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NMR crystallography has emerged as a promising technique for the determination and refinement of 
atomic coordinates in crystal structures. The crystal structure of compounds containing quadrupolar 
nuclei, such as 27Al, can be improved by directly comparing solid-state NMR measurements to DFT 
computations of the electric field gradient (EFG) tensor. The non-negligible computational cost of 
these first-principles calculations limits the applicability of this method to all but the most well-defined 
structures. We developed a fast, low-cost machine learning model to predict EFG parameters based 
on local structural motifs and elemental parameters. We computed 8081 EFG tensors from 1681 27Al 
crystalline solids using DFT and benchmarked them against 105 experimentally measured 27Al sites. 
Surprisingly, simple local geometric features dominate the predictive performance of the resulting 
random-forest model, yielding an R2 value of 0.98 and an RMSE of 0.61 MHz for CQ, the quadrupolar 
coupling constant. This model accuracy should enable pre-refining future structural assignments before 
finally validating with first-principles calculations. Such a catalogue of 27Al NMR tensors can serve as 
a tool for researchers assigning complex NMR spectra influenced by the nuclear electric quadrupole 
interaction.
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Solid-state nuclear magnetic resonance (SSNMR) is a powerful tool for probing structural differences in local 
environments for both crystalline and amorphous materials. As a local probe of structure, SSNMR can be a 
highly effective characterization tool, because long-range order (often required for diffraction methods) is not 
needed. Consequently, there is broad applicability of NMR across chemical, biological and materials science 
fields, characterizing diverse systems ranging from battery anodes, to biological solids, to zeolites1–6.

The most familiar NMR methods have focused on nuclear spin–½ (I = 1/2) systems, such as  1H and13C; 
however, a majority of NMR-active isotopes are quadrupolar, with I > 1/2, studies on which can yield exquisite 
details about the interaction between the nuclear spin’s electric quadrupole moment and its electric field gradients 
(EFG) produced by the surrounding electron clouds7–14. Even with the revolutionary demonstration of new NMR 
pulse-sequence methods for quadrupolar species in the 1990’s (resulting in highly resolved spectra)15SSNMR 
experiments using quadrupolar probe nuclei are still often plagued by complicated lineshapes that can overlap 
and become difficult to elucidate for structural features. Hence, ‘NMR crystallography’—combining NMR 
with other experimental techniques such as diffraction and computational methods like density functional 
theory (DFT) to achieve a comprehensive, data-consistent picture of a material’s structure16–21 -- have been 
transformative to interpretation of SSNMR of quadrupolar species.

NMR crystallography relies on state-of-the-art first-principles calculations such as DFT. Despite this 
advantage, the computational cost of DFT is relatively large for broad adoption. More importantly, the reliability 
of these calculations in predicting experimental parameters has to be assessed one isotope at a time, with the 
literature focusing on 1H,13C,29Si,31P and17O in various systems22–25.

Literature benchmarks have provided large datasets of computed data available via community databases, 
such as in the Materials Project (materialsproject.org) and the Collaborative Computational Project for NMR 
(CCP-NC)26,27 that can be utilized for advanced machine learning (ML) studies to reduce the computational 
cost. The cubic scaling28 of DFT calculation time with respect to the number of valence electrons in the system 
limits these datasets to focusing on comparatively small unit cells of perfect crystalline materials modeled at a 
temperature of 0 K. Still, appropriately trained ML algorithms have demonstrated the ability to capture local 
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geometry to predict δiso with accuracy close to DFT while requiring only a fraction of computing time28–37. 
While most of the machine learning efforts have been focused on the prediction of δiso, the experimentally 
measured isotropic chemical shift (or σiso, the DFT computed chemical shielding)38–41, there have been fewer 
studies of quadrupolar nuclei that demonstrate the ability of machine learning algorithms in predicting 
expressions of the electric field gradient (EFG) tensor parameters, such as CQ

42–44. NMR of quadrupolar nuclei 
often results in complex lineshapes that must be deconvoluted in order to extract chemical insights from the 
connection between the structure and spectroscopic lineshape. The lineshape itself is representative of the 
electron density distribution surrounding nuclei. The quadrupolar tensor elements provide a complementary 
measurement of small perturbations to local environments, especially when it is hard to distinguish different 
sites based on isotropic chemical shift alone45,46. Thus, the development of a machine learning method for the 
prediction of EFG tensor elements, and expressions of those elements such as CQ, can be highly informative for 
NMR crystallography studies.

Herein, we present a solid-state NMR 27Al benchmarking set with both DFT calculated EFG and magnetic 
shielding tensor elements and their experimentally-measured counterparts, reported in the literature. It is worth 
noting that the most common way for the magnetic shielding tensor elements to be reported is using expressions 
that employ the “Haeberlen” convention. We follow that convention here, for ready comparison between 
computed and experimentally-measured quantities, reporting both computed values and their experimental 
complements for isotropic chemical shielding (σiso) in the Supplementary Information Table S1 and Table S2. 
The full definition of NMR parameters can be found in the Supplementary Information Section V. The DFT 
calculations were performed by two popular DFT packages: Vienna Ab initio Simulation Package (VASP) and 
Cambridge Serial Total Energy Package (CASTEP)47,48. The reliability of DFT predictions of values for σiso, CQ, 
and tensor elements (Vab) for the EFG tensor V in the principal axis system, for 27Al materials was confirmed. 
We further trained a “random-forest” machine learning model to predict the quadrupolar coupling constant 
CQ as a widely-used experimental parameter for compounds containing 4-, 5- and 6-coordinate 27Al sites based 
on a larger DFT calculated dataset with 1681 aluminum-containing crystalline solid materials. To train the 
model, we constructed two sets of features, structural features and elemental features (or sometimes termed 
“alchemical features” in the language of machine learning literature)49based on the crystal structure to represent 
the 27Al local environment. We have found the 27Al CQ value is closely correlated with the geometric properties 
of the next-neighbor bonding environment (surprisingly, regardless of the chemical identity of the bonded 
species). The next-neighbor bonding environment is typically depicted for ease of visualization as a space-filling 
polyhedron. Distortions to the polyhedron given by variance of bond lengths and bond angles, in combination 
with other features denoting elemental variance, produce a simple but effective model.

Results and discussion
27Al DFT benchmarking
We begin by benchmarking the ability of DFT to predict chemical shielding tensors against experimentally 
compiled chemical shift tensors. Unfortunately, in cases where the central transition pattern is strongly 
influenced by the second-order quadrupolar interaction, it can be challenging to extract information on the 
chemical shielding tensor50,51. In particular, many references do not report the anisotropy of the chemical shift 
and the asymmetry parameter from the shielding tensor, because these are difficult to know with precision, 
when quadrupolar interactions are present52leaving only the isotropic chemical shift to compare with our 
computational dataset.

Figure 1 shows the correlation plot between the experimental isotropic chemical shift (δiso) and DFT 
calculated isotropic shielding (σiso) with two different packages (VASP and CASTEP). Both DFT packages 
demonstrate the ability to accurately predict 27Al isotropic chemical shifts with R2 = 0.98 and RMSE = 4.0 ppm 
and 4.4 ppm values, respectively. Due to VASP’s unique definition of the shielding tensor53we have inverted the 
sign of its output to ensure consistency in the interpretation of the plots. Further details on this issue can be 
found in our previous work24. Further, Fig. 1 (c) demonstrates a strong correlation between the two packages 
with R2 = 0.99 and RMSE = 3.0 ppm, suggesting that future calculations with either of these codes should yield 
comparable results. As expected for isotropic chemical shift (shielding), there is grouping or “clustering” of the 
data points, shown in the correlation plots of Fig. 1 based on the local coordination numbers (4, 5 and 6). To 
better understand the performance of DFT within each individual coordinate environment, we also plot the 
correlation between DFT and experiment separately, for reference. Those data are found in the Supplementary 
Information Section IX. Outliers can be identified by plotting the standardized residual values against each 
independent variable (Supplementary Information Figure S1) and identifying those that fall outside of a given 
confidence interval, which for this study was set at 99%. A discussion about the possible origin for such outliers 
can be found in Supplementary Information Section II.

We compared the computed diagonalized EFG tensor components against experimentally reported 
values for CQ and ηQ. The diagonalized EFG tensor for quadrupolar nuclei also can be translated into these 
convenient algebraic expressions, CQ and ηQ, that reflect the appearance of the experimentally-measured 
spectra. For quadrupolar species such as 27Al, both CQ and ηQ values from the EFG tensor are often reported in 
the literature, which enables a more sensible and direct comparison between experimental acquired and DFT 
computed results. (We report in the Supplementary Information, Section X, the principal components of the 
2nd -rank symmetrical EFG tensor, V (i.e., Vxx, Vyy, and Vzz), and comparison to each of the DFT-computed 
components). Figure 2 shows the high degree of correlation between experimentally measured |CQ| and the 
corresponding values calculated by DFT packages (VASP and CASTEP). It is not possible to measure the sign 
of CQ using 1D NMR spectrum and a special double resonance experiment must be used in this case54,55thus 
nearly all experimental papers choose to report the magnitude of CQ. The strong correlation between DFT and 
experiment for both VASP and CASTEP, with R2 = 0.96 for VASP and R2 = 0.95 for CASTEP, demonstrates that 
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DFT has the ability to accurately predict the EFG tensor. We note two outliers using the same confidence interval 
sampling method used previously. Two significantly different CQ values of β-AlF3 were reported by previous 
publications with one stating the CQ of the single 27Al site in β-AlF3 is |3.4 MHz| while the other one stating 
a CQ of |0.8 MHz|.56,57 Our calculation result (-1.31 MHz) suggests that 0.8 MHz lies closer to the computed 
value, and this result is supported by a more recent publication in 201458. The second outlier is the previously 
noted (CaO)4(Al2O3)3 with experimentally-reported CQ = |2.4 MHz| and VASP calculated CQ = 4.41 MHz. It is 
still unclear if our idealized structural model is an accurate representation of the local structural motifs in the 
measured sample of (CaO)4(Al2O3)3 resulting in an inappropriate comparison of NMR parameters. Figure 2 
(c) shows a strong correlation between the two DFT packages, with R2 = 0.99, for CQ, suggesting that future 
calculations with either of these codes should yield comparable results.

The correlation between experimentally-reported ηQ and DFT-computed values for ηQ is shown in Fig. 3. 
Both CASTEP and VASP show a strong correlation, R2 = 0.95, which suggests that these codes remain self-
consistent with respect to the full expression of the EFG tensor. Any correlation between computed and 
experimental values is tenuous, at best, with many outliers. It may not be surprising that the correlation is 
weak, since ηQ values, at present, offer limited utility for benchmarking EFG tensors considering the nature of 
ηQ’s mathematical definition which makes it numerically unstable and prone to small perturbations59,60. Some 
experimentalists resort to assuming an ηQ value based on knowledge of the crystal structures, usually at one 
of the two extremes, as 0 or 161. Consequently, we are demonstrating with these data that the experimentally-
reported asymmetry parameter may not be sufficiently robust for benchmarking comparisons. Nevertheless, 
the high degree of correlation of the individual tensor elements (Vxx, Vyy, Vzz), shown in the Supplementary 

Fig. 1.  (a) VASP calculated σiso (ppm) versus experimental δiso (ppm). (b) CASTEP calculated σiso (ppm) 
versus experimental δiso (ppm). (c) CASTEP calculated σiso (ppm) versus VASP calculated σiso (ppm). In plot 
(a) and (b), the outlier species are highlighted in red. Outliers identified by a standardized residual plot with a 
99% confidence range are shown in red. (see Supplementary Information, Figure S1).
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Information, Section X, shows promise, even when the expression of these elements, ηQ, reflecting the measured 
lineshape is less robust.

Fast prediction of 27Al CQ with machine learning
As shown above, CQ is specified well (predicted well) by DFT and therefore could be a good target for machine 
learning. In the next section we will be focusing on constructing a machine learning model to predict the 
CQ value measured using 27Al SSNMR experimental data based on crystal structures, in order to enable fast 
computation of this informative experimental NMR parameter. We chose CQ here for our model training target 
because it is a frequently reported parameter to represent aspects of the EFG, and its values appear to be robust 
(in contrast with, for example, ηQ.) Hence, this parameter represents an effective way to compare experiments 
with calculated values, and therefore an indicator of accurate machine learning predictions.

By leveraging the strengths of both DFT calculations and machine learning algorithms, we aim to develop a 
powerful predictive tool that bridges the gap between experimental observations and theoretical predictions in 
solid-state NMR spectroscopy of quadrupolar nuclei.

DFT calculated 27Al database
To predict CQ values for  27Al with machine learning, we constructed a VASP-calculated database with 1681 
aluminum-containing solid crystalline materials utilizing the high-throughput DFT framework of the Materials 
Project27. The sites in the database can be classified as belonging to three types of local coordination environments: 
4-coordinate tetrahedral (termed “T:4”), 5-coordinate trigonal bipyramidal (“T:5”) and 6-coordinate octahedral 

Fig. 2.  (a) VASP calculated |CQ| (MHz) versus experimental |CQ| (MHz). (b) CASTEP calculated |CQ| (MHz) 
versus experimental |CQ| (MHz). (c) CASTEP calculated CQ (MHz) versus VASP calculated CQ (MHz). In 
plots (a) and (b), the outlier species are highlighted in red.
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(“O:6”). Unusual geometries such as 2-coordinate linear or bent geometries, 3-coordinate trigonal planar, or 
4-coordinate square planar were excluded.

Feature engineering
One of the most critical aspects of a successful machine learning model lies in “feature engineering.” In terms 
of materials science, features are usually properties related to the materials or values that can be derived or 
calculated based on materials’ structural or chemical information62,63. In terms of these chemical entities, our 
effort is to select features that provide a means for recognizing patterns in the data, and to correlate an NMR 
measurement with one or more specific chemical (or structural) properties. When successfully identified, 
features, either singly or combined, can form a numerical representation of the material, usually expressed in 
the form of a 1D vector. For machine learning prediction, these numerical representations need to capture the 
variance of the target parameter across different materials to be successful. The process of feature engineering 
can be as simple as collecting the atomic numbers (i.e., the chemical identity of an atom participating in a bond), 
while for many data sets, more complex constructed features are needed64.

There has been considerable research on feature engineering for materials science to predict NMR 
parameters such as the use of smooth overlap of atomic positions (SOAP) descriptors49,65Coulomb matrix34 and 
Behler − Parrinello symmetrical functions (BFPS)66. While these features are capable of describing the variance 
of geometries for structures with different NMR parameters such as isotropic chemical shifts/shieldings, they 
were designed to be general in order to be useful in many different types of applications (beyond NMR)67. For 
specific targets which aim to extract highly localized perturbations (as in NMR spectroscopy), these features 

Fig. 3.  Correlation of experimentally reported values for ηQ with DFT calculated ηQ. (a) VASP calculated 
versus experimentally-reported values; (b) CASTEP-calculated versus experimentally-reported values; and (c) 
correlation of CASTEP versus VASP values for ηQ.
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may yield suboptimal results. For example, the size of a SOAP kernel scales quadratically with the number of 
elemental species considered, which makes it slow to process when applied to datasets with a variety of elements. 
Instead of using complex descriptors like SOAP, we can employ customized, NMR-specific features to streamline 
and optimize our feature set, for instance, based on the local environment of the target nucleus (e.g 27Al) under 
study. This approach not only enhances the model’s performance but also improves computational efficiency.

Here we propose two types of customized features to predict the CQ of the EFG tensor: structural features, 
and elemental features. Structural features are extracted from the local geometry of the target nucleus alone, 
without taking into consideration any difference between neighboring atomic species. Significant research in 
solid-state 27Al NMR of aluminum-containing materials has focused on the empirical correlation between NMR 
measurable parameters such as CQ and simple descriptive parameters derived from the local geometry68–72. 
It appears that many of these empirical correlations are particularly useful for the recent efforts of building 
computational predictive models for NMR spectroscopy. For example, Ghose and Tsang68 defined the 
longitudinal strain and the shear strain to quantify the distortion of the local polyhedron from the Platonic 
solid-like forms (i.e., with identical faces of the geometric solid). Later Baur et al. 69 suggested a distortion index 
(DI) to measure the angular distortion of the local geometry. These parameters were shown to have a high level 
of correlation with CQ value.

It is important to highlight that this is not the only approach to such EFG predictions. Autschbach and 
coworkers developed a method employing atomic orbitals (AOs) and localized molecular orbitals (MOs) for 
multiple systems such as13C, 33S, 14N, 27Al, 93Nb and 99Ru. In addition to empirical correlations, Autschbach 
et al.13 analyzed the AO contributions to the EFG through a semi-quantitative exploration using an AO 
contribution model and quantitatively with first-principles computations accompanying analyses of the EFG 
tensor in terms of localized MOs. Determining ways to capture features via molecular orbitals would be an 
interesting comparison to the method we are employing here, but ultimately is entirely separate and beyond the 
scope of what we are presenting here.

Using the DI parameter introduced by Baur as motivation, we implemented this DI parameter in Python 
along with eight other features derived from local polyhedral geometry: namely the maximum, minimum, 
standard deviation and mean of the first-order bond lengths (fbl) and bond angles (fba). A full list of structural 
features and their corresponding abbreviations can be found in Supplementary Information Table S6. Figure 4 
shows a correlation “heat map” between the DFT-calculated NMR parameter CQ and these structural features. 
(Details on “feature importance” can be found in the Supplementary Information, Section VII). The standard 
deviation of the first-order bond length “std(fbl)” has a high level of correlation with CQ, which illustrates 
the power of such simple features when used for the right target. The distortion index (DI) has the second-
largest correlation with CQ. The std(fbl) and DI characterize the distortion of the local polyhedron from its 
ideal (Platonic) form (e.g. a perfect octahedron or tetrahedron) in terms of bond length and bond angle, 
respectively. We found these two features are complementary to each other in the prediction of CQ. More details 
about feature complementarity can be found in the Supplementary Information, Section IV. The correlation 
matrix also reveals strong interrelationships among the structural features themselves, suggesting a potential 
redundancy in the information they convey—commonly referred to as multicollinearity in machine learning. 
While multicollinearity may detrimentally affect the performance of linear models, it typically does not exert a 
significant influence on the performance of tree-based models, such as random forests.

Using just the structural features, we trained a random forest model for 27Al CQ which derives the target 
value by performing data segmentation with an ensemble of decision trees73. Figure 5 shows the correlation 
between the calculated DFT 27Al CQ and the model-predicted CQ. The plot shows that the set of simple structural 
features can already predict CQ with a R2 of 0.95 and RMSE of 0.77 MHz. We do note that there are still a number 
of outliers (better depicted in Supplementary Information Section II) suggesting characteristics other than 
structural features can play a significant role in dictating NMR properties. Also, since the majority of the 27Al 
sites in the dataset are only coordinated with oxygen, to further test the predictive performance of the model 
based on the structural features with more atomic variance, we rebalanced the data using the SMOTE (Synthetic 
Minority Oversampling) technique74 to oversample the minority group (sites with non-oxygen neighbors) and 
undersample the majority group (sites with pure oxygen neighbors), then compare the model before and after 
the rebalance. More details on implementation of SMOTE can be found in the Supplementary Information 
Section VIII.

Expanding this analysis further, it is expected that any EFG tensor is not only related to the geometry of 
the local environment but is also strongly influenced by the properties of surrounding atomic species because 
it is derived from the electron density distribution. To further improve the prediction of CQ, we therefore need 
to represent the variation in local chemical composition. We selected twelve elemental properties such as 
atomic number, electron affinity, and other properties (Supplementary Information Table S7) and utilized three 
treatments of those elemental features, grouping them into 3 features sets, shown schematically in Fig. 6 (e.g., 
“Simple statistics…”, “Distance normalized deviation…” and “Pairwise atomic properties…”).

We first obtain the twelve elemental properties for each atom in the first coordination shell around the 27Al 
sites. The first set of features is represented by simple statistics of each of the elemental properties: its maximum, 
its minimum, standard deviation, and average value. The second set of features measures the differences between 
the neighbor atoms and the core atom (aluminum in our case).

	

∑
n

|pc − pn|
N · rcn

� (1)
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Here pc and pn are the atomic properties of the central atom (c) and coordinate atoms (n); N is the coordination 
number; rcn is the corresponding bond length.

For the third set of features, we draw inspiration from the classic Coulomb matrix. For each of the twelve 
elemental properties, a matrix considering all the atoms within the first neighbor shell was generated.

	
Mij =

{
1, i = j
pipj
rij2 , i ̸= j � (2)

Like a Coulomb matrix, this feature also considers the pairwise comparison of the selected properties between 
two atoms in the lattice. One challenge is that when the number of atoms considered is different, the size of the 
resultant matrix will also be different. In our specific case, the size of the matrix for 4-, 5- and 6-coordinated Al 
sites will be different. This is troublesome for machine learning predictions because most algorithms require the 
dimensionality of the feature space to be uniform across all the samples. To solve the problem, we decompose the 
matrix with singular value decomposition (SVD) and use 5 singular values, the maximum number of possible 
singular values for our system, as our features instead of the whole matrix.

We retrained the random forest model with both structural features and elemental features 
(structural + elemental) which improves the model accuracy to R2 = 0.98 and RMSE = 0.61  MHz for CQ. To 
further assess the performance, we also compared our models with a benchmark using the SOAP features49,65. 
The SOAP model was also trained with a random forest algorithm based on the same set of data as the other 
two shown. The only difference is the features used for training. Instead of using our structural and chemical 
features, we use SOAP features generated by an open-source package Dscribe63which results in a big feature 

Fig. 4.  Correlation heat map across CQ and structural features. “fbl” and “fba” here are abbreviations of the 
first-order bond length and the first-order bond angle. The entries are arranged to match the color gradient of 
the CQ row/column. The number in each block is Pearson’s correlation coefficient (PCC).
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set of 4,163,280. Figure 7 shows a performance comparison between models based on our proposed features 
(structural, structural + elemental) and that based on SOAP. As shown in Fig. 7a, both of our proposed features 
perform significantly better than SOAP, irrespective of the size of the sample. Structural + elemental features 
perform better than structural features alone when the sample size gets larger, which gives confidence for using 
this combination of features for very large datasets. Figure 7b and d show the correlation plots between the VASP-
calculated and the machine learning-predicted |CQ| values based on the three models. The structural + elemental 
model significantly reduces the number of extreme outliers, evident in both Fig. 7c and d. The SOAP model 
achieves a usable performance benchmark of R2 = 0.92 and RMSE = 0.97 MHz.

It is noteworthy, despite the significantly increased computational cost of the SOAP features, this method 
lacks the same degree of accuracy in comparison to our straightforward feature set. Most importantly, the SOAP 
features produce some strong outliers. Consequently, we show that a simple set of features that are customized 
for a specific problem, such as NMR parameter predictions, can outperform universal features because this 
method excludes unnecessary information that could significantly decrease the performance of the model in 
terms of both efficiency and accuracy.

Conclusions
By studying the correlation between experimentally measured 27Al NMR parameters and DFT calculated values 
with a relatively large benchmarking set, we can confirm that DFT calculations are accurate in predicting isotropic 
chemical shielding σiso and quadrupolar coupling constant |CQ| for crystalline materials that contain aluminum 
species. Similar to our previous benchmarking effort on spin ½ nuclei for 29Si, DFT predictions of asymmetry 

Fig. 5.  Comparison between random forest-predicted 27Al CQ with DFT-calculated 27Al CQ for aluminum-
containing compounds. The random forest model was trained with structural features only (i.e., not with 
elemental properties). The size of the test set is 1171 individual 27Al sites.
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parameters (both ηCS and ηQ) are shown to be more prone to error due to the sensitivity of this parameter to 
slight variations in local geometry and the difficulty of determining η experimentally with precision.

Having shown DFT’s accuracy at predicting 27Al NMR parameters, we built a simple machine learning model 
to predict 27Al CQ values based on a large VASP-calculated NMR dataset of 1681 aluminum-containing solid 
materials. The structural and elemental features that we selected were proven to be effective in predicting CQ, 
likely by capturing the variation of local environments to which experimentally-measured NMR parameters are 
very sensitive. It is surprising for us to find that among all the features, the pure geometrical variations such as 
that of bond lengths are the dominant features for CQ prediction. This demonstration shows the possibility of 
building simple but effective features for the prediction of materials’ properties, instead of using larger universal 
features.

Also, we can get a better understanding of the relationship between local geometry and SSNMR spectra that, 
specifically, SSNMR spectra for quadrupolar nuclei are determined primarily by local geometry distortions. 
These data are publicly available for further investigation, via Materials Project. Our final model was proven to be 
effective in predicting |CQ| for 4-, 5- and 6-coordinate aluminum sites with R2 = 0.98 and RMSE = 0.61 MHz. This 
accuracy is comparable with the accuracy of DFT calculations versus experiment (RMSE = 0.70 MHz for VASP), 
thus making this machine learning method a fast and agile complement to DFT calculations.

Methods
Data sets
Benchmarking Data: We have collected experimental 27Al NMR parameters from the literature on 56 different 
crystalline materials, accounting for 105 unique sites, including a few repeated structures with independent 
measurements. The distribution of coordination number of the  27Al sites are: 41 for 4-coordinate, 9 for 
5-coordinate, and 55 for 6-coordinate. All the parameters reported were collected via SSNMR employing either 
magic-angle spinning (MAS) or multiple-quantum MAS (MQMAS) in the experiments. All of the structures 
were calculated with both VASP and CASTEP.

Machine learning data: For machine learning model training, a larger dataset of DFT-computed 27Al NMR 
parameters was constructed by VASP calculation. The dataset is composed of 1681 aluminum-containing 
structures which correspond to 8081 27Al sites (5852 after removing duplicates). The coordinating environment 
of the 27Al sites was confined to 4-coordinate (4696 sites), 5-coordinate (202 sites), or 6-coordinate aluminum 
(3183 sites). There are 104 different compositions in terms of the first coordination sphere (e.g., neighboring 

Fig. 6.  Illustration of the feature engineering process for element-specific features. A list of atomic properties 
for each atom within the first coordination shell was collected and then transferred into 3 sets of features: 
simple statistics of atomic properties, distance-normalized deviation of those atomic properties, and pairwise 
atomic properties matrices. * pc and pn are the atomic properties of the central atom, c, and coordinate atom, n; 
N is the coordination number; rcn is the corresponding bond length. †pn are the atomic properties of the atoms 
within the first coordination shell; rmn are the inter-atomic distances between atom m and atom n.
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heteronuclear species) of 27Al sites in the dataset. The histogram of the 10 most commonly-found compositions 
is reported in the Supplementary Information Figure S6(b). All the crystal structures were obtained from the 
Materials Project and were geometry optimized before NMR calculations.

DFT details
DFT calculations with CASTEP were performed within the Perdew-Burke-Enzerhof (PBE) Generalized Gradient 
Approximation (GGA) formulation of the exchange-correlation functional. These were performed in two steps: 
an initial geometry optimization where the lattice was allowed to adjust, followed by an NMR calculation on 
the relaxed structure. On-the-fly ultra-soft pseudopotentials were used as an approximation of nuclear and 
core electron interactions. Convergence tests were performed on γ-LiAlO2 to find optimal energy cutoffs and 
k-points. See Supplementary Information for more details. It was determined that 750 eV as an energy cutoff 
with Monkhorst-Pack grid of 5 × 4 × 4 was enough to converge the NMR calculations to a single value.

DFT calculations were also performed using the projector augmented wave (PAW) method48,75 as 
implemented in the Vienna Ab Initio Simulation Package (VASP)76–78 within the PBE-GGA) formulation of 
the exchange-correlation functional79. A cut-off for the plane waves of 520 eV was used and a uniform k-point 
density of approximately 1,000/atom was employed. We note that the computational and convergence parameters 
were chosen in compliance with the settings used in the Materials Project27 to enable direct comparisons with 
the large set of available Materials Project data.

Machine learning details
The RandomForestRegressor object from the Scikit-Learn library (https://scikit-learn.org/stable/) was employed 
to construct the random forest model. A subset comprising 20% (1171 sites) of the overall dataset was randomly 
allocated to serve as the test set, while the remaining 80% (4681) was utilized for training purposes. The model 
underwent training utilizing this training dataset and subsequently, its performance was assessed using the 
designated 20% test dataset. Hyperparameter optimization was conducted via the RandomizedSearchCV 
method provided by Scikit-Learn, incorporating a 5-fold cross-validation strategy across 100 iterations. For 
additional information regarding the hyperparameter search range, please refer to the code repository at github.
com/wushanyun64/27Al_CQ_prediction.

Fig. 7.  Comparison of the random forest models trained based on three different feature sets 
(structural + elemental, structural and SOAP features). (a) The learning curve plot of model performance (Test 
RMSE) over sample size for all three models. (b–d) Correlations between random forest-predicted and VASP-
calculated 27Al |CQ| values for aluminum-containing compounds. The random forest model was trained with: 
(b) structural and elemental features, (c) structural features only, and (d) SOAP features.

 

Scientific Reports |        (2025) 15:26456 10| https://doi.org/10.1038/s41598-025-10017-x

www.nature.com/scientificreports/

https://scikit-learn.org/stable/
http://www.nature.com/scientificreports


Data availability
All the geometry optimized structures used for NMR calculation in this paper are included in the Supplementa-
ry Information as Supplementary Data. In addition, all data for the benchmarking of the computed NMR tensors 
including structures, spectra, computed, and experimental tensors are available via the MPContribs platform on 
the Materials Project at https://mpcontribs.org/. The larger database of computed NMR tensors are available via 
the Materials Project at https://materialsproject.org/.

Received: 18 March 2025; Accepted: 1 July 2025

References
	 1.	 Xu, J., Wang, Q. & Deng, F. Metal active sites and their catalytic functions in zeolites: insights from Solid-State NMR spectroscopy. 

Acc. Chem. Res. 52, 2179–2189 (2019).
	 2.	 Brouwer, D. H. et al. Solid-state 29Si NMR spectra of pure silica zeolites for the international zeolite association database of zeolite 

structures. Microporous Mesoporous Mater. 297, 110000 (2020).
	 3.	 Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 99–102 

(2002).
	 4.	 Otting, G. Protein NMR using paramagnetic ions. Annual Rev. Biophys. 39, 387–405 (2010).
	 5.	 Wickramasinghe, N. P. et al. Nanomole-scale protein solid-state NMR by breaking intrinsic 1 H T1 boundaries. Nat. Methods. 6, 

215–218 (2009).
	 6.	 Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. 

Mater. 9, 504–510 (2010).
	 7.	 Ashbrook, S. E. Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei. Phys. Chem. Chem. Phys. 11, 6892–6905 

(2009).
	 8.	 Ashbrook, S. E. & Sneddon, S. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J. Am. 

Chem. Soc. 136, 15440–15456 (2014).
	 9.	 Holmes, S. T. & Schurko, R. W. Refining crystal structures with quadrupolar NMR and Dispersion-Corrected density functional 

theory. J. Phys. Chem. C. 122, 1809–1820 (2018).
	10.	 Widdifield, C. M. & Bryce, D. L. Crystallographic structure refinement with quadrupolar nuclei: A combined solid-state NMR and 

GIPAW DFT example using MgBr2. Phys. Chem. Chem. Phys. 11, 7120–7122 (2009).
	11.	 Perras, F. A., Korobkov, I. & Bryce, D. L. NMR crystallography of sodium diphosphates: combining dipolar, shielding, quadrupolar, 

diffraction, and computational information. CrystEngComm 15, 8727–8738 (2013).
	12.	 Bryce, D. L. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables. 

IUCrJ 4, 350–359 (2017).
	13.	 Autschbach, J., Zheng, S. & Schurko, R. W. Analysis of electric field gradient tensors at quadrupolar nuclei in common structural 

motifs. Concepts Magn. Reson. Part. Bridg Educ. Res. 36, 84–126 (2010).
	14.	 Akitt, J. W. & McDonald, W. S. Arrangements of ligands giving low electric field gradients. Journal of Magnetic Resonance () 58, 

401–412 (1984).) 58, 401–412 (1984). (1969).
	15.	 Medek, A., Harwood, J. S. & Frydman, L. Multiple-Quantum Magic-Angle spinning NMR: A new method for the study of 

quadrupolar nuclei in solids. J. Am. Chem. Soc. 117, 12779–12787 (1995).
	16.	 Hodgkinson, P. NMR crystallography of molecular organics. Progress Nucl. Magn. Reson. Spectrosc. 118–119, 10–53 (2020).
	17.	 Ashbrook, S. E. & McKay, D. Combining solid-state NMR spectroscopy with first-principles calculations-a guide to NMR 

crystallography. Chem. Commun. 52, 7186–7204 (2016).
	18.	 Martineau, C. NMR crystallography: applications to inorganic materials. Solid State Nucl. Magn. Reson. 63–64, 1–12 (2014).
	19.	 Falls, Z., Zurek, E. & Autschbach, J. Computational prediction and analysis of the 27Al solid-state NMR spectrum of 

Methylaluminoxane (MAO) at variable temperatures and field strengths. Phys. Chem. Chem. Phys. 18, 24106–24118 (2016).
	20.	 Harris, R. K., Wasylishen, R. E. & Duer, M. J. NMR Crystallography (Wiley, 2012).
	21.	 Taulelle, F. Fundamental principles of NMR crystallography. eMagRes 2009, 245–262 (2009).
	22.	 Hartman, J. D., Kudla, R. A., Day, G. M., Mueller, L. J. & Beran, G. J. O. Benchmark fragment-based 1H, 13 C, 15 N and 17O 

chemical shift predictions in molecular crystals. Phys. Chem. Chem. Phys. 18, 21686–21709 (2016).
	23.	 Shenderovich, I. G. Experimentally established benchmark calculations of 31P NMR quantities. Chemistry–Methods 1, 61–70 

(2021).
	24.	 Sun, H. et al. Enabling materials informatics for 29Si solid-state NMR of crystalline materials. NPJ Comput. Mater 6, (2020).
	25.	 Benassi, E. Benchmarking of density functionals for a soft but accurate prediction and assignment of 1H and 13 C NMR chemical 

shifts in organic and biological molecules. J. Comput. Chem. 38, 87–92 (2017).
	26.	 Hodgkinson, P., Ashbrook, S. E., Morris, A. & Yates, J. R. Collaborative Computational Project for NMR Crystallography. (2013). 

www.ccpnc.ac.uk
	27.	 Jain, A. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL 

Materials 1, (2013).
	28.	 Paruzzo, F. M. et al. Chemical shifts in molecular solids by machine learning. Nat. Commun. 9, 4501 (2018).
	29.	 Cordova, M. et al. Structure determination of an amorphous drug through large-scale NMR predictions. Nat. Commun. 12, 2964 

(2021).
	30.	 Gerrard, W. et al. IMPRESSION-prediction of NMR parameters for 3-dimensional chemical structures using machine learning 

with near quantum chemical accuracy. Chem. Sci. 11, 508–515 (2020).
	31.	 Venetos, M. C., Dwaraknath, S. & Persson, K. A. Effective local geometry descriptor for29Si NMR Q4Anisotropy. J. Phys. Chem. C. 

125, 19481–19488 (2021).
	32.	 Chaker, Z., Salanne, M., Delaye, J. M. & Charpentier, T. NMR shifts in aluminosilicate glasses via machine learning. Phys. Chem. 

Chem. Phys. 21, 21709–21725 (2019).
	33.	 Liu, S. et al. Multiresolution 3D-DenseNet for chemical shift prediction in NMR crystallography. J. Phys. Chem. Lett. 10, 4558–

4565 (2019).
	34.	 Rupp, M., Tkatchenko, A. & Müller, K. R. Von lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with 

machine learning. Phys. Rev. Lett. 108, 058301 (2012).
	35.	 Li, D. W., Hansen, A. L., Bruschweiler-Li, L., Yuan, C. & Brüschweiler, R. Fundamental and practical aspects of machine learning 

for the peak picking of biomolecular NMR spectra. J. Biomol. NMR. 76, 49–57 (2022).
	36.	 Cobas, C. NMR signal processing, prediction, and structure verification with machine learning techniques. Magn. Reson. Chem. 

58, 512–519 (2020).
	37.	 Gao, P., Zhang, J., Peng, Q., Zhang, J. & Glezakou, V. A. General protocol for the accurate prediction of molecular 13 C/1H NMR 

chemical shifts via machine learning augmented DFT. J. Chem. Inf. Model. 60, 3746–3754 (2020).

Scientific Reports |        (2025) 15:26456 11| https://doi.org/10.1038/s41598-025-10017-x

www.nature.com/scientificreports/

https://mpcontribs.org
https://materialsproject.org
http://www.ccpnc.ac.uk
http://www.nature.com/scientificreports


	38.	 Gaumard, R. et al. Regression machine learning models used to predict DFT-Computed NMR parameters of zeolites. Computation 
10, 74 (2022).

	39.	 Cordova, M. et al. A machine learning model of chemical shifts for chemically and structurally diverse molecular solids. J. Phys. 
Chem. C. 126, 16710–16720 (2022).

	40.	 Lin, M. et al. A machine learning protocol for revealing ion transport mechanisms from dynamic NMR shifts in paramagnetic 
battery materials. Chem. Sci. 13, 7863–7872. https://doi.org/10.1039/d2sc01306a (2022).

	41.	 Venetos, M. C., Wen, M. & Persson, K. A. Machine learning full NMR chemical shift tensors of silicon oxides with equivariant 
graph neural networks. J. Phys. Chem. A. 127, 2388–2398 (2023).

	42.	 Charpentier, T. First-principles NMR of oxide glasses boosted by machine learning. Faraday Discuss. 255, 370–390 (2025).
	43.	 Gu, X., Myung, Y., Rodrigues, C. H. M. & Ascher, D. B. EFG-CS: predicting chemical shifts from amino acid sequences with 

protein structure prediction using machine learning and deep learning models. Protein Sci. 33, e5096 (2024).
	44.	 Shakiba, M., Philips, A. B., Autschbach, J. & Akimov, A. V. Machine learning mapping approach for computing spin relaxation 

dynamics. J. Phys. Chem. Lett. 16, 153–162 (2024).
	45.	 Sun, H. et al. Structural investigation of silver vanadium phosphorus oxide (Ag2VO2PO4) and its reduction products. Chem. 

Mater. 33, 4425–4434 (2021).
	46.	 Kobera, L. et al. The nature of chemical bonding in Lewis adducts as reflected by 27Al NMR quadrupolar coupling constant: 

combined Solid-State NMR and quantum chemical approach. Inorg. Chem. 57, 7428–7437 (2018).
	47.	 Segall, M. D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14, 2717–2744 

(2002).
	48.	 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 

(1999).
	49.	 De, S., Bartók, A. P., Csányi, G. & Ceriotti, M. Comparing molecules and solids across structural and alchemical space. Phys. Chem. 

Chem. Phys. 18, 13754–13769 (2016).
	50.	 Bryce, D. L. Tensor Interplay (John Wiley and Sons Ltd.: Chichester,, 2009).
	51.	 Mueller, L. J. Tensors and rotations in NMR. Concepts Magn. Reson. Part. Bridg Educ. Res. 38 A, 221–235 (2011).
	52.	 Schurko, R. W., Wasylishen, R. E. & Phillips, A. D. A definitive example of aluminum-27 chemical shielding anisotropy. J. Magn. 

Reson. 133, 388–394 (1998).
	53.	 LCHIMAG - Vaspwiki. ​h​t​t​p​s​:​​​/​​/​c​m​​s​.​m​p​​i​.​u​n​i​v​​i​e​​.​​a​c​​.​a​​t​/​w​​i​k​​i​/​i​​n​d​e​​x​​.​p​h​p​​/​L​C​H​I​M​A​G
	54.	 Perras, F. A. & Bryce, D. L. Residual dipolar coupling between quadrupolar nuclei under magic-angle spinning and double-rotation 

conditions. J. Magn. Reson. 213, 82–89 (2011).
	55.	 Harris, R. K. & Olivieri, A. C. Quadrupolar effects transferred to spin-12 magic-angle spinning spectra of solids. Progress Nucl. 

Magn. Reson. Spectrosc. 24, 435–456 (1992).
	56.	 Dirken, P. J., Jansen, J. B. H. & Schuiling, R. D. Influence of octahedral polymerization on 23Na and 27Al MAS NMR in alkali 

fluoroaluminates. Am. Mineral. 77, 718–724 (1992).
	57.	 Chupas, P. J., Ciraolo, M. F., Hanson, J. C. & Grey, C. P. In situ X-ray diffraction and solid-state NMR study of the fluorination of 

γ-Al2O3 with HCF2Cl. J. Am. Chem. Soc. 123, 1694–1702 (2001).
	58.	 Sadoc, A. et al. NMR parameters in column 13 metal fluoride compounds (AlF3, GaF3, InF3 and TlF) from first principle 

calculations. Solid State Nucl. Magn. Reson 59–60, (2014).
	59.	 Pooransingh, N. et al. 51V solid-state magic angle spinning NMR spectroscopy and DFT studies of oxovanadium(V) complexes 

mimicking the active site of vanadium haloperoxidases. Inorg. Chem. 42, 1256–1266 (2003).
	60.	 Schweitzer, A. et al. 51V solid-state NMR investigations and DFT studies of model compounds for vanadium haloperoxidases. 

Solid State Nucl. Magn. Reson. 34, 52–67 (2008).
	61.	 Hovis, G. L., Spearing, D. R., Stebbins, J. F., Roux, J. & Clare, A. X-ray powder diffraction and 23Na, 27Al, and 29Si MAS-NMR 

investigation of nepheline-kalsilite crystalline solutions. Am. Mineral. 77, 19–29 (1992).
	62.	 Ward, L. et al. Matminer: an open source toolkit for materials data mining. Comput. Mater. Sci. 152, 60–69 (2018).
	63.	 Himanen, L. et al. DScribe: library of descriptors for machine learning in materials science. Comput. Phys. Commun. 247, 106949 

(2020).
	64.	 Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties 

of inorganic materials. NPJ Comput. Mater. 2, 1–7 (2016).
	65.	 Jäger, M. O. J., Morooka, E. V., Canova, F., Himanen, F., Foster, A. S. & L. & Machine learning hydrogen adsorption on nanoclusters 

through structural descriptors. NPJ Comput. Mater. 4, 37 (2018).
	66.	 Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. Journal Chem. Physics 

134, (2011).
	67.	 Schmidt, J., Marques, M. R., Botti, S. & Marques, M. A. Recent advances and applications of machine learning in solid-state 

materials science. Npj Comput. Materials 5, (2019).
	68.	 Ghose & Tsang, T. Structural dependence of quadrupole coupling constant e2qQ/h for 27Al and crystal field parameter D for 

Fe3 + in aluminosilicates. Am. Mineralogist: J. Earth Planet. Mater. 58, 748–755 (1973).
	69.	 Baur, W. H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. B. 30, 

1195–1215 (1974).
	70.	 Cumby, J. & Attfield, J. P. Ellipsoidal analysis of coordination polyhedra. Nat. Commun. 8, 14235 (2017).
	71.	 Padro, D. et al. Variations of titanium interactions in solid state NMR-correlations to local structure. J. Phys. Chem. B. 106, 13176–

13185 (2002).
	72.	 MacKenzie, K. J. D. & Smith, M. E. Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials. Elsevier vol. 6 

(2002).
	73.	 Breiman, L. Random forests. Mach Learn 45, (2001).
	74.	 Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. 

Res. 16, 321–357 (2002).
	75.	 Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).
	76.	 Kresse, G. & Hafner, J. Ab. Initio Molecular Dynamics for Liquid Metals. vol. 47.
	77.	 Kresse, G. & Furthmüller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. 

Rev. B. 54, 11169–11186 (1996).
	78.	 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave 

basis set. Comput. Mater. Sci. 6, 15–50 (1996).
	79.	 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple 3865 (1996).

Acknowledgements
This work is supported by the U.S. National Science Foundation (NSF), Award 1640899 and Award 2004915. 
This work made use of computational resources and software infrastructure provided through the Materials 
Project, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, 
Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 (Materials Project 

Scientific Reports |        (2025) 15:26456 12| https://doi.org/10.1038/s41598-025-10017-x

www.nature.com/scientificreports/

https://doi.org/10.1039/d2sc01306a
https://cms.mpi.univie.ac.at/wiki/index.php/LCHIMAG
http://www.nature.com/scientificreports


program KC23MP). Additional computational resources were provided by the Extreme Science and Engineer-
ing Discovery Environment (XSEDE), which is supported by the NSF (ACI-1053575), as well as the Savio com-
putational cluster resource provided by the Berkeley Research Computing program at the University of Califor-
nia, Berkeley. We extend our gratitude to Michael E. West for his contributions to CASTEP calculations during 
the early stages of this project.

Author contributions
Hayes and Dwaraknath led the project examining NMR tensors and conducting DFT calculations from Materi-
als Project datasets, and both co-authored the manuscript. Sun (first author) conducted CASTEP calculations, 
data curation of solid-state NMR data, construction and testing of the machine learning models, and he wrote 
large portions of the manuscript; Lin contributed part of the DFT (VASP/CASTEP) computations. Persson is the 
lead of the Materials Project and contributed time and effort to direct computational efforts.

Declarations

Competing interests
The authors declare no competing interests.

Inclusion & ethics statement
This research was conducted in alignment with the principles outlined in the Global Code of Conduct 
for Equitable Research Partnerships. The collaboration involved contributors from institutions in diverse 
geographic and socioeconomic contexts, ensuring an equitable distribution of intellectual and practical 
contributions. Each author has actively participated in the research process, from study design to manuscript 
preparation, in a manner that respects their expertise and institutional responsibilities.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​0​0​1​7​-​x​​​​​.​​

Correspondence and requests for materials should be addressed to S.D. or S.E.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:26456 13| https://doi.org/10.1038/s41598-025-10017-x

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-10017-x
https://doi.org/10.1038/s41598-025-10017-x
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Machine learning of ﻿27﻿Al NMR electric field gradient tensors for crystalline structures from DFT
	﻿Results and discussion
	﻿﻿27﻿Al DFT benchmarking
	﻿Fast prediction of ﻿27﻿Al C﻿Q﻿ with machine learning
	﻿DFT calculated ﻿27﻿Al database
	﻿Feature engineering

	﻿Conclusions
	﻿Methods
	﻿Data sets
	﻿DFT details
	﻿Machine learning details

	﻿References


