the need to better understand the particular GGA
errors in different chemical systems, especially when computing
reaction energies from the elements. For analyses from our data-
base, for example, we generally employ the R + BECO adjustment
but keep in mind that polyanion-containing formation reactions
from an O2 reference state may need an additional correction to
X reference states to accurately model polyanion-containing com-
pounds. In addition, our results suggest a great need for improved
exchange–correlation functionals for high-throughput studies.
7. Conclusion

High-throughput density functional theory presents new
opportunities for materials design and rapid computational screen-
ing, but also poses unique technical challenges regarding imple-
mentation and accuracy across wide chemical systems. In this
paper, we demonstrated how data flow was managed in our
high-throughput project and described the computational tools
we used to scale DFT calculations to a large scale. In addition, we
presented data regarding convergence for a large number of com-
pounds, demonstrating that fairly good energy and cell volume
convergence for compounds could be obtained with relatively
small k-point meshes and relatively loose convergence parameters.
A major challenge for high-throughput computations is that GGA
errors are very dependent on the nature of the chemistry; the for-
mation enthalpy errors of compounds depend very much on the
extent to which elements undergo oxidation or reduction making
a single element energy correction of limited value. This was clar-
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ified by demonstrating that formation energies of ternary polyan-
ion-containing compounds depend on the particular O2 reference
employed, and that no O2 reference gives satisfactory results over
all chemical spaces. While satisfactory formation enthalpies for
ternary polyanion-containing compounds can be obtained by using
Wang et al.’s O2 reference [57] along with several element energy
adjustments, it appears that such adjustments are not universal.
The development and testing of more broadly applicable function-
als would be a significant advance for the high-throughput applica-
tion of ab initio methods to materials design.

The authors are currently developing a web interface to make
available to the materials community the database of electronic
structure calculations performed using the techniques described
in this paper [8]. We hope this effort will contribute to the growth
of high-throughput density functional theory for the design and
understanding of new materials.

Acknowledgements

This research was supported by the US Department of Energy
through grants Nos. #DE-FG02-96ER4557 and DE-FG02-
97ER25308. Additional funding was provided by Umicore and
Bosch. The authors would like to acknowledge discussions and
contributions to the high-throughput infrastructure and methodol-
ogy from Dr. Fei Zhou. In addition, we thank Dr. Shirley Meng for
discussions related to high-throughput Li ion battery design,
Dr. Michael Kocher for conversations on methods of interaction
between the codebase and database, and Dr. Maria Chan and
Dr. Denis Kramer for assistance in calibrating U parameters.
Appendix A. Calculated data sets

See Tables A1 and A2.

References

[1] P. Hohenberg, Physical Review 136 (1964) B864–B871.
[2] J. Hafner, C. Wolverton, G. Ceder, MRS Bulletin 31 (2006) 659–668.
[3] K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Science 311 (2006) 977–980.
[4] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, et al., Science

299 (2003) 1719–1722.
[5] M.L. Cohen, Solid State Communications 107 (1998) 589–596.
[6] A. Kolmogorov, M. Calandra, S. Curtarolo, Physical Review B 78 (2008)

094520.
[7] G.K.H. Madsen, Journal of the American Chemical Society 128 (2006) 12140–

12146.
[8] Materials Genome <www.materialsgenome.org>.
[9] G. Bergerhoff, R. Hundt, R. Sievers, I. Brown, Journal of Chemical Information

and Computer Sciences 23 (1983) 66–69.
[10] F. Karlsruhe, Inorganic Crystal Structure Database, <http://icsd.fiz-

karlsruhe.de/icsd/>.
[11] G. Hautier, C.C. Fischer, A. Jain, T. Mueller, G. Ceder, Chemistry of Materials 22

(2010) 3762–3767.
[12] A. Jain, S.-A. Seyed-Reihani, C.C. Fischer, D.J. Couling, G. Ceder, W.H. Green,

Chemical Engineering Science 65 (2010) 3025–3033.
[13] M. Chan, G. Ceder, Physical Review Letters 105 (2010) 196403.
[14] S.P. Ong, A. Jain, G. Hautier, B. Kang, G. Ceder, Electrochemistry

Communications 12 (2010) 427–430.
[15] J.C. Kim, C.J. Moore, B. Kang, G. Hautier, A. Jain, G. Ceder, Journal of the

Electrochemical Society 158 (2011) A309.
[16] S. Curtarolo, D. Morgan, G. Ceder, Accuracy of ab initio methods in predicting

the crystal structures of metals: review of 80 binary alloys, (2008).
[17] W. Setyawan, S. Curtarolo, Computational Materials Science 49 (2010) 299–

312.
[18] C. Ortiz, O. Eriksson, M. Klintenberg, Computational Materials Science 44

(2009) 1042–1049.
[19] J. Greeley, M. Mavrikakis, Nature Materials 3 (2004) 810–815.
[20] J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Nature

Materials 5 (2006) 909–913.
[21] J. Greeley, Surface Science 601 (2007) 1590–1598.
[22] M. Andersson, T. Bligaard, A. Kustov, K. Larsen, J. Greeley, T. Johannessen,

et al., Journal of Catalysis 239 (2006) 501–506.
[23] J.S. Hummelshøj, D.D. Landis, J. Voss, T. Jiang, A. Tekin, N. Bork, et al., The

Journal of Chemical Physics 131 (2009) 014101.
[24] J. Greeley, J.K. Nørskov, The Journal of Physical Chemistry C 113 (2009) 4932–
4939.

[25] Japan Science and Technology Agency, Computational Electronic Structure
Database (CompES), <http://caldb.nims.go.jp/>.

[26] N. Tatara, Y. Chen, Progress of Theoretical Physics Supplement 138 (2000)
755–756.

[27] H.L. Skriver, The hls Alloy Database, <http://databases.fysik.dtu.dk/hlsDB/
hlsDB.php>.

[28] M. Klintenberg, Electronic Structure Project, <http://gurka.fysik.uu.se/ESP/>.
[29] S. Curtarolo, AFLOW-lib databases, <http://aflowlib.org>.
[30] T.R. Munter, D.D. Landis, F. Abild-Pedersen, G. Jones, S. Wang, T. Bligaard,

Computational Science & Discovery 2 (2009) 015006.
[31] G. Ceder, D. Morgan, C. Fischer, K. Tibbetts, S. Curtarolo, MRS Bulletin 31

(2006) 981–985.
[32] C.C. Fischer, K.J. Tibbetts, D. Morgan, G. Ceder, Nature Materials 5 (2006) 641–

646.
[33] Sun Grid Engine, <http://gridengine.sunsource.net>.
[34] The Perl Programming Language, <http://www.perl.org>.
[35] M. Stonebraker, L.A. Rowe, ACM SIGMOD Record 15 (1986) 340–355.
[36] M. Stonebraker, G. Kemnitz, Communications of the ACM 34 (1991) 78–92.
[37] K. Mitra, International Materials Reviews 53 (2008) 275–297.
[38] D. Scott, S. Manos, P. Coveney, Journal of Chemical Information and Modeling

48 (2008) 262–273.
[39] G.A. Gazonas, D.S. Weile, R. Wildman, A. Mohan, International Journal of

Solids and Structures 43 (2006) 5851–5866.
[40] R. Giro, M. Cyrillo, D. Galvão, Chemical Physics Letters 366 (2002) 170–175.
[41] G. Johannesson, T. Bligaard, A. Ruban, H. Skriver, J.K. Norskov, Physical Review

Letters 1 (2002) 255506.
[42] S. Woodley, Applications of Evolutionary Computation in Chemistry 110

(2004) 95–132.
[43] D. Deaven, K. Ho, Physical Review Letters 75 (1995) 288–291.
[44] A.R. Oganov, C.W. Glass, The Journal of Chemical Physics 124 (2006) 244704.
[45] N. Chakraborti, International Materials Reviews 49 (2004).
[46] A. Kolmogorov, S. Shah, E. Margine, A. Bialon, T. Hammerschmidt, R. Drautz,

Physical Review Letters 105 (2010) 217003.
[47] T. Bligaard, M. Andersson, K. Jacobsen, H. Skriver, C.H. Christensen, J.K.

Norskov, MRS Bulletin 31 (2006) 986–990.
[48] P. Villars, Journal of Alloys and Compounds 279 (1998) 1–7.
[49] G. Kresse, J. Furthmüller, Computational Materials Science 6 (1996) 15–50.
[50] W. Kohn, L.J. Sham, Physical Review 140 (1965) 1133–1138.
[51] D. Langreth, J. Perdew, Physical Review B 21 (1980) 5469–5493.
[52] J.P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters (1996) 3865–

3868.
[53] J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, The Journal of Chemical Physics

123 (2005) 174101.
[54] D. Rappoport, N.R.M. Crawford, F. Furche, K. Burke, C, Which functional

should I choose?, in: E.I. Solomon, R.A. Scott, R.B. King (Eds.), Computational
Inorganic and Bioinorganic Chemistry, Wiley-Blackwell, 2009.

[55] G. Csonka, J. Perdew, A. Ruzsinszky, P. Philipsen, S. Lebègue, J. Paier, et al.,
Physical Review B 79 (2009) 155107.

[56] F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, G. Ceder, Physical Review
B 70 (2004) 235121.

[57] L. Wang, T. Maxisch, G. Ceder, Physical Review B 73 (2006) 195107.
[58] V.I. Anisimov, J. Zannen, O.K. Andersen, Physical Review B 44 (1991) 943–954.
[59] S.L. Dudarev, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Physical Review B 57

(1998) 1505–1509.
[60] H. Kulik, M. Cococcioni, D. Scherlis, N. Marzari, Physical Review Letters 97

(2006) 103001.
[61] K. Persson, A. Bengtson, G. Ceder, D. Morgan, Geophysical Research Letters 33

(2006).
[62] K. Persson, G. Ceder, D. Morgan, Physical Review B 73 (2006) 115201.
[63] F. Zhou, M. Cococcioni, K. Kang, G. Ceder, Electrochemistry Communications 6

(2004) 1144–1148.
[64] F. Zhou, K. Kang, T. Maxisch, G. Ceder, D. Morgan, Solid State Communications

132 (2004) 181–186.
[65] R.E. Doe, K.A. Persson, G. Hautier, G. Ceder, Electrochemical and Solid-State

Letters 12 (2009) A125.
[66] R.E. Doe, K.A. Persson, Y.S. Meng, G. Ceder, Chemistry of Materials 20 (2008)

5274–5283.
[67] A.D. Becke, Journal of Chemical Physics 98 (1993) 1372.
[68] J. Perdew, M. Ernzerhof, K. Burke, The Journal of Chemical Physics 105 (1996)

9982.
[69] J. Heyd, G.E. Scuseria, M. Ernzerhof, The Journal of Chemical Physics 118

(2003) 8207.
[70] O.A. Vydrov, J. Heyd, A.V. Krukau, G.E. Scuseria, The Journal of Chemical

Physics 125 (2006) 074106.
[71] V.L. Chevrier, S.P. Ong, R. Armiento, M.K.Y. Chan, G. Ceder, Physical Review B

82 (2010) 075122.
[72] S.P. Ong, V. Chevrier, G. Ceder, Physical Review B 83 (2011) 075112.
[73] T. Starkloff, J. Joannopoulos, Physical Review B 16 (1977) 5212–5215.
[74] M.L. Cohen, V. Heine, Solid State Physics 24 (1970) 37–248.
[75] J.C. Phillips, Physical Review 112 (1958) 685–695.
[76] G. Kresse, D. Joubert, Physical Review B 59 (1999) 1758–1775.
[77] P.E. Blochl, Physical Review B 50 (1994) 953–979.
[78] G. Kresse, M. Marsman, J. Furthmüller, VASP the GUIDE (2010).
[79] H.J. Monkhorst, J.D. Pack, Physical Review B 13 (1976) 5188–5192.

http://www.materialsgenome.org
http://icsd.fiz-karlsruhe.de/icsd/
http://icsd.fiz-karlsruhe.de/icsd/
http://caldb.nims.go.jp/
http://databases.fysik.dtu.dk/hlsDB/hlsDB.php
http://databases.fysik.dtu.dk/hlsDB/hlsDB.php
http://gurka.fysik.uu.se/ESP/
http://aflowlib.org
http://gridengine.sunsource.net
http://www.perl.org


2310 A. Jain et al. / Computational Materials Science 50 (2011) 2295–2310
[80] L.A. Montoro, M. Abbate, E.C. Almeida, J.M. Rosolen, Chemical Physics Letters
309 (1999) 14–18.

[81] L.E. Orgel, An Introduction to Transition-Metal Chemistry: Ligand-Field
Theory, Methuen, London, 1960.

[82] E.R. Davidson, Methods in Computational Molecular Physics, Plenum, New
York, 1983.

[83] D. Wood, A. Zunger, Journal of Physics A: Mathematical and General 18
(1985) 1343–1359.

[84] P. Pulay, Chemical Physics Letters 73 (1980) 393–398.
[85] G. Kerker, Physical Review B 23 (1981) 3082–3084.
[86] G. Kresse, J. Furthmüller, Physical Review B 54 (1996) 11169–11186.
[87] P.E. Blöchl, O. Jepsen, O. Andersen, Physical Review B 49 (1994) 16223–

16233.
[88] MySQL, <www.mysql.com>.
[89] Sybase, <www.sybase.com>.
[90] Oracle, <www.oracle.com>.
[91] T. Haerder, A. Reuter, ACM Computing Surveys 15 (1983) 287–317.
[92] E.F. Codd, Communications of the ACM 13 (1970) 377–387.
[93] P.-S.C. Peter, ACM Transactions on Database Systems 1 (1976) 9–36.
[94] H. Burzlaff, Y. Malinovsky, Acta Crystallographica Section A: Foundations of

Crystallography 53 (1997) 217–224.
[95] R. Hundt, J.C. Schön, M. Jansen, Journal of Applied Crystallography 39 (2006)

6–16.
[96] N. Brese, M. O’keeffe, Acta Crystallographica Section B: Structural Science 47

(1991) 192–197.
[97] B. Kang, G. Ceder, Nature 458 (2009) 190–193.
[98] S. Ong, L. Wang, B. Kang, G. Ceder, Chemistry of Materials 20 (2008) 1798–

1807.
[99] Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, et al., Calphad

28 (2004) 79–90.
[100] S. Lany, Physical Review B 78 (2008) 245207.
[101] O. Kubaschewski, C. Alcock, P. Spencer, Materials Thermochemistry, sixth ed.,

Pergamom Press, Oxford, 1993.
[102] C. Franchini, R. Podloucky, J. Paier, M. Marsman, G. Kresse, Physical Review B

75 (2007) 195128.
[103] B. Hammer, L. Hansen, J. Nørskov, Physical Review B 59 (1999) 7413–7421.

http://www.mysql.com
http://www.sybase.com
http://www.oracle.com

	A high-throughput infrastructure for density functional theory calculations
	Introduction
	Data selection
	Data generation
	Functional choice and +U correction
	Pseudopotentials, basis sets, and k-point meshes
	Spin state and magnetic ordering
	Convergence to the electronic ground state and error handling

	Data storage and retrieval
	Data analysis
	Cancelation of errors in GGA and formation enthalpy dependence on reference states
	Methods and results
	Discussion

	Conclusion
	Acknowledgements
	Calculated data sets
	References


