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Abstract

Coordination or local environments have been used to describe, analyze, and under-

stand crystal structures for more than a century. Here, we present a new tool called

ChemEnv, which can identify coordination environments in a fast and robust manner.

In contrast to previous tools, the assessment of the coordination environments is not

biased by small distortions of the crystal structure. Its robust and fast implementation

enables the analysis of large databases of structures. The code is available open source

within the pymatgen package and the software can as well be used through a web app

available on http://crystaltoolkit.org through the Materials Project.
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1. Introduction

Inorganic crystal structures are typically described by their structure prototype or

by a more local concept of “coordination environment”.(Müller, 2007; Allmann &

Hinek, 2007) Coordination environments or local environments (e.g., octahedral, tetra-

hedral, etc. . . ) are often used in structure visualisation as they clarify the crystal

arrangement. These environments can also be used to understand crystal structures

and their properties. P. Pfeiffer was the first to transfer this concept of coordination

environments from coordination complexes to crystals to rationalize crystals as large

molecules.(Pfeiffer, 1915; Pfeiffer, 1916) Very often these coordination environments

are determined in a non-automatic manner by the individual researcher. Local envi-

ronments play a major role in solid state chemistry and physics as well as materials

science. For instance, the famous Pauling rules, that have been used to understand and

rationalize crystal structures for 90 years, rely heavily on this concept.(Pauling, 1929)

In the Pauling rules, the analysis of the coordination environments is used to deter-

mine the stability of a material. Electronic, optical, magnetic, and other properties

of crystals have also been related to and explained by local environments.(Hoffmann,

1987; Hoffmann, 1988; Lueken, 2013; Peng et al., 2015) In recent years, coordina-

tion environments have been discussed and used as structural descriptors to derive

structure-property relationships via machine-learning methods.(Jain et al., 2016; Zim-

mermann et al., 2017) Some of us have analyzed the coordination environments present

in oxides in a statistical manner.(Waroquiers et al., 2017) Such large-scale analy-

ses require an easily reproducible, robust and automatic determination of coordina-

tion environments. Since the transfer of the concept of coordination environments

from coordination complexes to crystals, various approaches to determine coordina-

tion numbers, coordination environments, or the distortion of coordination environ-

ments have been developed.(Brunner & Schwarzenbach, 1971; Hoppe, 1979; Pinsky &
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Avnir, 1998; Stoiber & Niewa, 2019) However, the methods mentioned so far are very

sensitive to small structural distortions and not well suited for a robust and automatic

assessment of coordination environments in very large databases consisting of several

thousands of crystal structures such as the ICSD,(Bergerhoff & Brown, 1987) Pearson

database,(Villars & Cenzual, 2018) or CCDC.(Groom & Allen, 2014) To fill this gap,

we developed ChemEnv – a fast and robust tool to identify coordination environments.

It has already been applied in the study of coordination environments of oxides that

was mentioned above.(Waroquiers et al., 2017) It is embedded in pymatgen – a Python

library for materials analysis which is part of the Materials Project that aims at the

accelerated design of new materials.(Ong et al., 2013; Jain et al., 2013) Our approach

relies on the similarity of such distorted polyhedron present in the crystal structure to

ideal reference polyhedra. After a neighbor analysis, we identify potential local envi-

ronments and compare them through a distance metric to a database of perfect local

environments. Different algorithms called strategies are then used to decide on a local

environment assignment and the final result can present a unique environment or a

mixture of several environments. This approach which is robust to distortion will be

described in details in this paper.

2. Method/Algorithm

2.1. Aspects of coordination environments identification

In the process of identifying coordination environments of a given atom, two main

questions have to be considered :

1. What are the neighbors of this atom ?

2. What is the overall arrangement of these neighbors around this atom ?

The first question refers to what is called the coordination number while the second

IUCr macros version 2.1.11: 2019/01/14
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corresponds to the coordination or local environment. The answer to these questions

is very clear when the local structure of the atom is close to a perfect environment.

However, when relatively large distortions are present, the identification can be much

more difficult. In particular, a given local environment can be identified as a mix of two

or more coordination environments (which can be of the same coordination number

or not).

2.2. Voronöı analysis

The neighbors of a given atom in a given structure are determined using a modified

Voronöı approach similar to what was proposed by O’Keefe (O’Keefe, 1979). The

Voronöı analysis allows for the splitting of the space into regions that are closer to one

atom than to any other one. In the standard Voronöı approach for determining the

neighbors of a given atom X, all the atoms {Y1, . . . , Yn} whose regions are contiguous

to the region of atom X are considered as coordinated to atom X. The distances

between atom X and each of its neighbors are written {dXY1
, . . . dXYn}. The common

faces {fXY1
, . . . fXYn} between the region of atom X and each of the regions of atoms

{Y1, . . . , Yn} define solid angles {ΩX
Y1
, . . .ΩX

Yn
} subtended by these faces at atom X.

The Voronöı regions are easily understood by drawing the perpendicular area bisec-

tors for each pair of atoms X and Y . Figure 1 illustrates the concept in two dimensions

(in which area bisectors are thus replaced by line bisectors). The example shown is a

slightly distorted square lattice (see Fig. 1 a) where the atoms at the corners (atoms 1,

3, 6 and 8) are displaced towards the central green atom (atom 0). The perfect square

lattice is shown by the grey atoms. In Fig. 1 b, the perpendicular line bisectors (in

red) are drawn for each segment from the central (green) atom and all other (black)

atoms around it. The Voronöı region of the central atom corresponds to the region in

light green in Fig. 1 c. Figure 1 d shows the faces {f0
1 , . . . f

0
8 } attributed to each pair
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5

of atoms 0-i with i = 1 . . . 8. The solid angle is illustrated for neighbors 1 and 5 by Ω0
1

and Ω0
5 respectively.

Fig. 1. Voronöı construction (see text).

In our modified approach, two additional cut-offs can be added as shown schemat-

ically in two dimensions in Fig. 2 :

1. The first cut-off excludes neighbors on the basis of the distance (Fig. 2 a). Let

dXmin = min({dXY1
, . . . dXYn}) be the distance to the closest neighbor of atom X and

κ ≥ 1.0 be the distance cut-off parameter. All atoms lying inside the sphere of

radius κ×dXmin are considered as coordinated neighbors while those lying outside
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are disregarded. We define the normalized distance dXYi of each neighbor Yi as

dXYi
dXmin

.

2. The second cut-off is based on the solid angles {ΩX
Y1
, . . .ΩX

Yn
} introduced before

(Fig. 2 b). Let ΩX
max = max({ΩX

Y1
, . . .ΩX

Yn
}) be the biggest solid angle to a

neighbor for atom X and γ ≤ 1.0 be the angle cut-off parameter. All neighboring

atoms with a solid angle smaller than γ×ΩX
max are not considered as coordinated

to atom X. We define the normalized angle ΩX
Yi

of each neighbor Yi as
ΩX

Yi

ΩX
max

.

Fig. 2. Schematic representation of the cut-off parameters used in the Voronöı anal-
ysis of neighbors : (a) distance cut-off and (b) angle cut-off. (a) Distance cut-off
parameter κ. dXmin is the distance to the closest neighbor (one of the dark blue
atoms). Any atom that lies outside the sphere of radius κ×dXmin (in dashed orange)
is not considered as a coordinated neighbor. Atoms at the corner (in light blue)
are not considered as neighbors. (b) Angle cut-off parameter γ. ΩX

max is the largest
solid angle to a neighbor atom. Any atom for which the solid angle is smaller than
γ × ΩX

max (in orange) is not considered as a coordinated neighbor. Atoms at the
corner (in light blue) are not considered as neighbors. (Adapted with permission
from D. Waroquiers et al., Chemistry of Materials 29, 8346, 2017. Copyright (2017)
American Chemical Society).

It is possible to use both cut-offs at the same time in which case a given atom is

not considered as a coordinated neighbor if either one of the cut-offs disregards it as
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a coordinated neighbor.

The modified Voronöı procedure presented above allows for the determination of

the coordinated neighbors of a given atom X for a given set of distance/angle param-

eters. The identification of the coordinated neighbors of atom X defines the local

environment of this atom. The identification of the model environment which this

local environment resembles the most is described in the next section.

2.3. The shape recognition problem and the continuous symmetry measure

The shape recognition problem consists in the identification of the model environ-

ment to which a local and possibly distorted environment resembles the most. Figure 3

illustrates this problem. A distorted octahedron is shown in Fig. 3 a. Whether this

distorted octahedron is more similar to a perfect octahedron (see Fig. 3 b) than to

any other (model) shape is precisely the purpose of the shape recognition. This inher-

ently implies that a list of model polyhedra to be compared to is known a priori. We

stick to the list of coordination environments recommended by the IUPAC (Hartshorn

et al., 2007) and by the IUCr (Lima-de Faria et al., 1990). This list of environments,

their symbol, coordinates and additional meta-information is given as supplementary

information.

IUCr macros version 2.1.11: 2019/01/14
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Fig. 3. The shape recognition problem. It consists in identifying whether the distorted
octahedron in (a) is more similar to the perfect (model) octahedron in (b) than
to any other model polyhedron. This presupposes that there exists a list of model
polyhedra to be compared to.

In order to measure the closeness of a local environment to each perfect model

environment, the Continuous Symmetry Measure (CSM) is used, as proposed by Pin-

sky and Avnir (Pinsky & Avnir, 1998). This CSM can be interpreted as a measure

of similarity between shapes. For a given structure Q composed of N = NQ atoms

(vertices) with coordinates {qk, k = 1, 2, . . . , N}, the CSM SP [Q] with respect to a

model polyhedron P with N = NP = NQ vertices {pk, k = 1, 2, . . . , N} is defined as :

SP [Q] = min

N∑
k=1
|qk − pk|2

N∑
k=1
|qk − q|2

× 100 (1)

with q = 1
N

N∑
k=1

qk.

With this definition, the value of the CSM is guaranteed to be in the [0.0, 100.0]

interval. A value of 0.0 for the CSM indicates that the two shapes are identical, i.e.

the structure Q corresponds to the perfect structure P. Instead, when the structure
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is distorted, the value of the CSM gives a degree of distortion of the structure Q

with respect to the perfect structure P. As such, the CSM can be understood as one

definition of a distance to a shape.

In Eqn. 1, the minimization has to be performed with respect to four different

degrees of freedom :

1. Translation (see Fig. 4 a)

This minimization is easily addressed by translating the local structures to their

center of mass.

2. Ordering of the atoms (see Fig. 4 b)

The simplest method is to test all possible permutations of indices. This guar-

antees a correct value for the CSM but the number of permutations scales as

N ! making it time-consuming for large (N > 6) coordination numbers. The

symmetry of the model polyhedra is used to reduce the number of independent

permutations for N ≤ 6. For larger N , a different approach is adopted (see

section 2.4).

3. Orientation of the structure (see Fig. 5 a)

The local (distorted) structure is rotated in order to minimize the numera-

tor in Eqn. 1 by using an alignment procedure based on the singular value

decomposition(Kabsch, 1976; Kabsch, 1978).

4. Size of the structure (see Fig. 5 b)

A scaling factor is applied to the local structure to avoid size effects : the local

structure is normalized to the root-mean square distance from the center of mass

of the structure to all vertices.

IUCr macros version 2.1.11: 2019/01/14
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Fig. 4. Translational and ordering degrees of freedom for the minimization in Eqn. 1.
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Fig. 5. Rotational and size degrees of freedom for the minimization in Eqn. 1.

The minimization process presented above is equivalent to the point set registra-

tion algorithms used in shape or pattern recognition.(François Pomerleau & Sieg-

wart, 2015) The main challenge comes from the fact that the correspondence between

points in Q and P (i.e. the ordering problem described above) is unknown. In pattern

recognition in which the number of points is usually large, algorithms based on pair

correlation functions combined with statistical analysis are widely used (see (Maiseli

et al., 2017) and references therein). On the contrary, for small number of points, a

different approach has to be adopted. As briefly outlined above, the simplest solution

(which is used for N ≤6) is to test all possible permutations of indices (ignoring sym-

metrically identical ones), while for larger N the number of permutations is reduced

using the separation-plane algorithm (see section 2.4). In any case, for a given permu-
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tation of points, the CSM can be obtained thanks to algorithm 1 (see Figure 6, points

in Q have been translated such that their center of mass coincide with that of P). The

exact CSM is then the smallest one of all the CSM computed for each permutation

considered.

Algorithm 1 Computation of the CSM for a given permutation

1: procedure CSM({qk,pk}; k = 1, 2, . . . , N)
2: R← FindRotation({qk,pk}) . Find the rotation matrix.

This is performed using a least-square-like alignment procedure based on
the singular value decomposition. See references (Kabsch, 1976 ; Kabsch,
1978) for a complete description of the algorithm.

3: for k ← 1, N do
4: q∗

k ← Rqk . Rotate the points.
5: end for
6: A←

∑N
k=1 q∗

k·pk∑N
k=1 q∗

k·q∗
k

. Find the scaling factor.

See reference (Pinsky & Avnir, 1998) for a detailed derivation of the terms,
as well as a proof of the interchangeability of the rotation and scaling min-
imizations.

7: for k ← 1, N do
8: q∗

k ← Aq∗
k . Scale the points.

9: end for
10: for k ← 1, N do
11: dk ← pk − q∗

k . Get the difference between the aligned points and
the perfect points.

12: end for
13: M ← 100×

∑N
k=1 dk·dk∑N
k=1 pk·pk

. Compute the CSM.

14: return M . Return the CSM.
15: end procedure

1

Fig. 6. Algorithm 1. Computation of the CSM for a given permutation

2.4. Separation plane algorithm

When the number N of coordinated neighbors increases, the number of permuta-

tions needed to minimize Eqn. 1 scales as N !. When the correspondence of vertices

between the local distorted structure and the perfect model polyhedron is not known

(which is usually the case for the application of the procedure to large databases of

structures), this makes the computation of the CSM almost infeasible for N > 10 and

very time-consuming for 6 > N ≥ 10 with the standard procedure (e.g. 9! = 362880,

IUCr macros version 2.1.11: 2019/01/14
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12! = 479001600).

In order to overcome this difficulty, the separation plane algorithm has been devised

to drastically reduce the computational time needed. The basic idea is to identify

possible planes in the distorted structure that can be assigned to a plane in the model

polyhedron in order to reduce the number of permutations needed to find the right

correspondence between points and hence the correct CSM. This idea is illustrated in

Fig. 7 for a 2-dimensional case. The points of the perfect model shape are separated

into three different groups : the set of points supposed to lie within the plane and the

two sets of points on either side of the plane. The permutation space is thus reduced

because N ! is always larger than N1!N2!N3! if at least two of N1, N2, N3 are larger

than or equal to 1. For the example in Fig. 7, the number of permutations is reduced

from 6! = 720 to 2! × 2! × 2! = 8. Additionally, for larger environments in which the

separating plane contains more than 3 points, these can be ordered using clockwise or

counterclockwise ordering, hence reducing the number of permutations even further.

IUCr macros version 2.1.11: 2019/01/14
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Fig. 7. Illustration of the separation plane algorithm.

A separation is defined by its separation plane Pperf passing through at least three

points of the perfect polyhedron P, and by the two separated groups of points Sperf

and Tperf located on either side of the plane. The set of points in the plane is written

IUCr macros version 2.1.11: 2019/01/14
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as P = {pj , j = 1, . . . NP } while S = {sm,m = 1, . . . NS} and T = {tn, n = 1, . . . NT }

stand for the two sets of points on either side of the plane. By construction, {qk} =

{pj} ∪ {sm} ∪ {tn} and N = NP + NS + NT . We use Υperf = (NS , NP , NT ) as

an abridged notation for the separation. For the example illustrated in Fig. 7, the

separation is noted (2, 2, 2). An illustration of two separation planes for the cubic and

cuboctahedral environments is provided in Fig. 8.

Fig. 8. Examples of separation planes. (a) Separation (2, 4, 2) in the cubic environment:
points A, B, H and E (in red) belong to the plane that separates points D and F (in
green) from points C and G (in blue). (b) Separation (3, 6, 3) in a cuboctahedron
: points A, I, G, D, L and F (in red) belong to the plane that separates points C,
E and J (in blue) from points H, K and B (in green).

The procedure for the computation of the CSM of environments with more than

six atoms is described in algorithm 2 which is shown in Fig. 9. Separation planes have

been defined for all the perfect model environments above six atoms. Usually, more

than one separation plane can be defined in a given model polyhedron. In practice, the

overall algorithm tests all the available separation planes that have been defined for

the polyhedron under consideration. The list of separation planes for each coordination

environment is available as SI and is also easily viewable with a script provided in the

ChemEnv subpackage of pymatgen.
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Algorithm 2 The separation plane algorithm

. For a given perfect environment P, a separation plane Pperf is used to
reduce the number of permutations. Such a plane has to be defined for
each perfect environment, as well as its abridged notation Υperf (see in the
SI and in the pymatgen package for the description of the planes used for
each environment). The algorithm searches for similar planes in the local
(probably distorted) environment Q.

1: procedure CSMSeparationPlane(Q,P, Pperf‖Υperf )
2: Mmin = 100.0 . Initialize the CSM to its maximum possible value.
3: for qa,qb ← Combinations({qk}, 2) do . Loop on all possible

combinations of 2 points.
4: Ptrial ← SetupPlane(c,qa,qb) . Set up the test plane based on

the center c and the two points qa and qb.
5: Υtrial ← GetSeparation(Ptrial, δ) . Get the

separation for the local environment Q. Points are considered in the plane
if their distance to the plane is less than δ.

6: if Υtrial 6= Υperf then
7: continue . Skip separation planes in Q that do not correspond

to the separation plane in P.
8: end if

. Multiple loop on all combinations of the separation :
9: for each permutation σS of the points in Strial do

10: for each permutation σP of the points in Ptrial do
11: for each permutation σT of the points in Ttrial do
12: σ̂ ← concatenation of permutations σS , σP and σT
13: qσ̂k ← σ̂-permuted qk points

. Get the CSM for this permutation :
14: M ← CSM({qσ̂k ,pk})

. Update value of the minimum CSM if applicable :
15: Mmin = min(Mmin,M)
16: end for
17: end for
18: end for
19: end for
20: return Mmin . Return the CSM.
21: end procedure

1

Fig. 9. Algorithm 2. The separation plane algorithm.

The algorithm has been optimized by ordering the points of the separation plane

in a clockwise or counterclockwise direction whenever possible. This makes it possible
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to reduce the number of permutations related to the separation plane. For example,

for the separation (3, 6, 3) of the cuboctahedron shown in Fig. 8 b, the number of

permutations of the points in the plane is 6! = 720. Ordering the points in the perfect

and local environments makes it possible to reduce the number of trials to six. A

similar optimization is also possible for the two separated groups of points for the

separations in which these groups contain a sufficient number of points (e.g. in the

icosahedral environment, the separation plane contains four points and splits the other

points into two groups of four points each).

2.5. Neighbor sets and distance/angle parameters maps

The distance and angle parameters defined in Sect. 2.2 are very sensitive parameters

for the determination of the neighbors of a given atom. Indeed, a very slight change

in one of the parameters can change the atoms considered as neighbors and hence

the coordination. Each neighbor set of atom A with coordination N is denoted by

ΞN, j(A). The j index comes from the fact that two different neighbor sets can have

the same coordination N . A two-dimensional example of such a case is illustrated

in Fig. 10 in which two sets of distance and angle cut-off parameters result in two

different neighbor sets of the same coordination.
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Fig. 10. Illustration in two dimensions of two sets of neighbors having the same coordi-
nation number. (a) Local environment of atom 0. Normalized distances to neighbors

1, 2, 3 and 4 are d0
1 = d0

3 = 1.0, d0
2 = 1.15 and d0

4 = 1.35. Normalized angles to

neighbors 1, 2, 3 and 4 are Ω0
4 = 1.0, Ω0

1 = Ω0
3 ≈ 0.924 and Ω0

2 ≈ 0.42. (b) Set of
neighbors (1, 2 and 3) of atom 0 with N=3. This set of neighbors is obtained with
e.g. κ = 1.25 and γ = 0.3 cut-offs. (c) Another set of neighbors (1, 3 and 4) of atom
0 with N=3. This set of neighbors is obtained with e.g. κ = 1.4 and γ = 0.5 cut-offs.

IUCr macros version 2.1.11: 2019/01/14
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In order to ensure robustness with respect to the distance and angle cut-off parame-

ters, the identification procedure is performed in two steps. First, all sets of neighbors

ΞN, j(A) are obtained for all possible distance/angle parameters in the Voronöı analy-

sis. For each neighbor set, CSMs are computed with respect to each model polyhedron

of the same coordination. This can be represented by a map of distance/angle param-

eters with regions defined for each neighbor set (see Fig. 11 for examples of such maps

for Si and O sites in SiO2 as well as for Cr and Te sites in Cr2Te4O11). The second

step allows one to test the sensitivity of the distance/angle parameters by means of

strategies (see Sect. 2.6). While for the three first cases in Fig. 11, the “correct” envi-

ronment is reasonably clear by just looking at the figure (assigning tetrahedral (T:4),

angular (A:2) and octahedral (O:6) environments, respectively, to Si in SiO2, O in

SiO2 and Cr in Cr2Te4O11), the situation is more complex and the identification is

not so evident for Te in Cr2Te4O11. In this case, the environment could be seen as

an intermediate between two different environments. The use of strategies can clarify

such ambiguous cases.

IUCr macros version 2.1.11: 2019/01/14
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Fig. 11. Examples of distance/angle parameters maps for Si and O in α-SiO2 (Materials
Project id : mp-7000) and Cr and Te in Cr2Te4O11 (Materials Project id : mp-
540537). Each neighbor set corresponds to a region in which any distance/angle
parameters combination result in the same set. The color level of each region gives
an indication of the CSM value of the model polyhedron to which the corresponding
neighbor set resembles the most (i.e. for which the CSM is the lowest). For the larger
regions, this model polyhedron is indicated by its symbol. The square and triangle
symbols correspond to fixed distance and angle parameters respectively of 1.3/0.6
and 1.6/0.4, showing a clear ambiguity for the Te site in Cr2Te4O11 (see Sect. 2.6
on how to clarify such cases).

The neighbors in each set, the CSMs for each model polyhedron in each set, and

other data related to each neighbor set are stored in a so-called StructureEnviron-
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ments (see also Sect. 3) or SE (hereafter also symbolized by ΦA for atom A) object.

As exemplified in Fig. 11, this SE is not very useful as such as it contains a lot of

information that is difficult to interpret directly. In the second step presented below,

strategies are used to analyze the SE and extract usable and valuable information

from the SE.

2.6. Strategies

For the final step of the identification procedure, strategies are used to reliably

analyze the SE object and extract a useful and usable result. Reliability refers to

the robustness of our algorithm in which the sensitivity of the identification to the

distance/angle parameters is tested and challenged. Hence, the local environments

can be interpreted as one unique environment or as an intermediate between two (or

more) coordination environments, each of which being attributed a fraction or per-

centage. Different strategies can be used depending on the goals, needs and constraints

required by the user. This flexibility provided by the strategies is one of the strengths

of our identification procedure. For visualisation purposes, a strategy resulting in the

identification of a single coordination environment for each site has to be used while

reviewing the most commonly observed environments can be done with a strategy

allowing for multiple environments for the same site. One can also favour specific or

larger/smaller environments depending on the project. In the following, two strategies

are developed further.

2.6.1. Fixed distance/angle cut-offs strategy The simplest way to identify the environ-

ment is to use fixed distance and angle cut-off parameters. In this SimplestChemenv-

Strategy, the set of neighbors is thus unique and the environment is identified as the one

for which the CSM is the lowest. The advantage of such a simple procedure is that it
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makes it possible to describe a local environment by its unique corresponding model

environment, which is easier to use for visualisation purposes. However, some (dis-

torted or very distorted) local environments can be considered to be an intermediate

between two or more model coordination polyhedra. In such cases, this strategy will

simply “choose” one environment, depending on the distance and angle parameters.

As a simple illustration, Fig. 12 shows the sudden switch from the square-pyramidal

environment to the octahedral environment when the distance cut-off is increased.

Similarly, for fixed distance and angle cut-offs, when an octahedron is smoothly dis-

torted by moving away one of the atoms, the resulting environment from this simplest

strategy changes abruptly from octahedral to square-pyramidal as shown in Fig. 13

(thin lines correspond to the SimplestChemenvStrategy). It is thus very sensitive to

small changes in the positions of the atoms. Nevertheless, with decent distance and

angle parameters (e.g. κ = 1.4 and γ = 0.3), the identified environment is reasonably

correct in about 85% of the cases.
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Fig. 12. Coordination environments for a distorted octahedron in which the bottom
atom is at distance 1.45 times larger than the other 5 neighbors. When the distance
cut-off is lower than 1.45, the bottom atom is not considered as a neighbor and the
environment is identified as a square pyramid. When the distance cut-off is larger
than 1.45, the bottom atom is taken into account and the environment is identified
as an octahedron.

Another illustration of this strategy is shown in Fig. 14 in which a triangular prism is

smoothly distorted towards an octahedron by rotating the upper and lower triangular

planes in opposite directions (thin lines correspond to the SimplestChemenvStrategy).

In this case, the number of neighbors remains the same while the actual identified

environment switches abruptly from triangular prismatic to octahedral when the CSM

of latter becomes smaller than that of the former. Once again, the sensitivity with

respect to small changes in the positions of the atoms is critical in this strategy.

IUCr macros version 2.1.11: 2019/01/14



24

0.0 0.2 0.4 0.6 0.8 1.0

Deformation parameter α

0.0

0.2

0.4

0.6

0.8

1.0

α

Octahedral
Square
pyramidal
Octahedral
Square
pyramidal

Side view

α=0

α=1

C
oo

rd
in

at
io

n
en

vi
ro

nm
en

ts
fra

ct
io

ns

Fig. 13. Smooth distortion from octahedral to square-pyramidal environment by mov-
ing away the bottom atom. The deformation parameter α = 0 corresponds to the
perfect octahedron while for α = 1, the bottom atom has been moved to a dis-
tance that is twice that of the distance to the other neighbors. The thin lines gives
the fractions of octahedral and square-pyramidal environments obtained with the
SimplestChemenvStrategy (with a distance cut-off of 1.4) while the thick lines corre-
spond to the fractions obtained with the MultiWeightsChemenvStrategy. Octahedral
and square-pyramidal are respectively shown as solid and dashed lines.
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Fig. 14. Smooth distortion from triangular prismatic to octahedral environment by
twisting the triangular prism around the principal axis. The deformation parameter
α = 0 corresponds to the perfect trigonal prism while for α = 1, the upper (red →
orange) and lower (green→ cyan) triangles have been rotated respectively clockwise
and counterclockwise by 30◦, corresponding to an octahedron. The thin lines gives
the fractions of triangular prismatic and octahedral environments obtained with the
SimplestChemenvStrategy while the thick lines correspond to the fractions obtained
with the MultiWeightsChemenvStrategy. Octahedral and triangular prismatic are
respectively shown as solid and dashed lines.

2.6.2. Strategy based on multiple weights A second strategy is developed hereafter, in

which special care has been taken to remove the artificial abrupt transitions observed

with the SimplestChemenvStrategy. The idea is to smooth these transitions using a

combination of smooth step functions. A given local environment can thus be identified

either as one unique coordination environment if distortions are small, or as a mix of

two or more environments for larger distortions. In practice, the local environment is

described as a list of environments, each being assigned a fraction or percentage.
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The percentage or fraction fE(A) of a given model coordination environment E

depends on the results (CSMs, Voronöı parameters, . . . ) for each possible set of neigh-

bors contained in ΦA.

fE(A) = f [ΦA](E) (2)

The procedure used to get the fraction of a model polyhedron E for a given local

environment is then obtained as the product of two terms. Suppose E occurs in a given

neighbor set Ξ. The first term results from the relative weight of the neighbor set (as

compared to the other neighbor sets) displaying model environment E . The second

term comes from the relative weight of the model polyhedron E within that specific

neighbor set.

f [ΦA](E) = fouter[ΦA]× f inner[ΞNA ](E) (3)

In the following, the first term is referred to as the outer weight (i.e. the weight that

depends on other so-called outer neighbor sets) and the second term is referred to as

the inner weight (i.e. the weight inside a specific neighbor set).

Inner weight For a given neighbor set ΞNA of atom A in a given coordination N , the

relative weight (and hence fraction) of each model polyhedron is not straightforward.

Let ΘN be the set of K model environments with coordination N :

ΘN = {EN1 , . . . , ENi , . . . , ENK} (4)

For example, the set Θ6 of six-coordinated model polyhedra (as reported in Refs. (Hartshorn

et al., 2007) and (Lima-de Faria et al., 1990) and implemented in the ChemEnv pack-

age) is composed of the octahedron (symbolized O:6), the trigonal prism (symbolized

T:6) and the pentagonal pyramid (symbolized PP:6).
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For each model polyhedron ENi , the CSM SENi
[ΞNA ] with respect to the local envi-

ronment ΞNA is used to assign a weight to each model polyhedron thanks to the use

of an adequately shaped function. Model environments with a lower CSM (i.e. more

similar to the local environment) are assigned a larger weight. In particular, if one

of the model environments has a CSM of 0.0 (i.e. the local environment is perfect),

its weight should be infinite so that it is the only model environment identified. The

function should also allow for the assignment of a zero weight to a model polyhedron

for which the CSM is larger than a given maximum value Smax. One example of such

a function is the “modified” inverse function defined in Eqn. 5 and shown in Fig. 15.

wSmax(S) =

{
1/Smax × (S−Smax)2

S if S ≤ Smax,

0.0 if S > Smax.
(5)

in which the numerator (S − Smax)2 ensures the continuity at S = Smax while the

prefactor 1/Smax arises from the normalization of the [0, Smax] to [0, 1].
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wO:6 = 8.354
wT :6 = 0.398
wPP :6 = 0.0

}
Weights sum : 8.752

Fractions :
fO:6 = 8.354/8.752 = 0.955
fT :6 = 0.398/8.752 = 0.045
fPP :6 = 0.0/8.752 = 0.0

Example

Fig. 15. Weight function for the inner weight of model polyhedra. In this example,
Smax is set to 8.0, so that the weight of any model polyhedron with a CSM larger
than 8.0 is zero.
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Fractions of each model environment E i are then obtained from these weights:

f inner[ΞNA ](E i) =
wSmax(SEi)∑j=K
j=1 wSmax(SEj )

(6)

A small example is also given in Fig. 15 in which CSMs for a fictitious six-coordinated

case are provided.

When the coordination is clearly defined (i.e. when only one neighbor set is identified

using the procedure outlined in 2.5), the fractions of each model polyhedron are solely

determined by this inner weight. On the other hand, when different neighbor sets are

identified, an additional complexity arises from the fact that smaller environments

usually tend to be more easily recognized as similar (i.e. having smaller CSMs). The

extreme case is the single neighbor which is always assigned a CSM of zero. For cases

in which more than one neighbor set is present, the outer weight is used to determine

the relative predominance of each of the neighbor sets (and hence their corresponding

model polyhedron).

Outer weight The outer weight or neighbor set weight refers to the weight of a given

neighbor set with respect to the other neighbor sets. This outer weight is defined as a

product of several “partial weights” (the definition being general enough to allow for

flexibility in the choice of the weights) :

wouter[ΨA](ΞA) =
i=nw∏

i=1

ŵi[ΨA](ΞA) (7)

in which nw is the number of partial weights used.

Some of the partial neighbor set weights compare the CSMs of this neighbor set with

the ones for the other neighbor sets. The simplest approach is to take the smallest

CSM for each of the neighbor sets. In practice, to ensure continuity, an effective CSM

is defined. The effective CSM of a given neighbor set ΞNA , denoted Seff(ΞNA ), is obtained
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from a weighted average using the “modified” inverse function defined in Eqn. 5.

Seff(ΞNA ) =

∑
E∈ΘN

wSmax(SE)× SE
∑
E∈ΘN

wSmax(SE)
(8)

in which SE is a short form for SE(Ξ
N
A ), i.e. the CSM of the neighbor set with respect

to the perfect environment E .

Partial weights In the following, the partial weights used in the “default” multi-

weights strategy (used in a previous publication (Waroquiers et al., 2017)) are described.

The strategy with these default parameters is easily obtained with the following class

method (see examples in the tutorials provided in the supplementary material):

MultiWeightsChemenvStrategy.stats article weights parameters()

Other weights have also been implemented in the ChemEnv package in pymatgen.

“Distance-angle area” weight. The idea is to restrict the neighbor sets to

those originating from a specific range of values for the distance and angle cutoffs.

For example, one might only consider distance cutoffs between 1.2 and 1.8. One might

also consider that the Voronöı angle towards a neighbor should always be between 0.3

and 0.8. In practice, a special area of distance-angle parameters is defined such as the

one shown in Fig. 16. Indeed, there is not much sense to allow for neighbors with a

small angle parameter and a small distance parameter or with a large angle parameter

and a large distance parameter. If the region of a given neighbor set (as defined in

Sect. 2.5) is crossing the above mentioned area, the weight of this neighbor set is 1.0

(indicated in white on Fig. 16), otherwise it is set to 0.0. An extension of this weight

could be to ensure it is continuous.
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Fig. 16. Schematic of the distance-angle area weight. The shaded area is used to
determine which neighbor sets are considered. If the region of a given neighbor set
is crossing the shaded area, the set is assigned a “distance-angle area” weight of
1.0. In the opposite case, the set is assigned a weight of 0.0 (white regions).

“Self CSM” weight. This weight makes use of the effective CSM Seff of each

neighbor set defined in Eqn. 8. Each neighbor set is assigned a weight depending on

the value of this effective Seff . The idea is to disfavour neighbor sets that are globally

more distorted than others. One example function used to estimate this weight is

defined in Eqn. 9 and shown in Fig. 17.

wSmax,λ(Seff) =

{
(Seff − 1.0)2 × e−λSeff if Seff ≤ 1.0,

0.0 if Seff > 1.0.
(9)

where Seff is the normalized effective CSM defined as Seff
Smax

.
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Fig. 17. Weight function for the Self-CSM outer weight of neighbor sets as defined in
Eqn. 9. The default parameters for this weight are shown as blue while the green
and purple curves illustrate other parameters. Arrows indicate thresholds above
which values (i.e. Smax) of the effective CSM Seff each of the weight functions are
set to zero.

“Delta CSM” weight. The goal of this neighbor set weight is to reduce the

importance of a given neighbor set ΞN1 if another neighbor set ΞN2 of larger coordi-

nation number N2 > N1 is present and not too distorted with respect to the first one.

In practice, this weight depends on the difference ∆Seff between the effective CSMs

(as defined in Eqn. 8) of the neighbor sets ΞN2 and ΞN1 :

∆Seff(ΞN1 ,ΞN2) = Seff(ΞN2)− Seff(ΞN1) (10)

The Delta CSM weight is defined as :

wdeltaχ;∆min,∆max [ΦA](ΞA) = min
Ξi∈ΦA;

N(Ξi)>N(ΞA)

χ∆min,∆max (∆Seff(ΞA,Ξi)) (11)
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in which χ is a sigmoid-like function (e.g. a smooth step or smoother step function),

N(Ξ) is the coordination of neighbor set Ξ and ∆min, ∆max are the edges used in the

χ function.

An example of a χ function is the smoother step function shown in Fig. 18 and

defined as :

χsmootherstepa,b (x) =





0.0 if x ≤ a,
6x5 − 15x4 + 10x3 if a < x < b,

1.0 if x ≥ b.
(12)

in which x = (x − a)/(b − a) is the scaled value of x mapping the [a, b] interval to

the [0, 1] interval.
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Fig. 18. Smoother step function used in the Delta CSM weight. The ”Delta CSM”
weight assigned to the Ξ1 neighbor set is equal to 0.0 if the difference ∆Seff(Ξ1,Ξ2)
between the effective CSM Seff(Ξ2) of the Ξ2 neighbor set and its own effective CSM
Seff(Ξ1) is lower than ∆min. If the difference ∆Seff(Ξ1,Ξ2) is larger than ∆min, the
Ξ1 set is assigned a weight of 1.0. The smoother step function is used between these
two extremes. The ∆min and ∆max values can be changed if needed and examples
of smoother step functions for different values are shown.
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Choice of partial weights The default list of outer weights consists of the three

above-mentioned partial weights. As an example and in particular to illustrate the

need to use both the Self CSM weight and the Delta CSM weight, Fig. 19 shows the

fractions of environments obtained for different choices of weights in the case of the

smooth distortion from octahedral to square-pyramidal environment (see Fig. 13).
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Fig. 19. Choice of partial weights: comparison and combination of Self CSM and
Delta CSM weights in the case of the smooth distortion from octahedral to
square-pyramidal environment. Curves in blue (green) correspond to the octahe-
dral (square-pyramidal) environment. See text for details.

The upper left panel shows the CSM of the octahedral (increasing with the dis-

tortion) and square-pyramidal (always equal to 0.0). The middle left and lower left
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panels show the Self CSM and Delta CSM weights for both environments. The Self

CSM weight for the square-pyramidal environment is always 1.0 as its CSM is always

0.0. Conversely, the Delta CSM weight for the octahedral environment is always 1.0

as there is no larger neighbor set to be compared to. As shown in the upper right

panel, when the sole Self CSM weight is included, the fractions obtained are 50%

octahedral and 50% square-pyramidal when no or little distortion is applied (while

one would expect to have 100% octahedral and 0% square-pyramidal). Indeed, for both

environments, the value of the CSM is 0.0 and hence the Self CSM weight is 1.0. At

variance, the middle right panel illustrates the fractions obtained when the sole Delta

CSM weight is included. In that case, for large distortions, the fractions obtained are

also 50% for each environment. Indeed, when the distortion is large, the Delta CSM

weight for the square-pyramidal environment reaches 1.0 as the larger environment is

too distorted to disfavour the square-pyramidal environment. The lower right panel

illustrates the case when both the Self CSM and Delta CSM weights are included.

3. Description of the package

The ChemEnv module is written in Python and can be found in the pymatgen package

(Ong et al., 2013) as part of the analysis submodule. The organisation of the package

is shown diagrammatically in Fig. 20. The description of each of the objects referenced

as circled numbers in this figure is given hereafter :

1○ LocalGeometryFinder

Main class used to identify the local environments in a structure.

2○ AllCoordinationGeometries

Class containing the list of all the available model coordination geometries (as

CoordinationGeometry objects, see 3○).
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3○ CoordinationGeometry

Generic class for the description of all the model coordination geometries. An

instance of this class is created for each model environment (from the json files

stored in the coordination geometry files directory). It contains information

about its perfect coordinates as well as its edges and faces, name(s), symbol(s),

technical details for the identification procedure, . . .

4○ StructureEnvironments

Class containing the information (CSMs, neighbors, . . . ) on all possible neighbor

sets for all sites in the structure as introduced in Sect. 2.5. This object is meant

to be post-processed with a strategy in order to get relevant and usable data

about the local environments of the structure.

5○ LightStructureEnvironments

Class containing the processed data from the StructureEnvironments class using

one strategy. This object lists the environment(s) and their corresponding frac-

tions (in case of a strategy allowing for mixtures of environments) for each site

of the structure.

6○ DetailedVoronoiContainer

Class containing the information on the Voronöı analysis (see Sect. 2.2) per-

formed at the beginning of the identification procedure in order to define the

different possible neighbor sets.

7○ SimplestChemenvStrategy

Class used to apply the fixed distance/angle cutoff strategy introduced in Sect. 2.6.1.

8○ MultiWeightsChemenvStrategy
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Class used to apply the strategy based on multiple weights as introduced in

Sect. 2.6.2.
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tests
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coordination geometry finder.py

LocalGeometryFinder 1○

. . .
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AllCoordinationGeometries 2○
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. . .
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StructureEnvironments 4○

LightStructureEnvironments 5○
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MultiWeightsChemenvStrategy 8○
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...

Fig. 20. Organisation of the ChemEnv package. Directories are indicated in black and
surrounded by a rectangle. Files are indicated in typewriter (blue for python files,
purple for other files). The most important python objects are indicated in italic
(green). See text for more information.
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The most relevant objects needed for the user of ChemEnv package are illustrated

in Fig. 21.

Fig. 21. Main objects of the ChemEnv package.

The LocalGeometryFinder object is the main class used to initialize and set up

the structure as well as to compute the StructureEnvironments object (containing

the raw coordination environments data as introduced in Sect. 2.5). Combining this

StructureEnvironments object with a strategy (e.g. SimplestChemenvStrategy or Mul-

tiWeightsChemenvStrategy) leads to the LightStructureEnvironments object. This lat-

ter object contains the usable information about the environments in a structure, i.e.

the environment or mix of environments (with their corresponding fractions) that is

identified for each site.

4. Interactive Web App

An interactive web app has been developed to improve accessibility of the ChemEnv

algorithms as part of the Materials Project’s Crystal Toolkit platform. While the
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Python interface is intuitive and well-documented, not all scientists are Python users,

and the web app enables use of ChemEnv by any user without installing custom soft-

ware. The web app supports uploading of any file format supported by the pymatgen

code, including Crystallographic Information Format (CIF). Alternatively, structures

can be loaded directly from the Materials Project database containing more than

100,000 inorganic materials.

The web app is designed to offer one-to-one equivalent functionality to ChemEnv by

directly calling the corresponding pymatgen interface, specifically using the LightStruc-

tureEnvironments and SimplestChemenvStrategy, and allowing the user full interactive

control over the distance and angle cut-offs. Each symmetrically distinct chemical envi-

ronment is shown in 3D using a custom atomic visualizer, along with Wyckoff label,

IUPAC symbol, CSM, and human-readable environment label. Oxidation states will

be used in the analysis if atoms are appropriately annotated in the uploaded file or,

if these are not supplied, oxidation states can be guessed on-the-fly using pymatgen’s

bond valence analysis algorithms. It will be hosted by the Materials Project, and is

available at http://crystaltoolkit.org .

5. Conclusion

We have developed a tool that can analye coordination or local environments of large

numbers of crystal structures in a fast and robust manner. The analysis of the neigh-

boring atoms relies on a modified Voronöı approach on a grid of distance and angle

cutoffs. On this grid of different distance and angle cutoffs, the coordination envi-

ronments are determined with the help of a similtarity metric to the shape of ideal

polyhedra. Two different strategies are implemented to arrive at the final assignment

of the coordination environments. One of these strategies is especially robust against

small distortions of the crystal structures making the algorithm particularly useful for
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automatic, unsupervised, local environment assignment. This new tool can be used as

part of the open-source Python library (pymatgen) and within an interactive web app

available on http://crystaltoolkit.org through the Materials Project.

6. Supplementary Information

A tutorial for the ChemEnv package both in pdf- and jupyter-notebook format is avail-

able in the Supplementary Information. The list of all environments as well as some

details about the implementation are also available in the Supplementary Information.
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Synopsis

We present a new tool called ChemEnv, which can identify coordination environments in a
fast and robust manner.
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This supplementary information describes the different coordination environments
identified by ChemEnv and provides technical details about the identification pro-
cedure.

1. Model coordination environments and separation
planes

The following lists the model coordination environments for
each coordination number. For each model coordination envi-
ronment, the symbol used in ChemEnv, a descriptive name, the
coordinates of the points, the IUCr and IUPAC symbols as well
as technical details about the algorithm used for the identifica-
tion are provided.

Coordination 1
• S:1→ Single neighbor

IUCr symbol : [1l]
IUPAC symbol : None
Points :

A 0.0000 0.0000 1.0000

Explicit permutations algorithm

Coordination 2
• L:2→ Linear

IUCr symbol : [2l]
IUPAC symbol : L-2
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000

Explicit permutations algorithm

• A:2→ Angular
IUCr symbol : [2n]
IUPAC symbol : A-2
Points :

A 1.0000 0.0000 0.0000
B −0.5000 0.8660 0.0000

Explicit permutations algorithm

Coordination 3
• TL:3→ Trigonal plane

IUCr symbol : [3l]
IUPAC symbol : TP-3
Points :

A 0.0000 1.0000 0.0000
B 0.8660 −0.5000 0.0000
C −0.8660 −0.5000 0.0000

Explicit permutations algorithm

• TY:3→ Triangular non-coplanar
IUCr symbol : [3n]
IUPAC symbol : TPY-3
Points :

A 0.5774 −0.5774 −0.5774
B −0.5774 0.5774 −0.5774
C −0.5774 −0.5774 0.5774

Explicit permutations algorithm

• TS:3→ T-shaped
IUCr symbol : None
IUPAC symbol : TS-3
Points :

A −1.0000 0.0000 0.0000
B 1.0000 0.0000 0.0000
C 0.0000 0.0000 1.0000

Explicit permutations algorithm
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Coordination 4
• T:4→ Tetrahedron

IUCr symbol : [4t]
IUPAC symbol : T-4
Points :

A 0.5774 −0.5774 −0.5774
B −0.5774 0.5774 −0.5774
C −0.5774 −0.5774 0.5774
D 0.5774 0.5774 0.5774

Explicit permutations algorithm

• S:4→ Square plane
IUCr symbol : [4l]
IUPAC symbol : SP-4
Points :

A 1.0000 0.0000 0.0000
B −1.0000 0.0000 0.0000
C 0.0000 1.0000 0.0000
D 0.0000 −1.0000 0.0000

Explicit permutations algorithm

• SY:4→ Square non-coplanar
IUCr symbol : [4n]
IUPAC symbol : SPY-4
Points :

A 0.9258 0.0000 0.3780
B −0.9258 0.0000 0.3780
C 0.0000 0.9258 0.3780
D 0.0000 −0.9258 0.3780

Explicit permutations algorithm

• SS:4→ See-saw
IUCr symbol : None
IUPAC symbol : SS-4
Points :

A 1.0000 0.0000 0.0000
B 0.0000 0.8660 0.5000
C 0.0000 0.0000 −1.0000
D −1.0000 0.0000 0.0000

Explicit permutations algorithm

Coordination 5
• PP:5→ Pentagonal plane

IUCr symbol : [5l]
IUPAC symbol : PP-5
Points :

A 1.0000 0.0000 0.0000
B 0.3090 0.9511 0.0000
C −0.8090 0.5878 0.0000
D −0.8090 −0.5878 0.0000
E 0.3090 −0.9511 0.0000

Explicit permutations algorithm

• S:5→ Square pyramid
IUCr symbol : [5y]
IUPAC symbol : SPY-5
Points :

A 1.0000 0.0000 0.0000
B −1.0000 0.0000 0.0000
C 0.0000 1.0000 0.0000
D 0.0000 −1.0000 0.0000
E 0.0000 0.0000 1.0000

Explicit permutations algorithm

• T:5→ Trigonal bipyramid
IUCr symbol : [5by]
IUPAC symbol : TBPY-5
Points :

A 0.0000 1.0000 0.0000
B 0.8660 −0.5000 0.0000
C −0.8660 −0.5000 0.0000
D 0.0000 0.0000 1.0000
E 0.0000 0.0000 −1.0000

Explicit permutations algorithm

Coordination 6
• O:6→ Octahedron

IUCr symbol : [6o]
IUPAC symbol : OC-6
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000

Separation plane algorithms :

Ô E / ACBD / F

Ô ∅ / ACE / FBD

• T:6→ Trigonal prism
IUCr symbol : [6p]
IUPAC symbol : TPR-6
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547

Separation plane algorithms :

Ô ∅ / ABED / CF

Ô ∅ / ABC / DEF
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• PP:6→ Pentagonal pyramid
IUCr symbol : None
IUPAC symbol : PPY-6
Points :

A 1.0000 0.0000 0.0000
B 0.3090 0.9511 0.0000
C −0.8090 0.5878 0.0000
D −0.8090 −0.5878 0.0000
E 0.3090 −0.9511 0.0000
F 0.0000 0.0000 1.0000

Separation plane algorithms :

Ô ∅ / ABCDE / F

Ô BC / AF / ED

Coordination 7
• PB:7→ Pentagonal bipyramid

IUCr symbol : [7by]
IUPAC symbol : PBPY-7
Points :

A 1.0000 0.0000 0.0000
B 0.3090 0.9511 0.0000
C −0.8090 0.5878 0.0000
D −0.8090 −0.5878 0.0000
E 0.3090 −0.9511 0.0000
F 0.0000 0.0000 1.0000
G 0.0000 0.0000 −1.0000

Separation plane algorithms :

Ô F / ABCDE / G

Ô DE / AFG / CB

• ST:7→ Square-face capped trigonal prism
IUCr symbol : [6p1c]
IUPAC symbol : TPRS-7
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547
G 0.0000 −1.0000 0.0000

Separation plane algorithms :

Ô G / ABED / CF

Ô AD / CFG / BE

• ET:7→ End-trigonal-face capped trigonal prism
IUCr symbol : None
IUPAC symbol : TPRT-7
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547
G 0.0000 0.0000 1.0000

Separation plane algorithms :

Ô G / ABC / DEF

Ô BE / AGD / CF

• FO:7→ Face-capped octahedron
IUCr symbol : None
IUPAC symbol : OCF-7
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000
G 0.5774 0.5774 0.5774

Separation plane algorithms :

Ô G / ACE / BDF

Ô D / AEBF / GC

Coordination 8
• C:8→ Cube

IUCr symbol : [8cb]
IUPAC symbol : CU-8
Points :

A −0.5774 −0.5774 −0.5774
B 0.5774 −0.5774 −0.5774
C −0.5774 0.5774 −0.5774
D −0.5774 −0.5774 0.5774
E −0.5774 0.5774 0.5774
F 0.5774 −0.5774 0.5774
G 0.5774 0.5774 −0.5774
H 0.5774 0.5774 0.5774

Separation plane algorithms :

Ô ∅ / ABGC / DFHE

Ô FD / ABHE / GC
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• SA:8→ Square antiprism
IUCr symbol : [8acb]
IUPAC symbol : SAPR-8
Points :

A 0.0000 0.8595 0.5111
B 0.0000 −0.8595 0.5111
C 0.8595 0.0000 0.5111
D −0.8595 0.0000 0.5111
E 0.6078 0.6078 −0.5111
F 0.6078 −0.6078 −0.5111
G −0.6078 0.6078 −0.5111
H −0.6078 −0.6078 −0.5111

Separation plane algorithms :

Ô ∅ / ACBD / EFHG

Ô E / ACFG / DBH

• SBT:8→ Square-face bicapped trigonal prism
IUCr symbol : None
IUPAC symbol : TPRS-8
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547
G 0.8660 0.5000 0.0000
H −0.8660 0.5000 0.0000

Separation plane algorithms :

Ô ∅ / ABED / CGFH

Ô H / ACFD / BGE

• TBT:8→ Triangular-face bicapped trigonal prism
IUCr symbol : [6p2c]
IUPAC symbol : TPRT-8
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547
G 0.0000 0.0000 1.0000
H 0.0000 0.0000 −1.0000

Separation plane algorithm :

Ô AD / CFHG / BE

• DD:8→ Dodecahedron with triangular faces
IUCr symbol : [8do]
IUPAC symbol : DD-8
Points :

A −0.5000 0.0000 −0.7839
B 0.5000 0.0000 −0.7839
C 0.0000 −0.6446 −0.2056
D 0.0000 0.6446 −0.2056
E −0.6446 0.0000 0.2056
F 0.6446 0.0000 0.2056
G 0.0000 −0.5000 0.7839
H 0.0000 0.5000 0.7839

Separation plane algorithm :

Ô CG / ABFE / DH

• DDPN:8→ Dodecahedron with triangular faces - p2345 plane
normalized
IUCr symbol : None
IUPAC symbol : None
Points :

A −0.5000 0.0000 −0.7839
B 0.5000 0.0000 −0.7839
C 0.0000 −0.9068 −0.2056
D 0.0000 0.9068 −0.2056
E −0.9068 0.0000 0.2056
F 0.9068 0.0000 0.2056
G 0.0000 −0.5000 0.7839
H 0.0000 0.5000 0.7839

Separation plane algorithm :

Ô CG / ABFE / DH

• HB:8→ Hexagonal bipyramid
IUCr symbol : [8by]
IUPAC symbol : HBPY-8
Points :

A 1.0000 0.0000 0.0000
B 0.5000 0.8660 0.0000
C −0.5000 0.8660 0.0000
D −1.0000 0.0000 0.0000
E −0.5000 −0.8660 0.0000
F 0.5000 −0.8660 0.0000
G 0.0000 0.0000 1.0000
H 0.0000 0.0000 −1.0000

Separation plane algorithms :

Ô G / ABCDEF / H

Ô FE / AHDG / BC
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• BO 1:8→ Bicapped octahedron (opposed cap faces)
IUCr symbol : None
IUPAC symbol : OCT-8
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000
G 0.5774 0.5774 0.5774
H −0.5774 −0.5774 −0.5774

Separation plane algorithms :

Ô AD / EGFH / CB

Ô FH / ACBD / GE

• BO 2:8 → Bicapped octahedron (cap faces with one atom in
common)
IUCr symbol : None
IUPAC symbol : OCT-8
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000
G 0.5774 0.5774 0.5774
H 0.5774 −0.5774 −0.5774

Separation plane algorithms :

Ô BE / CGDH / FA

Ô AG / CEDF / HB

Ô D / AEBF / CGH

• BO 3:8 → Bicapped octahedron (cap faces with one edge in
common)
IUCr symbol : None
IUPAC symbol : OCT-8
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000
G 0.5774 −0.5774 0.5774
H 0.5774 −0.5774 −0.5774

Separation plane algorithms :

Ô CE / AGHB / FD

Ô AG / CEDF / BH

Ô E / ACBD / GHF

Coordination 9
• TC:9→ Triangular cupola

IUCr symbol : None
IUPAC symbol : TCA-9
Points :

A 1.0000 0.0000 0.0000
B 0.5000 0.8660 0.0000
C −0.5000 0.8660 0.0000
D −1.0000 0.0000 0.0000
E −0.5000 −0.8660 0.0000
F 0.5000 −0.8660 0.0000
G 0.0000 0.5774 0.8165
H −0.5000 −0.2887 0.8165
I 0.5000 −0.2887 0.8165

Separation plane algorithms :

Ô ∅ / ABCDEF / GHI

Ô EF / ADHI / BCG

Ô BC / ADG / FEHI

• TT 1:9 → Tricapped triangular prism (three square-face
caps)
IUCr symbol : [6p3c]
IUPAC symbol : TPRS-9
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547
G 0.8660 0.5000 0.0000
H −0.8660 0.5000 0.0000
I 0.0000 −1.0000 0.0000

Separation plane algorithms :

Ô ABC / GHI / DEF

Ô AID / BEH / CGF

Ô I / ABED / CGFH

• TT 2:9 → Tricapped triangular prism (two square-face caps
and one triangular-face cap)
IUCr symbol : [6p3c]
IUPAC symbol : TPRS-9
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547
G 0.8660 0.5000 0.0000
H −0.8660 0.5000 0.0000
I 0.0000 0.0000 1.0000
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Separation plane algorithms :

Ô AD / HIBE / CGF

Ô GEB / CFI / HDA

• TT 3:9 → Tricapped triangular prism (one square-face cap
and two triangular-face caps)
IUCr symbol : [6p3c]
IUPAC symbol : TPRS-9
Points :

A −0.6547 −0.3780 0.6547
B 0.6547 −0.3780 0.6547
C 0.0000 0.7559 0.6547
D −0.6547 −0.3780 −0.6547
E 0.6547 −0.3780 −0.6547
F 0.0000 0.7559 −0.6547
G 0.0000 −1.0000 0.0000
H 0.0000 0.0000 −1.0000
I 0.0000 0.0000 1.0000

Separation plane algorithms :

Ô AD / IGHFC / BE

Ô CF / BEHI / AGD

• HD:9→ Heptagonal dipyramid
IUCr symbol : None
IUPAC symbol : HBPY-9
Points :

A 1.0000 0.0000 0.0000
B 0.6235 0.7818 0.0000
C −0.2225 0.9749 0.0000
D −0.9010 0.4339 0.0000
E −0.9010 −0.4339 0.0000
F −0.2225 −0.9749 0.0000
G 0.6235 −0.7818 0.0000
H 0.0000 0.0000 1.0000
I 0.0000 0.0000 −1.0000

Separation plane algorithm :

Ô H / ABCDEFG / I

• TI:9→ Tridiminished icosahedron
IUCr symbol : None
IUPAC symbol : None
Points :

A 0.0000 0.5257 0.8507
B 0.0000 0.5257 −0.8507
C 0.0000 −0.5257 −0.8507
D 0.5257 0.8507 0.0000
E 0.5257 −0.8507 0.0000
F −0.5257 −0.8507 0.0000
G 0.8507 0.0000 0.5257
H −0.8507 0.0000 0.5257
I −0.8507 0.0000 −0.5257

Separation plane algorithms :

Ô GE / AFCD / HIB

Ô B / CDI / EGAHF

• SMA:9→ Square-face monocapped antiprism
IUCr symbol : None
IUPAC symbol : SAPRS-9
Points :

A 0.0000 0.8595 0.5111
B 0.0000 −0.8595 0.5111
C 0.8595 0.0000 0.5111
D −0.8595 0.0000 0.5111
E 0.6078 0.6078 −0.5111
F 0.6078 −0.6078 −0.5111
G −0.6078 0.6078 −0.5111
H −0.6078 −0.6078 −0.5111
I 0.0000 0.0000 −1.0000

Separation plane algorithms :

Ô AGE / CDI / BHF

Ô I / EFHG / CBDA

Ô CBF / EHI / ADG

• SS:9→ Square-face capped square prism
IUCr symbol : None
IUPAC symbol : CUS-9
Points :

A −0.5774 −0.5774 −0.5774
B 0.5774 −0.5774 −0.5774
C −0.5774 0.5774 −0.5774
D −0.5774 −0.5774 0.5774
E −0.5774 0.5774 0.5774
F 0.5774 −0.5774 0.5774
G 0.5774 0.5774 −0.5774
H 0.5774 0.5774 0.5774
I 0.0000 0.0000 1.0000

Separation plane algorithms :

Ô BF / ADIHG / CE

Ô I / DEHF / ACGB

Ô BG / ACHF / DEI

• TO 1:9 → Tricapped octahedron (all 3 cap faces share one
atom)
IUCr symbol : None
IUPAC symbol : TOCT-9
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000
G 0.5774 0.5774 0.5774
H 0.5774 −0.5774 0.5774
I 0.5774 −0.5774 −0.5774
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Separation plane algorithms :

Ô IBF / CDH / GEA

Ô BE / CGDI / AFH

Ô DF / AHIB / GCE

• TO 2:9→ Tricapped octahedron (cap faces are aligned)
IUCr symbol : None
IUPAC symbol : TOCT-9
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000
G 0.5774 0.5774 0.5774
H 0.5774 −0.5774 0.5774
I −0.5774 −0.5774 −0.5774

Separation plane algorithms :

Ô CB / EGHFI / AD

Ô EB / CGDI / HAF

• TO 3:9 → Tricapped octahedron (all 3 cap faces are
sharingone edge of a face)
IUCr symbol : None
IUPAC symbol : TOCT-9
Points :

A 0.0000 0.0000 1.0000
B 0.0000 0.0000 −1.0000
C 1.0000 0.0000 0.0000
D −1.0000 0.0000 0.0000
E 0.0000 1.0000 0.0000
F 0.0000 −1.0000 0.0000
G 0.5774 0.5774 0.5774
H −0.5774 0.5774 −0.5774
I 0.5774 −0.5774 −0.5774

Separation plane algorithms :

Ô CGA / FIE / BHD

Ô AF / DGCI / HEB

Coordination 10
• PP:10→ Pentagonal prism

IUCr symbol : None
IUPAC symbol : PPR-10
Points :

A 1.0000 0.0000 −0.5878
B 0.3090 0.9511 −0.5878
C −0.8090 0.5878 −0.5878
D −0.8090 −0.5878 −0.5878
E 0.3090 −0.9511 −0.5878
F 1.0000 0.0000 0.5878
G 0.3090 0.9511 0.5878
H −0.8090 0.5878 0.5878
I −0.8090 −0.5878 0.5878
J 0.3090 −0.9511 0.5878

Separation plane algorithms :

Ô ∅ / ABCDE / FGHIJ

Ô BG / ACHF / EDIJ

• PA:10→ Pentagonal antiprism
IUCr symbol : None
IUPAC symbol : PAPR-10
Points :

A 1.0000 0.0000 −0.4253
B 0.3090 0.9511 −0.4253
C −0.8090 0.5878 −0.4253
D −0.8090 −0.5878 −0.4253
E 0.3090 −0.9511 −0.4253
F 0.8090 0.5878 0.4253
G −0.3090 0.9511 0.4253
H −1.0000 0.0000 0.4253
I −0.3090 −0.9511 0.4253
J 0.8090 −0.5878 0.4253

Separation plane algorithms :

Ô ∅ / ABCDE / FGHIJ

Ô DIH / CEJG / BAF

• SBSA:10→ Square-face bicapped square antiprism
IUCr symbol : None
IUPAC symbol : SAPRS-10
Points :

A 0.0000 0.8595 0.5111
B 0.0000 −0.8595 0.5111
C 0.8595 0.0000 0.5111
D −0.8595 0.0000 0.5111
E 0.6078 0.6078 −0.5111
F 0.6078 −0.6078 −0.5111
G −0.6078 0.6078 −0.5111
H −0.6078 −0.6078 −0.5111
I 0.0000 0.0000 −1.0000
J 0.0000 0.0000 1.0000

Separation plane algorithms :
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Ô CFE / AJBI / DHG

Ô JBC / ADF / GHIE

• MI:10→Metabidiminished icosahedron
IUCr symbol : None
IUPAC symbol : None
Points :

A 0.0000 0.5257 0.8507
B 0.0000 0.5257 −0.8507
C 0.0000 −0.5257 −0.8507
D 0.5257 0.8507 0.0000
E 0.5257 −0.8507 0.0000
F −0.5257 −0.8507 0.0000
G 0.8507 0.0000 0.5257
H −0.8507 0.0000 0.5257
I −0.8507 0.0000 −0.5257
J 0.8507 0.0000 −0.5257

Separation plane algorithms :

Ô FGE / AJCH / IDB

Ô AH / GDIF / JBCE

• BS 1:10→ Bicapped square prism (opposite faces)
IUCr symbol : None
IUPAC symbol : CUS-10
Points :

A −0.5774 −0.5774 −0.5774
B 0.5774 −0.5774 −0.5774
C −0.5774 0.5774 −0.5774
D −0.5774 −0.5774 0.5774
E −0.5774 0.5774 0.5774
F 0.5774 −0.5774 0.5774
G 0.5774 0.5774 −0.5774
H 0.5774 0.5774 0.5774
I 0.0000 0.0000 −1.0000
J 0.0000 0.0000 1.0000

Separation plane algorithms :

Ô FB / ADJHGI / EC

Ô ∅ / ABFD / CIGHJE

• BS 2:10→ Bicapped square prism (adjacent faces)
IUCr symbol : None
IUPAC symbol : CUS-10
Points :

A −0.5774 −0.5774 −0.5774
B 0.5774 −0.5774 −0.5774
C −0.5774 0.5774 −0.5774
D −0.5774 −0.5774 0.5774
E −0.5774 0.5774 0.5774
F 0.5774 −0.5774 0.5774
G 0.5774 0.5774 −0.5774
H 0.5774 0.5774 0.5774
I 1.0000 0.0000 0.0000
J 0.0000 1.0000 0.0000

Separation plane algorithms :

Ô BFI / ADHG / CEJ

Ô AD / EFBC / JHIG

Ô I / BFHG / ADEJC

• TBSA:10→ Trigonal-face bicapped square antiprism
IUCr symbol : None
IUPAC symbol : SAPRT-10
Points :

A 0.0000 0.8595 0.5111
B 0.0000 −0.8595 0.5111
C 0.8595 0.0000 0.5111
D −0.8595 0.0000 0.5111
E 0.6078 0.6078 −0.5111
F 0.6078 −0.6078 −0.5111
G −0.6078 0.6078 −0.5111
H −0.6078 −0.6078 −0.5111
I 0.0000 0.9710 −0.2391
J 0.0000 −0.9710 −0.2391

Separation plane algorithms :

Ô DHG / ABJI / CFE

Ô ∅ / ACBD / IEFJHG

Coordination 11
• PCPA:11→ Pentagonal-face capped pentagonal antiprism

IUCr symbol : None
IUPAC symbol : PPRP-11
Points :

A 1.0000 0.0000 −0.5878
B 0.3090 0.9511 −0.5878
C −0.8090 0.5878 −0.5878
D −0.8090 −0.5878 −0.5878
E 0.3090 −0.9511 −0.5878
F 1.0000 0.0000 0.5878
G 0.3090 0.9511 0.5878
H −0.8090 0.5878 0.5878
I −0.8090 −0.5878 0.5878
J 0.3090 −0.9511 0.5878
K 0.0000 0.0000 1.0000

Separation plane algorithms :

Ô K / FGHIJ / ABCDE

Ô BGHC / AFK / EJID
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• H:11→ Hendecahedron
IUCr symbol : None
IUPAC symbol : None
Points :

A 0.0000 0.0000 2.0000
B 2.0000 1.0000 1.0000
C 0.0000 −1.0000 1.0000
D −2.0000 1.0000 1.0000
E 0.0000 2.0000 0.0000
F 1.0000 −1.0000 0.0000
G −1.0000 −1.0000 0.0000
H 2.0000 1.0000 −1.0000
I 0.0000 −1.0000 −1.0000
J −2.0000 1.0000 −1.0000
K 0.0000 0.0000 −2.0000

Separation plane algorithm :

Ô DGJ / EACIK / BFH

• DI:11→ Diminished icosahedron
IUCr symbol : None
IUPAC symbol : None
Points :

A 0.0000 −1.0000 −1.6180
B 0.0000 1.0000 −1.6180
C 0.0000 −1.0000 1.6180
D 0.0000 1.0000 1.6180
E −1.0000 −1.6180 0.0000
F 1.0000 −1.6180 0.0000
G −1.0000 1.6180 0.0000
H 1.0000 1.6180 0.0000
I −1.6180 0.0000 −1.0000
J −1.6180 0.0000 1.0000
K 1.6180 0.0000 −1.0000

Separation plane algorithms :

Ô I / GJEAB / DCFKH

Ô FHK / ACDB / EJGI

Coordination 12
• I:12→ Icosahedron

IUCr symbol : [12i]
IUPAC symbol : IC-12
Points :

A 0.0000 −1.0000 −1.6180
B 0.0000 1.0000 −1.6180
C 0.0000 −1.0000 1.6180
D 0.0000 1.0000 1.6180
E −1.0000 −1.6180 0.0000
F 1.0000 −1.6180 0.0000
G −1.0000 1.6180 0.0000
H 1.0000 1.6180 0.0000
I −1.6180 0.0000 −1.0000
J −1.6180 0.0000 1.0000
K 1.6180 0.0000 −1.0000
L 1.6180 0.0000 1.0000

Separation plane algorithm :

Ô EIGJ / ABDC / FKHL

• PBP:12→ Pentagonal-face bicapped pentagonal prism
IUCr symbol : None
IUPAC symbol : PPRP-12
Points :

A 1.0000 0.0000 −0.5878
B 0.3090 0.9511 −0.5878
C −0.8090 0.5878 −0.5878
D −0.8090 −0.5878 −0.5878
E 0.3090 −0.9511 −0.5878
F 1.0000 0.0000 0.5878
G 0.3090 0.9511 0.5878
H −0.8090 0.5878 0.5878
I −0.8090 −0.5878 0.5878
J 0.3090 −0.9511 0.5878
K 0.0000 0.0000 −1.0000
L 0.0000 0.0000 1.0000

Separation plane algorithm :

Ô EJID / AFLK / BGHC

• TT:12→ Truncated tetrahedron
IUCr symbol : [12tt]
IUPAC symbol : None
Points :

A −0.5774 0.5774 −1.7321
B 0.5774 −0.5774 −1.7321
C −0.5774 −1.7321 0.5774
D 0.5774 −1.7321 −0.5774
E 1.7321 0.5774 0.5774
F 1.7321 −0.5774 −0.5774
G −1.7321 −0.5774 0.5774
H −1.7321 0.5774 −0.5774
I 0.5774 1.7321 0.5774
J −0.5774 1.7321 −0.5774
K 0.5774 0.5774 1.7321
L −0.5774 −0.5774 1.7321
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Separation plane algorithms :

Ô CD / GLFB / KIEAJH

Ô BDF / ACE / HGLKIJ

• C:12→ Cuboctahedron
IUCr symbol : [12co]
IUPAC symbol : None
Points :

A 0.0000 −1.0000 −1.0000
B 0.0000 1.0000 −1.0000
C 0.0000 −1.0000 1.0000
D 0.0000 1.0000 1.0000
E −1.0000 −1.0000 0.0000
F 1.0000 −1.0000 0.0000
G −1.0000 1.0000 0.0000
H 1.0000 1.0000 0.0000
I −1.0000 0.0000 −1.0000
J −1.0000 0.0000 1.0000
K 1.0000 0.0000 −1.0000
L 1.0000 0.0000 1.0000

Separation plane algorithms :

Ô BKH / AFLDGI / ECJ

Ô IGJE / ABDC / KHLF

• AC:12→ Anticuboctahedron
IUCr symbol : [12aco]
IUPAC symbol : None
Points :

A 1.0000 0.0000 0.0000
B 0.5000 0.8660 0.0000
C −0.5000 0.8660 0.0000
D −1.0000 0.0000 0.0000
E −0.5000 −0.8660 0.0000
F 0.5000 −0.8660 0.0000
G 0.5000 0.2887 −0.8165
H −0.5000 0.2887 −0.8165
I 0.0000 −0.5774 −0.8165
J 0.5000 0.2887 0.8165
K −0.5000 0.2887 0.8165
L 0.0000 −0.5774 0.8165

Separation plane algorithm :

Ô GHI / ABCDEF / JKL

• SC:12→ Square cupola
IUCr symbol : None
IUPAC symbol : None
Points :

A 0.9239 0.3827 0.0000
B 0.3827 0.9239 0.0000
C −0.3827 0.9239 0.0000
D −0.9239 0.3827 0.0000
E −0.9239 −0.3827 0.0000
F −0.3827 −0.9239 0.0000
G 0.3827 −0.9239 0.0000
H 0.9239 −0.3827 0.0000
I 0.5054 0.0000 0.8409
J 0.0000 0.5054 0.8409
K −0.5054 0.0000 0.8409
L 0.0000 −0.5054 0.8409

Separation plane algorithm :

Ô ∅ / ABCDEFGH / IJKL

• HP:12→ Hexagonal prism
IUCr symbol : [12p]
IUPAC symbol : HPR-12
Points :

A 1.0000 0.0000 −0.5000
B 0.5000 0.8660 −0.5000
C −0.5000 0.8660 −0.5000
D −1.0000 0.0000 −0.5000
E −0.5000 −0.8660 −0.5000
F 0.5000 −0.8660 −0.5000
G 1.0000 0.0000 0.5000
H 0.5000 0.8660 0.5000
I −0.5000 0.8660 0.5000
J −1.0000 0.0000 0.5000
K −0.5000 −0.8660 0.5000
L 0.5000 −0.8660 0.5000

Separation plane algorithms :

Ô ∅ / ABCDEF / GHIJKL

Ô FEKL / ADJG / BCIH
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• HA:12→ Hexagonal antiprism
IUCr symbol : None
IUPAC symbol : HAPR-12
Points :

A 1.0000 0.0000 −0.4278
B 0.5000 0.8660 −0.4278
C −0.5000 0.8660 −0.4278
D −1.0000 0.0000 −0.4278
E −0.5000 −0.8660 −0.4278
F 0.5000 −0.8660 −0.4278
G 0.8660 0.5000 0.4278
H 0.0000 1.0000 0.4278
I −0.8660 0.5000 0.4278
J −0.8660 −0.5000 0.4278
K 0.0000 −1.0000 0.4278
L 0.8660 −0.5000 0.4278

Separation plane algorithm :

Ô ∅ / ABCDEF / GHIJKL

Coordination 13
• SH:13→ Square-face capped hexagonal prism

IUCr symbol : None
IUPAC symbol : None
Points :

A 1.0000 0.0000 −0.5000
B 0.5000 0.8660 −0.5000
C −0.5000 0.8660 −0.5000
D −1.0000 0.0000 −0.5000
E −0.5000 −0.8660 −0.5000
F 0.5000 −0.8660 −0.5000
G 1.0000 0.0000 0.5000
H 0.5000 0.8660 0.5000
I −0.5000 0.8660 0.5000
J −1.0000 0.0000 0.5000
K −0.5000 −0.8660 0.5000
L 0.5000 −0.8660 0.5000
M 0.9682 −0.5590 0.0000

Separation plane algorithm :

Ô ∅ / ABCDEF / GHIJKLM
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