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A framework to evaluate machine learning 
crystal stability predictions
 

Janosh Riebesell    1,2 , Rhys E. A. Goodall    1, Philipp Benner    3, 
Yuan Chiang2,4, Bowen Deng    2,4, Gerbrand Ceder    2,4, Mark Asta2,4, 
Alpha A. Lee1, Anubhav Jain    2 & Kristin A. Persson    2,4 

The rapid adoption of machine learning in various scientific domains 
calls for the development of best practices and community agreed-upon 
benchmarking tasks and metrics. We present Matbench Discovery as an 
example evaluation framework for machine learning energy models, here 
applied as pre-filters to first-principles computed data in a high-throughput 
search for stable inorganic crystals. We address the disconnect between 
(1) thermodynamic stability and formation energy and (2) retrospective 
and prospective benchmarking for materials discovery. Alongside this 
paper, we publish a Python package to aid with future model submissions 
and a growing online leaderboard with adaptive user-defined weighting 
of various performance metrics allowing researchers to prioritize the 
metrics they value most. To answer the question of which machine learning 
methodology performs best at materials discovery, our initial release 
includes random forests, graph neural networks, one-shot predictors, 
iterative Bayesian optimizers and universal interatomic potentials. We 
highlight a misalignment between commonly used regression metrics and 
more task-relevant classification metrics for materials discovery. Accurate 
regressors are susceptible to unexpectedly high false-positive rates if those 
accurate predictions lie close to the decision boundary at 0 eV per atom 
above the convex hull. The benchmark results demonstrate that universal 
interatomic potentials have advanced sufficiently to effectively and 
cheaply pre-screen thermodynamic stable hypothetical materials in future 
expansions of high-throughput materials databases.

The challenge of evaluating, benchmarking and then applying the 
rapid evolution of machine learning (ML) models is common across 
scientific domains. Specifically, the lack of agreed-upon tasks and 
datasets can obscure the performance of the model, making com-
parisons difficult. Materials science is one such domain, where in the 
last decade, the numbers of ML publications and associated models 
have increased dramatically. Similar to other domains, such as drug 
discovery and protein design, the ultimate success is often associated 

with the discovery of a new material with specific functionality. In the 
combinatorial sense, materials science can be viewed as an optimiza-
tion problem of mixing and arranging different atoms with a merit 
function that captures the complex range of properties that emerge. 
To date, ~105 combinations have been tested experimentally1,2, ~107 have 
been simulated3–7 and upwards of ~1010 possible quaternary materials 
are allowed by electronegativity and charge-balancing rules8. The space 
of quinternaries and higher is even less explored, leaving vast numbers 
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comparison across methodologies has been lacking, preventing clear 
identification of optimal approaches for materials discovery at scale. 
Our work aims to identify the state-of-the-art model by proposing an 
evaluation framework that closely simulates a real-world discovery 
campaign guided by ML models. Our analysis reveals that universal 
interatomic potentials (UIPs) surpass all other methodologies we 
evaluated in terms of both accuracy and robustness.

We hope that creation of benchmarks following this framework 
creates a pathway through which interdisciplinary researchers with 
limited materials science backgrounds can contribute usefully to 
model architecture and methodology development on a relevant task 
and thereby aid progress in materials science. This work expands on 
initial research conducted in J.R.’s PhD thesis25.

Evaluation framework for materials discovery
This work proposes a benchmark task designed to address four fun-
damental challenges that we believe are essential to justify the effort 
of experimentally validating ML predictions:

 (1) Prospective benchmarking: Idealized and overly simplified 
benchmarks may not adequately capture the challenges en-
countered in real-world applications. This disconnect can arise 
from selecting inappropriate targets14 or using unrepresenta-
tive data splits26,27. For small datasets of materials properties, 
‘Leave-Out’ data splitting strategies are often used to assess 
model performance28–30. However, in our target domain large 
quantities of diverse data (~105) are available and hence retro-
spective splitting strategies predicated on clustering can end 
up testing artificial or unrepresentative use cases. This encour-
ages using new sources of prospectively generated test data to 
understand application performance. Adopting this principle, 
the intended discovery workflow should be used to generate the 
test data, leading to a substantial but realistic covariate shift be-
tween the training and test distributions that gives a much bet-
ter indicator of likely performance on additional application of 
the same discovery workflow.

 (2) Relevant targets: For materials discovery, high-throughput DFT 
formation energies are widely used as regression targets but 
do not directly indicate thermodynamic stability or synthesiz-
ability. The true stability of a material depends on its energetic 
competition with other phases in the same chemical system, 
quantified by the distance to the convex hull phase diagram. 
This distance serves as the primary indicator of (meta-)stability 
under standard conditions31, making it a more suitable target 
despite other factors such as kinetic and entropic stabilization 
that influence real-world stability but are more expensive to 
simulate, especially at scale. Additionally, ML models that re-
quire relaxed structures as input create a circular dependency 
with the DFT calculations they are meant to accelerate, reducing 
their practical utility for discovery.

 (3) Informative metrics: Global metrics such as mean absolute er-
ror (MAE), root mean squared error (RMSE) and R2 may provide 
practitioners with misleading confidence regarding model relia-
bility. Even models with strong regression performance can pro-
duce unexpectedly high rates of false-positive predictions when 
nominally accurate estimates fall near decision boundaries, re-
sulting in substantial opportunity costs through wasted labora-
tory resources and time. Consequently, models should be evalu-
ated based on their ability to facilitate correct decision-making 
patterns rather than regression accuracy alone. One effective 
approach is to define selection criteria and assess regression 
models primarily by their classification performance.

 (4) Scalability: Future materials discovery efforts are likely to target 
broad chemical spaces and large data regimes. Small bench-
marks can lack chemical diversity, and obfuscate poor scaling 

of potentially useful materials to be discovered. The discovery of new 
materials is a key driver of technological progress and lies on the path 
to more efficient solar cells, lighter and longer-lived batteries, and 
smaller and more efficient transistor gates, just to name a few. In light 
of our sustainability goals, these advances cannot come fast enough. 
Any speed-up new discovery methods might yield should be leveraged 
to the fullest extent.

Computational materials discovery continues to present notable 
challenges despite advances in theory and methodology. The process 
typically requires performing extensive high-throughput calcula-
tions, which can be computationally intensive and time-consuming. 
Moreover, the complex relationship between structure and proper-
ties means that finding materials with desired characteristics often 
remains more art than science. ML approaches offer promising alter-
natives by efficiently identifying patterns within large datasets. These 
methods excel at handling multidimensional data, balancing multiple 
optimization objectives9, quantifying prediction uncertainty10–12 and 
extracting meaningful information from sparse or noisy data13,14. These 
capabilities make ML particularly valuable as a complementary tool to 
traditional computational methods in materials science.

In particular, we focus on the role of ML to accelerate the use of 
Kohn–Sham density functional theory (DFT) in the materials discovery 
pipeline. In comparison with other simulation frameworks, DFT offers 
a compelling compromise between fidelity and cost that has seen it 
adopted as a workhorse method by the computational materials sci-
ence community. The great strengths of DFT as a methodology have 
led it to demand up to 45% of core hours at the UK-based Archer2 Tier 1 
supercomputer15 and over 70% allocation time in the materials science 
sector at the National Energy Research Scientific Computing Center16,17. 
This heavy resource requirement drives demand for ways to reduce or 
alleviate its computational burden, such as efficiency improvements 
or substitution from ML approaches.

While typically exhibiting lower accuracy and reliability, ML mod-
els produce results notably faster—by orders of magnitude—than ab 
initio simulations. This speed advantage positions them ideally for 
high-throughput screening campaigns, where they can act as efficient 
pre-filters for computationally demanding, higher-fidelity methods 
such as DFT. The pioneering work of Behler and Parrinello18 demon-
strated the use of neural networks to learn the DFT potential energy 
surface (PES). This breakthrough spurred rapid advancements and 
extensive efforts to train increasingly sophisticated ML models on avail-
able PES data. Early applications often involved deploying these models 
as interatomic potentials (or force fields) focused on specific materials, 
a process necessitating the creation of bespoke training datasets for 
each system under investigation19,20. As larger and more diverse data-
sets have emerged from initiatives such as the Materials Project (MP)3, 
AFLOW5 or the Open Quantum Materials Database4, researchers have 
begun to train so-called universal models that cover 90 or more of the 
most application-relevant elements in the periodic table. This opens 
up the prospect of ML-guided materials discovery to increase the hit 
rate of stable crystals and speed up DFT- and expert-driven searches.

Progress in ML for materials is often measured according to per-
formance on standard benchmark datasets. As ML models have grown 
in complexity and applicability, benchmark datasets need to grow 
with them to accurately measure their usefulness. However, due to 
the rapid pace of the field and the variety of possible approaches for 
framing the discovery problem, no large-scale benchmark yet exists 
for measuring the ability of ML to accelerate materials discovery. As a 
result, it is unclear which methodologies or models are best suited for 
this task. The materials community has explored several approaches 
for computational discovery, including coordinate-free predictors that 
operate without requiring precise atomic positions11, sequential opti-
mization methods based on Bayesian principles21 and physics-informed 
interatomic potentials with universal element coverage22–24. While each 
approach has demonstrated success in specific contexts, systematic 
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relations or weak out-of-distribution performance. For instance, 
random forests achieve excellent performance on small data-
sets but are typically outperformed by neural networks on large 
datasets due to the benefits of representation learning32. While 
we propose that large training sets are necessary to adequately 
differentiate the ability of models to learn in the larger data re-
gime, given the enormous size of the configurational space of 
materials yet to be explored, we also propose that it is important 
to construct a task where the test set is larger than the training 
set to mimic true deployment at scale. No other inorganic mate-
rials benchmarks test the prospects of large-scale deployment 
in this manner.
We highlight two specific benchmarking efforts that have par-

tially addressed the above challenges: Matbench33 and the Open 
Catalyst Project (OCP)34. Other valuable efforts such as MatSciML35 
and JARVIS-Leaderboard36 aggregate a wide variety of materials 
science-related benchmark tasks, including from Matbench and OCP, 
but do not introduce distinct benchmarking design patterns to those 
seen in Matbench or the OCP.

By providing a standardized collection of 13 datasets ranging in 
size from ~300 to ~132,000 samples from both DFT and experimental 

sources, Matbench addresses the scalability challenge, highlighting 
how model performance changes as a function of data regime. Mat-
bench helped focus the field of ML for materials, increase comparability 
across papers and provide a quantitative measure of progress in the 
field. Importantly, all tasks were exclusively concerned with the prop-
erties of known materials. We believe a task that simulates a materials 
discovery campaign by requiring materials stability prediction from 
unrelaxed structures to be a missing piece here.

OCP is a large-scale initiative aimed at discovering substrate–
adsorbate combinations that can catalyse critical industrial reac-
tions, transforming these adsorbates into more useful products. The 
OCP has released two datasets thus far, OCP20 (ref. 34) and OCP22 
(ref. 37), for training and benchmarking ML models. OCP certainly 
addressed challenge 1 of closely mimicking a real-world problem by 
recently showing that despite not reaching their target accuracy to 
entirely replace DFT, using ML in conjunction with confirmatory DFT 
calculations dramatically speeds up their combinatorial screening 
workflow38. The team behind the OCP has a second initiative target-
ing materials for direct air capture called OpenDAC that has shared 
the ODAC23 dataset39. The OpenDAC benchmark is set up identically 
to the OCP.

Table 1 | Classification and regression metrics for all models tested on our benchmark ranked by F1 score

Model F1 DAF Prec Acc TPR TNR MAE RMSE R2 κSRME Training set Model 
parameters

Targets Date added

eSEN- 
30M-MP

0.831 5.260 0.804 0.946 0.861 0.962 0.033 0.078 0.822 0.340 146k (1.6M) (MPtrj) 30.1M EFSG 17 March 2025

eqV2 S 
DeNS

0.815 5.042 0.771 0.941 0.864 0.953 0.036 0.085 0.788 1.676 146k (1.6M) (MPtrj) 31.2M EFSD 18 October 2024

MatRIS  
v.0.5.0 MPtrj

0.809 5.049 0.772 0.938 0.850 0.954 0.037 0.082 0.803 0.861 146k (1.6M) (MPtrj) 5.8M EFSGM 13 March 2025

AlphaNet- 
MPtrj

0.799 4.863 0.743 0.933 0.864 0.945 0.041 0.093 0.745 1.310 146k (1.6M) (MPtrj) 16.2M EFSG 5 March 2025

DPA3-v2- 
MPtrj

0.786 4.822 0.737 0.929 0.841 0.945 0.039 0.081 0.804 0.959 146k (1.6M) (MPtrj) 4.9M EFSG 14 March 2025

ORB v2  
MPtrj

0.765 4.702 0.719 0.922 0.817 0.941 0.045 0.091 0.756 1.725 146k (1.6M) (MPtrj) 25.2M EFSD 14 October 2024

SevenNet- 
l3i5

0.760 4.629 0.708 0.920 0.821 0.938 0.044 0.087 0.776 0.550 146k (1.6M) (MPtrj) 1.2M EFSG 10 December 2024

GRACE- 
2L-MPtrj

0.691 4.163 0.636 0.896 0.757 0.921 0.052 0.094 0.741 0.525 146k (1.6M) (MPtrj) 15.3M EFSG 21 November 2024

MACE- 
MP-0

0.669 3.777 0.577 0.878 0.796 0.893 0.057 0.101 0.697 0.647 146k (1.6M) (MPtrj) 4.7M EFSG 14 July 2023

CHGNet 0.613 3.361 0.514 0.851 0.758 0.868 0.063 0.103 0.689 1.717 146k (1.6M) (MPtrj) 412.5k EFSGM 3 March 2023

M3GNet 0.569 2.882 0.441 0.813 0.803 0.813 0.075 0.118 0.585 1.412 63k (188.3k) (MPF) 227.5k EFSG 20 September 2022

ALIGNN 0.567 3.206 0.490 0.841 0.672 0.872 0.093 0.154 0.297 155k (MP 2022) 4.0M Energy 2 June 2023

MEGNet 0.510 2.959 0.452 0.826 0.585 0.870 0.130 0.206 −0.248 133k (MP Graphs) 167.8k Energy 14 November 2022

CGCNN 0.507 2.855 0.436 0.818 0.605 0.857 0.138 0.233 −0.603 155k (MP 2022) 128.4k (n = 10) Energy 28 December 2022

CGCNN+P 0.500 2.563 0.392 0.786 0.693 0.803 0.113 0.182 0.019 155k (MP 2022) 128.4k (n = 10) Energy 3 February 2023

Wrenformer 0.466 2.256 0.345 0.745 0.719 0.750 0.110 0.186 −0.018 155k (MP 2022) 5.2M (n = 10) Energy 26 November 2022

BOWSR 0.423 1.964 0.300 0.712 0.718 0.693 0.118 0.167 0.151 133k (MP Graphs) 167.8k Energy 17 November 2022

AlchemBERT 0.421 2.001 0.306 0.713 0.673 0.720 0.117 0.175 0.096 155k (MP 2022) 110.0M Energy 25 December 2024

Voronoi RF 0.333 1.579 0.241 0.668 0.535 0.692 0.148 0.212 −0.329 155k (MP 2022) 26.2M Energy 26 November 2022

Dummy 0.185 1.000 0.154 0.687 0.232 0.769 0.124 0.184 0.000

DAF is the ratio of model precision to percentage of stable structures in the test set. The dummy classifier uses the scikit-learnstratified strategy of randomly assigning stable or unstable 
labels according to the training set prevalence. The dummy regression metrics MAE, RMSE and R2 are attained by always predicting the test set mean. The top positions in the leaderboard are 
all taken by UIP models trained on the combination of energies, forces and stresses. There is a pronounced gap in the regression metrics between the UIP models and the seven energy-only 
models. It is worth noting that CGCNN+P, Wrenformer and BOWSR achieve lower regression metrics through their mitigation strategies for initial and relaxed structure mismatch but ultimately 
these strategies did not improve their usefulness as measured by the F1 score and DAF. Voronoi RF, CGCNN and MEGNet perform worse than dummy in regression metrics but better than 
dummy on some classification metrics, demonstrating that regression metrics alone can be misleading. Acc, Accuracy; k, thousand; M, million; Prec, precision; TNR, true negative rate; TPR, 
true positive rate.
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We believe that addressing these four challenges will result 
in benchmarks that enable future ML-guided discovery efforts to 
confidently select appropriate models and methodologies for the 
expansion of computational materials databases. Figure 1 provides 
an overview of how data is used in our proposed Matbench Discovery 
framework.

Results
Table 1 shows performance metrics for all models included in the initial 
release of Matbench Discovery reported on the unique protostructure 
subset. EquiformerV2 + DeNS achieved the highest performance in 
ML-guided materials discovery, surpassing all other models across 
the nine reported metrics. When computing metrics in the presence of 
missing values or obviously pathological predictions (error of 5 eV per 
atom or greater), we assign the dummy regression values and a negative 
classification prediction to these points. The discovery acceleration 
factor (DAF) quantifies how many times more effective a model is at 
finding stable structures compared with random selection from the test 
set. Formally, the DAF is the ratio of the precision to the prevalence. The 
maximum possible DAF is the inverse of the prevalence, which on our 
dataset is (33,000/215,000)−1 ≈ 6.5. Thus, the current state-of-the-art of 
5.04 achieved by EquiformerV2 + DeNS leaves room for improvement. 
However, evaluating each model on the subset of the 10,000 materials 
that each model ranks as being most stable (Supplementary Table 2), 
we see an impressive DAF of 6.33 for EquiformerV2 + DeNS, which is 
approaching optimal performance for this task.

A notable performance gap emerges between models predicting 
energy directly from unrelaxed inputs (the MatErials Graph Network 
(MEGNet), Wrenformer, the Crystal Graph Convolutional Neural Net-
work (CGCNN), CGCNN+P, the Atomistic Line Graph Neural Network 
(ALIGNN), Voronoi RF) and UIPs, which leverage force and stress 
data to emulate DFT relaxation for final energy prediction. While the 
energy-only models exhibit surprisingly strong classification metrics 
(F1, DAF), their regression performance (R2, RMSE) is considerably 
poorer. Notably, only ALIGNN, BOWSR and CGCNN+P among the 
energy-only models achieve a positive coefficient of determination 
(R2). Negative R2 means model predictions explain the observed vari-
ation in the data less than simply predicting the test set mean. In other 
words, these models are not predictive in a global sense (across the full 
dataset range). Nevertheless, models with negative R2 may still show 
predictive capability for materials far from the stability threshold (that 
is, in the distribution tails). Their performance suffers most near the 
0 eV per atom stability threshold, the region with the highest concen-
tration of materials. This illustrates a limitation of using R2 alone to 
evaluate models for classification tasks such as stability prediction.

The reason CGCNN+P achieves better regression metrics than 
CGCNN but is still worse as a classifier becomes apparent from Supple-
mentary Fig. 5 by noting that the CGCNN+P histogram is more sharply 
peaked at the 0 hull distance stability threshold. This causes even small 
errors in the predicted convex hull distance to be large enough to 
invert a classification. Again, this is evidence to choose carefully which 
metrics to optimize. Regression metrics are far more prevalent when 
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Fig. 1 | An overview of how data are used in Matbench Discovery.  
a, A conventional prototype-based discovery workflow where different elemental 
assignments to the sites in a known prototype are used to create a candidate 
structure. This candidate is relaxed using DFT to arrive at a relaxed structure 
that can be compared against a reference convex hull. This sort of workflow 
was used to construct the WBM dataset. b, Databases such as the MP provide a 
rich set of data that different academic groups have used to explore different 
types of models. While earlier work tended to focus on individual modalities, 

our framework enables consistent model comparisons across modalities. 
c, The proposed test evaluation framework where the end user takes an ML 
model and uses it to predict a relaxed energy given an initial structure (IS2RE). 
This energy is then used to make a prediction as to whether the material will be 
stable or unstable with respect to a reference convex hull. From an applications 
perspective, this classification performance is better aligned with intended use 
cases in screening workflows.
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evaluating energy predictions. However, our benchmark treats energy 
predictions as merely means to an end to classify compound stability. 
Improvements in regression accuracy are of limited use to materials 
discovery in their own right unless they also improve classification 
accuracy. Our results demonstrate that this is not a given.

Figure 2 shows models ranking materials by model-predicted hull 
distance from most to least stable: materials farthest below the known 
hull at the top, materials right on the hull at the bottom. For each model, 
we iterate through that list and calculate at each step the precision and 
recall of correctly identified stable materials. This simulates exactly 
how these models would be used in a prospective materials discovery 
campaign and reveals how a model’s performance changes as a func-
tion of the discovery campaign length. As a practitioner, you typically 
have a certain amount of resources available to validate model predic-
tions. These curves allow you to read off the best model given these 
constraints. For instance, plotting the results in this manner shows 
that CHGNet initially achieves higher precision than models such as 
EquiformerV2 + DeNS, ORB MPtrj, SevenNet and MACE, which report 
higher precision across the whole test set.

In Fig. 2 each line terminates when the model believes there are 
no more materials in the Wang-Botti-Marques (WBM) test set below 
the MP convex hull. The dashed vertical line shows the actual num-
ber of stable structures in our test set. All models are biased towards 
stability to some degree as they all overestimate this number, most of 
all BOWSR by 133%. This overestimation primarily affects exhaustive 
discovery campaigns aiming to validate all materials predicted as sta-
ble. In practice, campaigns are often resource-limited (for example, to 
10,000 DFT relaxations). By ranking candidates by predicted stability 
and validating only the top fraction dictated by the budget, the higher 
concentration of false positives typically found among less stable 
predictions is avoided without diminishing the campaign’s effective 

discovery rate (see Supplementary Table 2 where even the DAF of 
the worst performing model benchmarked, Voronoi RF, jumps from  
1.58 to 2.49).

The diagonal ‘Optimal Recall’ line on the recall plot in Fig. 2 would 
be achieved if a model never made a false negative prediction and 
stopped predicting stable crystals exactly when the true number of 
stable materials was reached. Examining the UIP models, we find that 
they all achieve similar recall values, ranging from approximately 0.75 
to 0.86. This is substantially smaller than the variation we see in the 
precision for the same models, ~0.44–0.77. Inspecting the overlap, we 
find that the intersection of the models’ correct agreements accounts 
for a precision of only 0.57 within the ~0.75–0.86 range, with just 0.04 of 
the examples where all models are wrong simultaneously. These results 
indicate that the models are making meaningfully different predictions.

Examining the precision plot in Fig. 2, we observe that the 
energy-only models exhibit a much more pronounced drop in their 
precision early on, falling to 0.6 or less in the first 5,000 screened 
materials. Many of these models (all except BOWSR, Wrenformer and 
Voronoi RF) display an interesting hook shape in their cumulative preci-
sion, recovering again slightly in the middle of the simulated campaign 
between 5,000 and up to 30,000 before dropping again until the end.

Figure 3 provides a visual representation of the reliability of differ-
ent models as a function of a material’s DFT distance to the MP convex 
hull. The lines show the rolling MAE of model-predicted hull distances 
versus DFT. The red-shaded area, which we coin the ‘triangle of peril’, 
emphasizes the zone where the average model error surpasses the 
distance to the stability threshold at 0 eV. As long as the rolling MAE 
remains within this triangle, the model is highly susceptible to misclas-
sifying structures. The average error in this region is larger than the 
distance to the classification threshold at 0, and consequently in cases 
where the error points towards the stability threshold it would be large 
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Fig. 2 | Precision and recall as a function of the number of model predictions 
validated. A typical discovery campaign will rank hypothetical materials 
by model-predicted hull distance from most to least stable and validate the 
most stable predictions first. A higher fraction of correct stable predictions 
corresponds to higher precision and fewer stable materials overlooked 
corresponds to higher recall. Precision is calculated based only on the selected 
materials up to that point, while the cumulative recall depends on knowing 

the total number of positives upfront. Models such as eqV2 S DeNS and Orb 
MPtrj perform better for exhaustive discovery campaigns (screening a higher 
share of the candidate pool); others such as CHGNet do better when validating 
a smaller percentage of the materials predicted to be most stable. UIPs offer 
notably improved precision on shorter campaigns of ~20,000 or fewer materials 
validated, as they are less prone to false-positive predictions among highly  
stable materials.
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enough to flip a correct classification into an incorrect one. Inside this 
region, the average error magnitude surpasses the distance to the clas-
sification threshold at 0 eV. Consequently, when errors point toward 
the stability boundary, they are sufficiently large to potentially reverse a 
correct classification. The faster a model’s error curve exits the triangle 
on the left side (representing negative DFT hull distances), the lower its 
tendency to mistakenly classify stable structures as unstable, thereby 
reducing false negatives. Exiting promptly on the right side (positive 
DFT hull distances) correlates with a decreased probability of predict-
ing unstable structures as stable, resulting in fewer false positives.

Models generally exhibit lower rolling errors towards the left edge 
of the plot compared with the right edge. This imbalance indicates 
a greater inclination towards false-positive predictions than false 
negative ones. Put differently, all models are less prone to predicting a 
material at −0.2 eV per atom DFT hull distance as unstable than they are 
to predicting a material at +0.2 eV per atom DFT hull distance as stable. 
From a practical perspective, this is undesirable because the oppor-
tunity cost associated with validating an incorrectly predicted stable 
material (a false positive) is typically much higher than that of missing 
a genuinely stable one (a false negative). We hypothesize that this error 
asymmetry arises from the MP training set’s uncharacteristically high 
proportion of stable materials, causing statistical models trained on it 
to be biased towards assigning low energies even to high-energy atomic 
arrangements. Training on datasets with more high-energy structures, 
such as Alexandria7 and OMat24 (ref. 40), would be expected to improve 
performance by balancing out this source of bias.

Discussion
We have demonstrated the effectiveness of ML-based triage in 
high-throughput materials discovery and posit that the benefits of 
including ML in discovery workflows now clearly outweigh the costs. 
Table 1 shows in a realistic benchmark scenario that several models 

achieve a discovery acceleration greater than 2.5 across the whole 
dataset and up to 6 when considering only the 10,000 most stable 
predictions from each model (Supplementary Table 2). Initially, the 
most promising ML methodology for accelerating high-throughput 
discovery was uncertain. Our results reveal a distinct advantage for 
UIPs regarding both accuracy and extrapolation performance. Incor-
porating force information allows UIPs to better simulate the relaxation 
pathway towards the DFT-relaxed structure, enabling a more accurate 
final energy determination.

Ranked best-to-worst by their test set F1 score on thermodynamic 
stability prediction, we find EquiformerV2 + DeNS > Orb > SevenNet >  
MACE > CHGNet > M3GNet > ALIGNN > MEGNet > CGCNN >  
CGCNN+P > Wrenformer > BOWSR > Voronoi fingerprint random for-
est. The top models are UIPs which we establish to be the best meth-
odology for ML-guided materials discovery, achieving F1 scores of 
0.57–0.82 for crystal stability classification and DAFs of up to 6× on the 
first 10,000 most stable predictions compared with dummy selection.

As the convex hull becomes more comprehensively sampled 
through future discoveries, the fraction of unknown stable structures 
will naturally decline. This will lead to less enriched test sets and, conse-
quently, more challenging and discriminative discovery benchmarks. 
However, the discovery task framed here addresses only a limited 
subset of potential UIP applications. We believe that additional bench-
marks are essential to effectively guide UIP development. These efforts 
should prioritize task-based evaluation frameworks that address the 
four critical challenges we identify for narrowing the deployment 
gap: adopting prospective rather than retrospective benchmarking, 
tackling relevant targets, using informative metrics and scalability.

Looking ahead, the consistently linear log–log learning curves 
observed in related literature41 suggest that further decreases in the 
error of UIPs can be readily unlocked with increased training data. 
This has been borne out in the scaling results of GNoME42, MatterSim43, 
Alexandria7 and OMat24 (ref. 40), which all show improvements in 
performance when training on much larger datasets. To realize the 
full potential of scaling these models, future efforts should deploy 
their resources to generate large quantities of higher-than-PBE fidelity 
training data. The quality of a UIP model is circumscribed by the quality 
and level of theory of its training data.

Beyond simply predicting thermodynamic stability at 0 K, 
future models will need to understand and predict material prop-
erties under varying environmental conditions, such as finite tem-
perature and pressure, to aid in materials discovery. In this context, 
temperature-dependent dynamical properties constitute an area ripe 
for interatomic potentials. Another key open question is how effec-
tively these models can contribute to the computational prediction 
of synthesis pathways. Many current methods for predicting reaction 
pathways employ heuristic rules to manage the considerable complex-
ity introduced by metastability, in addition to relying on conventional 
ground-state ab initio data44–46. These algorithms will massively ben-
efit from more efficient estimates of reaction energy barriers47 and 
non-crystalline, out-of-equilibrium materials48, opening up a whole 
new field to ML-accelerated inquiry.

Methods
Matbench Discovery framework
As first presented in J.R.ʼs PhD thesis25, we propose an evaluation frame-
work that places no constraints on the type of data a model is trained 
on as long as it would be available to a practitioner conducting a real 
materials discovery campaign. This means that for the high-throughput 
DFT data considered, any subset of the energies, forces, stresses or 
any other properties that can be routinely extracted from DFT calcu-
lations, such as magnetic moments, are valid training targets. All of 
these would be available to a practitioner performing a real materials 
discovery campaign and hence are permitted for training any model 
submission. We enforce only that at test time, all models must make 
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Fig. 3 | Universal potentials are more reliable classifiers because they exit the 
red triangle earliest. The lines represent rolling MAE on the WBM test set as a 
function of distance to the MP training set convex hull. The red ‘triangle of peril’ 
indicates regions where the mean error exceeds the distance to the stability 
threshold (0 eV). Within this triangle, models are more likely to misclassify 
materials as the errors can flip classifications. Earlier exit from the triangle 
correlates with fewer false positives (right side) or false negatives (left side).  
The width of the ‘rolling window’ indicates the range over which prediction errors 
were averaged.
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predictions on the convex hull distance of the relaxed structure with 
only the unrelaxed structure as input. This setup avoids circularity in 
the discovery process, as unrelaxed structures can be cheaply enumer-
ated through elemental substitution methodologies and do not contain 
information inaccessible in a prospective discovery campaign. Figure 1 
provides a visual overview of design choices.

The convex hull distance of a relaxed structure is chosen as the 
measure of its thermodynamic stability, rather than the formation 
energy, as it informs the decision on whether to pursue a potential 
candidate crystal. This decision was also motivated by ref. 14, which 
found that even composition-only models are capable of predicting 
DFT formation energies with useful accuracy. However, when tasking 
those same models with predicting decomposition enthalpy, perfor-
mance deteriorated sharply. This insight exposes how ML models are 
much less useful than DFT for discovering new inorganic solids than 
would be expected given their low prediction errors for formation 
energies due to the impact of random as opposed to systematic errors.

Standard practice in ML benchmarks is to hold all variables fixed—
most importantly the training data—and vary only the model architec-
ture to isolate architectural effects on the performance. We deliberately 
deviate from this practice due to diverging objectives from common ML 
benchmarks. Our goal is to identify the best methodology for accelerat-
ing materials discovery. What kind of training data a model can ingest 
is part of its methodology. Unlike energy-only models, UIPs benefit 
from the additional training data provided by the forces and stresses 
recorded in DFT relaxations. This allows them to learn a fundamentally 
higher-fidelity model of the physical interactions between ions. That is 
a genuine advantage of the architecture and something any benchmark 
aiming to identify the optimal methodology for materials discovery 
must reflect. In light of this utilitarian perspective, our benchmark 
contains models trained on varying datasets, and any model that can 
intake more physical modalities from DFT calculations is a valid model 
for materials discovery.

We define the MP3 v.2022.10.28 database release as the maxi-
mum allowed training set for any compliant model submission. Mod-
els may train on the complete set of relaxation frames, or any subset 
thereof such as the final relaxed structures. Any subsets of the energies, 
forces and stresses are valid training targets. In addition, any auxil-
iary tasks such as predicting electron densities, magnetic moments, 
site-partitioned charges and so on that can be extracted from the 
output of the DFT calculations are allowed for multi-task learning49. 
Our test set consists of the unrelaxed structures in the WBM dataset50. 
Their target values are the PBE formation energies of the corresponding 
DFT-relaxed structures.

Limitations of this framework. While the framework proposed here 
directly mimics a common computational materials discovery work-
flow, it is worth highlighting that there still exist notable limitations 
to these traditional computational workflows that can prevent the 
material candidates suggested by such a workflow from being able to 
be synthesized in practice. For example, high-throughput DFT calcu-
lations often use small unit cells which can lead to artificial orderings 
of atoms. The corresponding real material may be disordered due to 
entropic effects that cannot be captured in the 0-K thermodynamic 
convex hull approximated by DFT51.

Another issue is that, when considering small unit cells, the DFT 
relaxations may get trapped at dynamically unstable saddle points in 
the true PES. This failure can be detected by calculating the phonon 
spectra for materials predicted to be stable. However, the cost of doing 
so with DFT is often deemed prohibitive for high-throughput screening. 
The lack of information about the dynamic stability of nominally stable 
materials in the WBM test set prevents this work from considering this 
important criterion as an additional screening filter. However, recent 
progress in the development of UIPs suggests that ML approaches will 
soon provide sufficiently cheap approximations of these terms for 

high-throughput searches52,53. As the task presented here begins to 
saturate, we believe that future discovery benchmarks should extend 
upon the framework proposed here to also incorporate criteria based 
on dynamic stability.

When training UIP models there is competition between how 
well given models can fit the energies, forces and stresses simultane-
ously. The metrics in the Matbench Discovery leaderboard are skewed 
towards energies and consequently UIP models trained with higher 
weighting on energies can achieve better metrics. We caution that 
optimizing hyperparameters purely to improve performance on this 
benchmark may have unintended consequences for models intended 
for general purpose use. Practitioners should also consider other 
involved evaluation frameworks that explore orthogonal use cases 
when developing model architectures. We highlight work from Póta 
et al.54 on thermal conductivity benchmarking, Fu et al.55 on MD stabil-
ity for molecular simulation and Chiang et al.56 on modelling reactivity 
(hydrogen combustion) and asymptotic correctness (homonuclear 
diatomic energy curves) as complementary evaluation tasks for assess-
ing the performance of UIP models.

We design the benchmark considering a positive label for clas-
sification as being on or below the convex hull of the MP training set. 
An alternative formulation would be to say that materials in WBM that 
are below the MP convex hull but do not sit on the combined MP + WBM 
convex hull are negatives. The issue with such a design is that it involves 
unstable evaluation metrics. If we consider the performance against 
the final combined convex hull rather than the initial MP convex hull, 
then each additional sample considered can retroactively change 
whether or not a previous candidate would be labelled as a success as 
it may no-longer sit on the hull. Since constructing the convex hull is 
computationally expensive, this path dependence makes it impracti-
cal to evaluate cumulative precision metrics (Fig. 2). The chosen setup 
does increase the number of positive labels and could consequently 
be interpreted as overestimating the performance. This overestima-
tion decreases as the convex hull becomes better sampled. Future 
benchmarks building on this work could make use of the combination 
of MP + WBM to control this artefact. An alternative framework could 
report metrics for each WBM batch in turn and retrain between batches; 
this approach was undesirable here as it increases the cost of submis-
sion fivefold and introduces many complexities, for example, should 
each model only retrain on candidates it believed to be positive, that 
would make fair comparison harder.

Datasets
MP training set. The MP is a widely used database of inorganic mate-
rials properties that have been calculated using high-throughput ab 
initio methods. At the time of writing, the MP database3 has grown to 
~154,000 crystals, covering diverse chemistries and providing relaxed 
and initial structures as well as the relaxation trajectory for every entry.

Our benchmark defines the training set as all data available from 
the v.2022.10.28 MP release. We recorded a snapshot of energies, 
forces, stresses and magnetic moments for all MP ionic steps on 15 
March 2023 as the canonical training set for Matbench Discovery, and 
provide convenience functions through our Python package for easily 
feeding those data into future model submissions to our benchmark.

Flexibility in specifying the dataset allows authors to experiment 
with and fully exploit the available data. This choice is motivated by 
two factors. First, it may seem that models trained on multiple snap-
shots containing energies, forces and stresses receive more training 
data than models trained only on the energies of relaxed structures. 
However, the critical factor is that all these additional data were gen-
erated as a byproduct of the workflow to produce relaxed structures. 
Consequently, all models are being trained using data acquired at the 
same overall cost. If some architectures or approaches can leverage 
more of these byproduct data to make improved predictions this is 
a fair comparison between the two models. This approach diverges 
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philosophically from other benchmarks such as the OCP and Matbench 
where it has been more common to subcategorize different models 
and look at multiple alternative tasks (for example, composition-only 
versus structure available in Matbench or IS2RS, IS2RE, S2EF in OCP) 
and which do not make direct comparisons of this manner. Second, 
recent work in the space from refs. 57,58 has claimed that much of the 
data in large databases such as MP are redundant and that models can 
be trained more effectively by taking a subset of these large data pools. 
From a systems-level perspective, identifying innovative cleaning or 
active-learning strategies to make better use of available data may 
be as crucial as architectural improvements, as both can similarly 
enhance performance, especially given the prevalence of errors in 
high-throughput DFT. Consequently, such strategies where they lead 
to improved performance should be able to be recognized within 
the benchmark. We encourage submissions to submit ablation stud-
ies showing how different system-level choices affect performance. 
Another example of a system-level choice that may impact performance 
is the choice of optimizer, for example, FIRE59 versus L-BFGS, in the 
relaxation when using UIP models.

We highlight several example datasets that are valid within the 
rules of the benchmark that take advantage of these freedoms. The first 
is the MP-crystals-2019.4.1 dataset60, which is a subset of 133,420 crys-
tals and their formation energies that form a subset of the v.2021.02.08 
MP release. The MP-crystals-2022.10.28 dataset is introduced with 
this work comprising a set of 154,719 structures and their formation 
energies drawn from the v.2021.02.08 MP release. The next is the 
MPF.2021.2.8 dataset22 curated to train the M3GNet model, which 
takes a subset of 62,783 materials from the v.2021.02.08 MP release. The 
curators of the MPF.2021.2.8 dataset down-sampled the v.2021.02.08 
release notably to select a subset of calculations that they believed to 
be most self-consistent. Rather than taking every ionic step from the 
relaxation trajectory, this dataset opts to select only the initial, final 
and one intermediate structure for each material to avoid biasing the 
dataset towards examples where more ionic steps were needed to relax 
the structure. Consequently the dataset consists of 188,349 structures. 
The MPF.2021.2.8 is a proper subset of the training data as no materials 
were deprecated between the v.2021.02.08 and v.2022.10.28 database 
releases. The final dataset we highlight, with which several of the UIP 
models have been trained, is the MPtrj dataset23. This dataset was 
curated from the earlier v.2021.11.10 MP release. The MPtrj dataset 
is a proper subset of the allowed training data but several potentially 
anomalous examples from within MP were cleaned out of the dataset 
before the frames were subsampled to remove redundant frames. It is 
worth noting that the v.2022.10.28 release contains a small number of 
additional Perovskite structures not found in MPtrj that could be added 
to the training set within the scope of the benchmark.

We note that the v.2023.11.1 deprecated a large number of calcu-
lations so data queried from subsequent database releases are not 
considered valid for this benchmark.

WBM test set. The WBM dataset50 consists of 257,487 structures gener-
ated via chemical similarity-based elemental substitution of MP source 
structures followed by DFT relaxation and calculating each crystal’s 
convex hull distance. The element substitutions applied to a given 
source structure were determined by random sampling according to 
the weights in a chemical similarity matrix data-mined from the ICSD61.

The WBM authors performed five iterations of this substitution 
process (we refer to these steps as batches). After each step, the newly 
generated structures found to be thermodynamically stable after DFT 
relaxation flow back into the source pool to partake in the next round of 
substitution. This split of the data into batches of increasing substitu-
tion count is a unique and compelling feature of the test set as it allows 
out-of-distribution testing by examining whether model performance 
degrades for later batches. A higher number of elemental substitu-
tions on average carries the structure farther away from the region 

of material space covered by the MP training set (see Supplementary 
Fig. 6 for details). While this batch information makes the WBM dataset 
an exceptionally useful data source for examining the extrapolation 
performance of ML models, we look primarily at metrics that consider 
all batches as a single test set.

To control for the potential adverse effects of leakage between the 
MP training set and the WBM test set, we cleaned the WBM test set based 
on protostructure matching. We refer to the combination of a materi-
als prototype and the elemental assignment of its wyckoff positions as 
a protostructure following ref. 62. First we removed 524 pathological 
structures in WBM based on formation energies being larger than 5 eV 
per atom or smaller than −5 eV per atom. We then removed from the WBM 
test set all examples where the final protostructure of a WBM material 
matched the final protostructure of an MP material. In total, 11,175 mate-
rials were cleaned using this filter. We further removed all duplicated 
protostructures within WBM, keeping the lowest energy structure in 
each instance, leaving 215,488 structures in the unique prototype test set.

Throughout this work, we define stability as being on or below 
the convex hull of the MP training set (EMP hull dist ≤ 0). In total, 32,942 
of 215,488 materials in the WBM unique prototype test set satisfy this 
criterion. Of these, ~33,000 are unique prototypes, meaning they have 
no matching structure prototype in MP nor another higher-energy 
duplicate prototype in WBM. Our code treats the stability threshold as a 
dynamic parameter, allowing for future model comparisons at different 
thresholds. For initial analysis in this direction, see Supplementary Fig. 1.

As WBM explores regions of materials space not well sampled by 
MP, many of the discovered materials that lie below MP’s convex hull 
are not stable relative to each other. Of the ~33,000 that lie below the 
MP convex hull less than half, or around ~20,000, remain on the joint 
MP + WBM convex hull. This observation suggests that many WBM 
structures are repeated samples in the same new chemical spaces. It 
also highlights a critical aspect of this benchmark in that we knowingly 
operate on an incomplete convex hull. Only current knowledge of 
competing points on the PES is accessible to a real discovery campaign 
and our metrics are designed to reflect this.

Models
To test a wide variety of methodologies proposed for learning the 
potential energy landscape, our initial benchmark release includes 13 
models. Next to each model’s name we give the training targets that 
were used: E, energy; F, forces; S, stresses; and M, magnetic moments. 
The subscripts G and D refer to whether gradient-based or direct pre-
diction methods were used to obtain force and stress predictions.

 (1) EquiformerV2 + DeNS63,64 (EFSD): EquiformerV2 builds on the first 
Equiformer model65 by replacing the SO(3) convolutions with 
equivariant Spherical Channel Network convolutions66 as well as 
a range of additional tweaks to make better use of the ability to 
scale to higher Lmax using equivariant Spherical Channel Network 
convolutions. EquiformerV2 uses direct force prediction rather 
than taking the forces as the derivative of the energy predictions 
for computational efficiency. Here we take the pre-trained ‘eqV2 
S DeNS’40 trained on the MPtrj dataset. This model in addition to 
supervised training on energies, forces and stresses makes use of 
an auxiliary training task based on de-noising non-equilibrium 
structures64. We refer to this model as ‘EquiformerV2 + DeNS’ in 
the text and ‘eqV2 S DeNS’ in plots.

 (2) Orb67 (EFSD): Orb is a lightweight model architecture developed 
to scale well for the simulation of large systems such as metal 
organic frameworks. Rather than constructing an architecture 
that is equivariant by default, Orb instead makes use of data 
augmentation during training to achieve approximate equiv-
ariance. This simplifies the architecture, allowing for faster 
inference. We report results for the ‘orb-mptrj-only-v2’ model, 
which was pre-trained using a diffusion-based task on MPtrj 
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before supervised training on the energies, forces and stresses 
in MPtrj. For simplicity we refer to this model as ‘ORB MPtrj’.

 (3) SevenNet68 (EFSG): SevenNet emerged from an effort to improve 
the performance of message-passing neural networks69 when 
used to conduct large-scale simulations involving that benefit 
from parallelism via spatial decomposition. Here we use the 
pre-trained ‘SevenNet-0_11July2024’ trained on the MPtrj dataset. 
The SevenNet-0 model is an equivariant architecture based on a 
NequIP70 architecture that mostly adopts the GNoME42 hyperpa-
rameters. SevenNet-0 differs from NequIP and GNoME by replac-
ing the tensor product in the self-connection layer with a linear 
layer applied directly to the node features, and this reduces the 
number of parameters from 16.24 million in GNoME to 0.84 mil-
lion for SevenNet-0. For simplicity we refer to this model as 
‘SevenNet’.

 (4) MACE24 (EFSG): MACE builds upon the recent advances70,71 in equiv-
ariant neural network architectures by proposing an approach 
to computing high-body-order features efficiently via Atomic 
Cluster Expansion72. Unlike the other UIP models considered, 
MACE was primarily developed for molecular dynamics of single 
material systems and not the universal use case studied here. The 
authors trained MACE on the MPtrj dataset; these models have 
been shared under the name ‘MACE-MP-0’ (ref. 52) and we report 
results for the ‘2023-12-03’ version commonly called ‘MACE-MP-0 
(medium)’. For simplicity we refer to this model as ‘MACE’.

 (5) CHGNet23 (EFSGM): CHGNet is a UIP for charge-informed atom-
istic modelling. Its distinguishing feature is that it was trained 
to predict magnetic moments on top of energies, forces and 
stresses in the MPtrj dataset (which was prepared for the pur-
poses of training CHGNet). By modelling magnetic moments, 
CHGNet learns to accurately represent the orbital occupancy of 
electrons, which allows it to predict both atomic and electronic 
degrees of freedom. We make use of the pre-trained ‘v.0.3.0’ 
CHGNet model from ref. 23.

 (6) M3GNet (ref. 22) (EFSG): M3GNet is a graph neural network 
(GNN)-based UIP for materials trained on up to three-body 
interactions in the initial, middle and final frames of MP DFT 
relaxations. The model takes the unrelaxed input and emu-
lates structure relaxation before predicting energy for the 
pseudo-relaxed structure. We make use of the pre-trained 
‘v.2022.9.20’ M3GNet model from ref. 22 trained on the compli-
ant MPF.2021.2.8 dataset.

 (7) ALIGNN73 (E): ALIGNN is a message-passing GNN architecture 
that takes as input both the interatomic bond graph and a line 
graph corresponding to three-body bond angles. The ALIGNN 
architecture involves a global pooling operation, which means 
that it is ill-suited to force field applications. To address this the 
ALIGNN-FF model was later introduced without global pool-
ing74. We trained ALIGNN on the MP-crystals-2022.10.28 dataset 
for this benchmark.

 (8) MEGNet60 (E): MEGNet is another GNN-based architecture that 
also updates a set of edge and global features (such as pressure 
and temperature) in its message-passing operation. This work 
showed that learned element embeddings encode periodic 
chemical trends and can be transfer-learned from large datasets 
(formation energies) to predictions on small data properties 
(band gaps, elastic moduli). We make use of the pre-trained 
‘Eform_MP_2019’ MEGNet model trained on the compliant 
MP-crystals-2019.4.1 dataset.

 (9) CGCNN75 (E): CGCNN was the first neural network model to 
directly learn eight different DFT-computed material properties 
from a graph representing the atoms and bonds in a periodic 
crystal. CGCNN was among the first to show that just as in other 
areas of ML, given large enough training sets, neural networks 
can learn embeddings that outperform human-engineered 

structure features directly from the data. We trained an ensem-
ble of 10 CGCNN models on the MP-crystals-2022.10.28 dataset 
for this benchmark.

 (10) CGCNN+P76 (E): This work proposes simple, physically mo-
tivated structure perturbations to augment stock CGCNN 
training data of relaxed structures with structures resembling 
unrelaxed ones but mapped to the same DFT final energy. Here 
we chose P = 5, meaning the training set is augmented with five 
random perturbations of each relaxed MP structure mapped to 
the same target energy. In contrast to all other structure-based 
GNNs considered in this benchmark, CGCNN+P is not attempt-
ing to learn the Born–Oppenheimer PES. The model is instead 
taught the PES as a step-function that maps each valley to its lo-
cal minimum. The idea is that during testing on unrelaxed struc-
tures, the model will predict the energy of the nearest basin in 
the PES. The authors confirm this by demonstrating a lowering 
of the energy error on unrelaxed structures. We trained an en-
semble of ten CGCNN+P models on the MP-crystals-2022.10.28 
dataset for this benchmark.

 (11) Wrenformer (E): For this benchmark, we introduce Wrenform-
er, which is a variation on the coordinate-free Wren model11 
constructed using standard QKV-self-attention blocks77 in 
place of message-passing layers. This architectural adaptation 
reduces the memory usage, allowing the architecture to scale 
to structures with greater than 16 Wyckoff positions. Similar to 
its predecessor, Wrenformer is a fast, coordinate-free model 
aimed at accelerating screening campaigns where even the 
unrelaxed structure is a priori unknown62. The key idea is that 
by training on the coordinate anonymized Wyckoff positions 
(symmetry-related positions in the crystal structure), the 
model learns to distinguish polymorphs while maintaining 
discrete and computationally enumerable inputs. The central 
methodological benefit of an enumerable input is that it allows 
users to predict the energy of all possible combinations of 
spacegroup and Wyckoff positions for a given composition 
and maximum unit cell size. The lowest-ranked protostruc-
tures can then be fed into downstream analysis or modelling. 
We trained an ensemble of ten Wrenformer models on the 
MP-crystals-2022.10.28 dataset for this benchmark.

 (12) BOWSR21 (E): BOWSR combines a symmetry-constrained Bayesian 
optimizer with a surrogate energy model to perform an iterative 
exploration–exploitation-based search of the potential energy 
landscape. Here we use the pre-trained ‘Eform_MP_2019’ MEGNet 
model60 for the energy model as proposed in the original work. 
The high sample count needed to explore the PES with a Bayesian 
optimizer makes this by far the most expensive model tested.

 (13) Voronoi RF78 (E): A random forest trained to map a combination 
of composition-based Magpie features79 and structure-based 
relaxation-robust Voronoi tessellation features (effective 
coordination numbers, structural heterogeneity, local en-
vironment properties, …) to DFT formation energies. This 
fingerprint-based model predates most deep learning for mate-
rials but notably improved over earlier fingerprint-based meth-
ods such as the Coulomb matrix80 and partial radial distribution 
function features81. It serves as a baseline model to see how 
much value the learned featurization of deep learning models 
can extract from the increasingly large corpus of available train-
ing data. We trained Voronoi RF on the MP-crystals-2022.10.28 
dataset for this benchmark.

Data availability
The Matbench Discovery training set is the latest Materials Project 
(MP)3 database release (v.2022.10.28 at time of writing). The test set is 
the WBM dataset50, which is available via Figshare at https://figshare.
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com/articles/dataset/22715158 (ref. 82). A snapshot of every ionic step 
including energies, forces, stresses and magnetic moments in the MP 
database is available via Figshare at https://figshare.com/articles/
dataset/23713842 (ref. 83). All other data files such as phase diagrams 
and structures in both ASE and pymatgen format are also available in 
the WBM dataset via Figshare at https://figshare.com/articles/data-
set/22715158 (ref. 82).

Code availability
The Matbench Discovery framework, including benchmark imple-
mentation, evaluation code and model submission tools, is available 
as an open-source Python package and via GitHub at https://github.
com/janosh/matbench-discovery, with a permanent version available 
via Zenodo at https://doi.org/10.5281/zenodo.13750664 (ref. 84). We 
welcome further model submissions via pull requests.
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