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HIGHLIGHTS

The relationships between

properties of materials can be

represented as a graph

Additional properties can be

calculated automatically from an

initial dataset

Multiple routes to calculate the

same property can be evaluated

to assess uncertainty

Available as an open-source

Python code, propnet, and

interactive website
propnet is a computational framework to explore the network of relationships

between fundamental materials properties. There exist many equations and

models known from the materials science literature that provide the links between

these properties, and this allows the representation of property connections as a

larger, interconnected graph. Exploring this graph in a systematic away allows the

automatic augmentation of existing materials databases and also provides new

ways to gain insight into the relationships between the material properties

themselves.
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Progress and Potential

Discovering the ideal material for

a new application involves

determining its numerous

properties, such as electronic,

mechanical, or thermodynamic, to

match those of its desired

application. The rise of high-

throughput computation has

meant that large databases of

material properties are now

accessible to scientists. However,

these databases contain far more

information than might appear at

first glance, since many
SUMMARY

Data-driven materials science is bolstered by the recent growth of online

materials databases. However, the current informatics infrastructure has yet

to unlock the full knowledge available within existing datasets or to explore

connections between different materials science domains. Here, we present a

streamlined system for codifying and connecting materials properties in an

open-source Python framework: propnet. We demonstrate the capability of

this framework to augment existing datasets of materials properties: by consec-

utively applying a network of physical relationships to calculate related informa-

tion, propnet connects disparate domain knowledge. Beyond an immediate

increase in available information, the results allow for the examination of corre-

lations between sets of properties and guide the design of multifunctional ma-

terials. By emphasizing code extensibility and simplicity, we offer this software

to the materials science community for general application to any experimental

or computationally derived materials database.
relationships exist in the materials

science literature to derive, or at

least approximate, additional

properties.

propnet is a new computational

framework designed to help

scientists to automatically

calculate additional information

from their datasets. It does this by

constructing a network graph of

relationships between different

materials properties and

traversing this graph. Initially,

propnet contains a catalog of over

100 property relationships but the

hope is for this to expand

significantly in the future, and

contributions from the community

are welcomed.
INTRODUCTION

The field of science is one of daunting breadth, divided into numerous subfields and

intersectional knowledge domains. While any one textbook may offer a basic over-

view of the field or explore a particular niche, no single resource exists that can

comprehensively chronicle centuries of established knowledge. Even in subfields

of science, such as materials science, knowledge and discoveries are scattered

over disparate publications and only known by experts of that particular specializa-

tion. This lack of connection is an inherent challenge to the advancement of modern

science, affecting multifunctional materials in particular. There is an ever-increasing

demand for such materials, which consistently outperform traditional solutions, thus

reducing size, weight, cost, power consumption, and complexity.1

In recent years, the field of materials informatics has blossomed, fueled by the

growth of free online computed and experimentally derived materials data-

bases.2–9 However, at present these resources are unconnected and typically display

only directly computed or measured data: few physically related properties are

accessible. This is a notable opportunity loss, as materials properties are inherently

interconnected. For example, the electronic structure of a material relates to its

chemistry and geometry, which affects its energy-absorption capabilities, its refrac-

tive index, and its dielectric breakdown strength.

From a holistic perspective, materials science knowledge can be described as a

network of relationships. By leveraging the organizational structure of these connec-

tions at scale, it is possible to gain new insight previously hidden within existing
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datasets. Specifically, we anticipate an increase in derived materials properties, a

facilitated examination of property relationships, an improved uncertainty quantifi-

cation between different models, and the ability to infer previously unknown physical

correlations. By encoding canonical and novel materials property relationships in a

facile serialized format (e.g., YAML format), software can predict physical behavior

automatically, thus unlocking an array of latent information. Similarly, this process

can be used to augment training sets with physically relevant property descriptors,

improving the efficacy of predictive machine-learning models.

To realize this vision, we introduce propnet, an open-source Python package, as a

means to programmatically codify and apply any facet of materials science knowl-

edge. At its core, propnet is a growing catalog of materials properties, appropriate

units, and property relationships, stored in extendable, general formats. For

example, propnet stores atomic density (ratom, in atoms/Å3) and mean sound veloc-

ity (vm, in m/s) as properties that connect to Debye temperature (TD, in K) via the

Debye model:

TD =
Z

kb

�
6p2ratom

�1=3
vm: (Equation 1)

Beyond simple equations and fundamental properties, propnet can store any prop-

erty or relationship that can be expressed programmatically in Python, including var-

ied properties such as crystal dimensionality, material cost, and other relationships

with complex manipulation of inputs. As of propnet v.2019.07, the catalog consists

of 115 materials properties and 69 relationships, or ‘‘models.’’

Together, these properties and relationships form a directed graph data structure

(Figure 1) capable of representing arbitrarily complex property relationships,

including those which are uni- and bidirectional. The utility of propnet lies in

deriving an augmented set of materials properties from inputs provided by applying

its graph traversal algorithm. For example, some databases report a computed band

gap but do not use this band gap to estimate refractive index. Using propnet, the

estimated refracted index is reported automatically. In this article, we demonstrate

our feature-complete infrastructure, which, when applied to the Materials Project

database, produces an average of 29 new properties per material, a 9-fold increase

in available property values over the original data.

In addition to the core functionality of expanding datasets, we envision propnet as

a valuable resource for materials informatics. Specifically, the datasets generated by

propnet are not only inherently useful but also are suitable for generating physically

motivated feature vectors. Such vectors are important for improving machine-

learned models in materials design.10 Using propnet, it is possible to assess the ac-

curacy of property relationships as well as create ensembles of physical models that

outperform any single model. In the following, we explore two examples of this more

advanced functionality.

RESULTS AND DISCUSSION

As an initial proof of concept, propnet was applied to the Materials Project

database, a publicly available, rapidly growing repository of computed materials

properties, containing over 120,000 different materials.4 The Materials Project4 is

a database mainly derived from first principles, affording each entry a minimum of

four basic properties: the lattice and basis, the calculated band gap, and the total

energy, as computed by density functional theory (DFT)11–14 using the Perdew-

Burke-Ernzerhof (PBE)15 functional or PBE with Hubbard U16 correction. In addition,
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Figure 1. The Propnet Graph

Representation of the propnet knowledge graph, showing the connections between properties (blue) via property relationships or models (orange).

Lines between shapes indicate that the connected model takes the connected property as input or yields the connected property as output, as

represented by arrowheads pointing toward models or toward properties, respectively. The top inset shows a closer view of one section of the graph,

including labels for selected models and properties.
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the Materials Project provides several other structure-related properties, including

chemical formula, atomic density, mass density, volume of the unit cell, and volume

per atom. Together, these properties will be referred to as ‘‘base properties’’ for the

remainder of the paper. For a growing subset of materials, currently numbering be-

tween 1,000 and 15,000, dielectric, elastic, piezoelectric, and vibrational properties

have also been calculated alongside surface energies.17–21 These tensor properties

contain rich information and are used by propnet to substantially increase the

amount of information available for each material. In the following, we use the Ma-

terials Project to demonstrate the capabilities of propnet; however, we emphasize

that propnet is inherently agnostic to the data’s origin and can be used universally

on any experimental or computational materials property dataset.

Demonstrating the Increase in Derived Properties

To assess propnet’s effectiveness in expanding datasets, we chose an example

material: wurtzite CdTe (space group: 186, Materials Project ID: mp-12779). CdTe

is a semiconductor used in high-efficiency, thin-film photovoltaics, noteworthy for

its optimal narrow band gap and ease of manufacture.22 In the Materials Project,

CdTe presents calculated dielectric and elastic tensors in addition to its base prop-

erties. After importing a dataset of 20 values for 20 distinct properties fromMaterials

Project and executing propnet, a total of 629 new distinct property values spanning

41 new properties are derived. Each derived value represents a unique chain of

physical relationships used to calculate a property that was previously hidden.

In a further demonstration, we illustrate the performance of propnet on datasets

with variable data by systematically removing property values from the original Ma-

terials Project CdTe dataset. To this end, all possible subsets of data were gener-

ated, starting from ten initial materials properties. The reduced datasets include

ten subsets of nine total properties, 45 subsets of eight total properties, and so forth.

Every subset is then inspected by propnet, resulting in varying numbers of output

property values for each subset. Grouping the data by subset size, we plot the mean

number of total property values (derived + starting property values) as a function of

subset size, demonstrating the ability of propnet to augment even very small data-

sets (Figure 2).

Similarly, we highlight the increased effectiveness of propnet when presented with

diverse information. Starting with eight total values for the eight base properties of

CdTe, we apply propnet, resulting in 21 new property values spanning 16 new

properties. Next, we expand the initial dataset, first adding the dielectric tensor

and then adding both the dielectric and elastic tensors. The addition of these tensors

greatly increases the number of new properties: 21 and 38 are derived, respectively.

The total number of property values also increases by factors of 5.5 and 35, respec-

tively (Figure 2) relative to the initial eight data points. The elastic tensor substan-

tially augments the dataset due to the numerous elasticity-based models currently

available in propnet. In particular, some derived properties from the elastic tensor,

such as bulk modulus, can have upper and lower bound values depending on the

specific assumptions used (e.g., constant strain or constant stress). These many op-

tions then generate inputs for other models, leading to a compounding effect.

Identifying Correlations in Materials Properties

To analyze propnet’s potential for revealing relationships between materials prop-

erties, we use our framework to inspect each material entry in the Materials Project.

Every entry includes the aforementioned ‘‘base properties’’ (lattice, basis, chemical

formula, band gap, total energy, atomic density, mass density, volume of the unit
Matter 2, 464–480, February 5, 2020 467
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Figure 2. Augmenting a Dataset Using Propnet

The ability of propnet to augment materials science datasets by varying the (A) dataset size and

the (B) dataset content using Materials Project data on wurtzite CdTe. In (A), the x axis represents

the number of property values in the input set. The y axis represents the mean number of total

(derived + initial) distinct property values, averaged over all possible input sets of size x after

propnet is applied to the dataset. Note that propnetmay derive several different property values

for a given materials property. At top left is a rendering of the wurtzite CdTe crystal structure. In (B),

the x axis represents the type of properties included as input to propnet and the y axis represents

the number of resulting property values.
cell, and volume per atom). Elastic, dielectric, and piezoelectric tensors are included

in the initial properties if they are available, along with a characterization of the

magnetic ordering. Starting with these values, the datasets of each material are

expanded using propnet, yielding up to approximately 30 distinct scalar

properties.

To determine the degree of correlation between scalar properties, the mean value

for each is collected material by material. For a given pair of scalar properties, the
468 Matter 2, 464–480, February 5, 2020



materials that contain data for both are selected. The correlation is then measured

using the maximal information coefficient (MIC) score.23 This metric is robust to out-

liers and is capable of identifying nonlinear relationships. TheMIC score ranges from

0 to 1, with 0 indicating no relationship between two variables and 1 representing a

strong, monotonic relationship. When provided with a dataset, propnet can

perform this correlation analysis automatically using the MIC score or a variety of

other correlation metrics, including Pearson correlation, Spearman rank correlation,

and Theil-Sen regression.

The correlation analysis (Figure 3) identifies 12 strong relationships with MIC scores

above 0.9 (Figure 3). For example, and not unexpectedly, we find that the Debye

temperature and the longitudinal sound velocity are related, with a MIC score of

0.905. This occurs because of the direct relationship between the Debye tempera-

ture and the mean sound velocity that is codified within a propnet model (see

Equation 1). Noting that the Debye temperature is also proportional to the atomic

density, the additional relationship causes variation that lowers the MIC score.

As a measure of property connectivity, a ‘‘graphical distance’’ can be used to high-

light correlations between properties that are unexpected. We define the graphical

distance between two properties to be the size of the smallest input set that derives

both properties. Thus, the larger the graphical distance, the ‘‘harder’’ it is to connect

those properties on the knowledge graph: properties that are correlated yet

separated by a large distance in the propnet graph suggest that a model exists

connecting the properties. If either of the properties is not connected to the

propnet knowledge graph by any models, the graphical distance is considered un-

defined, and the properties are considered ‘‘not connected.’’ For example, from an

input set of total mass of a unit cell (m), unit cell volume (V), and number of atomic

sites in a unit cell (n), we can derive the density (r = m/V) and the atomic density

(ratom = n/V). Density and atomic density both require two inputs to be derived

from this input set but have a graphical distance of 3. The set of three variables

(m, n, and V) derives both densities.

While heuristic, this metric gauges the conceptual separation between two proper-

ties in the domain of scientific knowledge. The models in propnet represent prop-

erty relationships as they are presented in the literature, with the most atomic

equations chosen. As such, this definition represents how a scientist might logically

draw a path between two properties. We recognize that graphical distance can be

defined in a number of ways, and we plan to explore different definitions as the

knowledge graph grows.

As expected, many properties that are related to a high MIC score have a low graph-

ical distance. Exploring this observation, we enumerate all property pairs and group

them by graphical distance (Figure 4). Interestingly, some property pairs exhibit low

correlation scores, even at low graphical distance. The definition of graphical dis-

tance assumes that the more information that is required to derive the two proper-

ties, the less correlated they are likely to be. This metric also assumes that all

properties hold a relatively similar amount of information. However, properties

such as tensor values or the crystal structure contain much more information than

scalar values. If two properties are both derived from a single property such as these,

they will have a graphical distance of 1 unit. Many of the observed low-score, low-

distance property pairs are derived directly from these complex properties, afford-

ing them an artificially short graphical distance. This highlights a shortcoming of the

definition for graphical distance.
Matter 2, 464–480, February 5, 2020 469
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Figure 3. Materials Property Correlations

(A) A correlation matrix heatmap demonstrating relationships between selected scalar materials properties derived from Materials Project data. Each

numbered row/column corresponds to the numbered property in the list on the right. The color depth at each line intersection corresponds to the

maximal information coefficient (MIC) score for the pair of properties intersecting at that point on the heatmap.

(B) A table of the scalar property pairs shown in the matrix with MIC scores >0.9, their graphical distance in number of properties (or ‘‘Not connected’’ for

unconnected properties), and their MIC scores ranked in descending order.
We also observe a number of property pairs with high correlation scores that are

deemed ‘‘not connected’’ on the propnet graph. These pairs suggest the presence

of additional models that are missing from propnet. For example, the band gap
470 Matter 2, 464–480, February 5, 2020



Figure 4. Property Correlations by Graphical Distance

Correlation strength between pairs of scalar properties grouped by their graphical distance into ‘‘violin’’ plots. The x axis represents the graphical

distance separating two properties on the propnet graph, as defined in the text. ‘‘Not connected’’ means that the two properties are not connected by

any property relationships to the current graph. The y axis represents the MIC score calculated for each pair of properties of a given graphical distance.

The violin plot consists of a kernel density plot overlaid with a standard box-and-whisker plot. The kernel density plots correspond to the density of

points at a given MIC score value for a given graphical distance. In the box-and-whisker plots, the solid horizontal lines represent the median and

quartile divisions of the MIC scores and the dashed horizontal line represents the mean MIC score. To the left of each violin plot is a scatterplot of the

raw MIC scores for each property pair with a given graphical distance value.
and the polycrystalline optical dielectric constant have a high correlation score

(0.941) but are not connected. However, the relationship between the band gap,

the refractive index, and the dielectric constant has been studied extensively.24–29

As such, by examination of these correlation scores, propnet reveals knowledge

missing from its library.

We see a marked decrease in the number of property pairs with high correlation as

graphical distance increases. Hence, we suggest that propnet can be used to

reveal analytic relationships, known or yet unknown, between properties by heuristi-

cally analyzing largeMIC score outliers at larger graphical distances. As a case study,

we consider the correlation between Debye temperature and Clarke thermal

conductivity.

Of the top seven properties that correlate strongly with Clarke thermal conductivity,

Debye temperature ranks the highest, with an MIC score of approximately 0.913

(Figure 5). This is particularly compelling because the two properties are separated

by 9 graphical distance units on the current propnet knowledge graph (Figure 5). At

this distance, most properties exhibit low correlation scores; however, the high

correlation can be explained by exploring how these two properties are derived.

The Clarke thermal conductivity emerges from considering the high-temperature

limit of the Debye model,30 yielding a lower bound estimate of the actual thermal

conductivity. Taking the sound velocity (vs) to be roughly proportional to the square

root of Young’s modulus (Y), vs z OY/r, it then follows that there exists a simple

relationship connecting the Clarke thermal conductivity (kC) and the Debye temper-

ature (TD):

kC

TD
z
ð0:87Þk2B

pZ

�p
6

�1=3

r
1=3
atom; (Equation 2)
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Figure 5. Example of Propnet Model Discovery

(A) Ranking of the top seven scalar properties with the highest MIC score when correlated with Clarke thermal conductivity.

(B) Clarke thermal conductivity versus the product of the Debye temperature with the cube root of atomic density for a representative sample of

dynamically stable materials (blue dots) with a least-squares linear fit to the full stable materials dataset, constrained to intersect the origin (orange line).

Dynamically unstable materials (red crosses) are shown to demonstrate their poor adherence to the model.

(C) Schematic of the new relationship found by propnet. The propnet-discovered direct relationship described in the text is symbolized by the

dashed, red line. Symbol key: Clarke thermal conductivity (kC), Debye temperature (TD), atomic density (ratom), mean/longitudinal/transverse sound

velocity (vm/vL/vT), Young’s/bulk/shear modulus (Y/B/G), and elastic tensor (Cijkl)
where kB is Boltzmann’s constant, Z is the reduced Planck’s constant, and ratom is the

atomic density. When these two properties are plotted against one another, we note

that the relationship is almost linear, demonstrating a weak dependence on the

atomic density (Figure 5).

This nearly linear relationship between Debye temperature and Clarke thermal con-

ductivity is not included explicitly as a model in propnet. However, through correla-

tion analysis, propnet is able to uncover the strong relationship, suggesting a new,

shorter calculation pathway between the two properties. While this specific example

is explained intuitively, it demonstrates the ability of propnet to identify unknown re-

lationships between larger and more disparate sets of materials properties.

A subset of materials deviates significantly from the nominally linear relationship.

These materials are not anomalous in terms of their atomic density, but instead

exhibit a dynamically unstable structure, which results in an elastic tensor with one

or more negative eigenvalues (Figure 5, red crosses). The models for Debye temper-

ature and Clarke thermal conductivity are formulated in expectation of a positive

definite tensor signifying a dynamically stable structure; hence, these data are

spurious.
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Uncertainty in Materials Data

Focusing on a small subset of mechanical properties, we explore in detail the ability

of propnet to gauge the uncertainty within a materials dataset. As an example, we

consider Vickers hardness: an engineering property of materials that is most closely

related to the yield strength.31 A rough estimate of Vickers hardness can be obtained

from the elastic tensor, which can serve (1) as a first approximation of a material’s

hardness and wear and (2) as a screening metric for superhard materials.32–37

From the available data in the Materials Project, Vickers hardness can be estimated

by propnet via numerous distinct pathways (Figure 6). Each separate path involves

different models that, when evaluated in concert, result in the Vickers hardness.

Thus, for a single material, many different Vickers hardness values can be obtained:

one value per calculation path. When multiple values are provided for various

properties, all combinations of values are considered in order to form a complete

collection of input sets. For example, if propnet were presented with two elastic

tensors—one experimental and one from DFT—there would be a cascade of new

possible values for the Vickers hardness. For each calculation pathway presented

above, propnet uses any combination of values derived from experiment or theory.

As such, this framework automatically generates the ensemble of possible values for

any material property, consistent with any combination of input data and propnet

pathways.

To illustrate this, we calculate values for Vickers hardness using another material,

wurtzite GaN. As a result, we obtain an ensemble of 128 calculated values, each orig-

inating from a unique pathway encoded in propnet. Some paths start with the

elastic tensor and use different polycrystalline averaging schemes38 to obtain the

elastic moduli; others derive the elastic moduli using a machine-learning model39

based on structural and energetic properties. Selecting one particular property

and examining its spread therefore gives a practical metric for gauging the uncer-

tainty in that value. For our ensemble of Vickers hardness values, we observe a

mean value of 11.9 GPa with a standard deviation of 4.25 GPa (Figure 6). The Vickers

hardness of wurtzite GaN has been experimentally measured to be z10.0 GPa.40

While this value was not output exactly by any one pathway, it is near the middle

of the predicted distribution.

Uncertainty Quantification and Combination of Models

In the case that several physical or empirical models connect two different materials

properties, propnet is equipped with the ability to benchmark the models by their

accuracy. By performing a linear, least-squares prediction, propnet can also

combine different models to optimize a connection between two properties.

As an example, we consider the case of estimating the refractive index from the band

gap. In our current version of propnet, there are five different models connecting

the two properties: an original model published by Moss24 and four derivative

models published by Hervé and Vandamme,28 Gupta and Ravindra,25 Reddy and

Nazeer Ahammed,27 and Reddy et al.26 We use propnet to estimate the refractive

indices for a subset of Materials Project materials, filtering for those with experi-

mental values of both the band gap and the refractive index at visible and infrared

frequencies (see Experimental Procedures: Model Benchmarking). Comparing the

predictions from propnet with both the visible and infrared experimental datasets,

we observe considerable differences between the predicted and measured values,

particularly in materials with refractive indices less thanz2.5 (Figure 7, blue circles).

For these materials, the Ravindra model performs poorly, giving relatively high root-

mean-square error (RMSE) values for both the visible and infrared datasets (Table 1).
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Figure 6. Example of Propnet Calculation of Vickers Hardness

(A) Schematic illustrating a selection of possible calculation pathways to reveal the Vickers

hardness from the elastic tensor.

(B) Histogram of the derived Vickers hardness values for wurtzite GaN from the DFT-calculated

elastic tensor, structural, and energy data. The approximate experimental value from Yonenaga

and Suzuki40 is depicted by the red line and the mean of the computed values is depicted by the

green line.
In contrast, the Reddy/Anjaneyulu model performed well over both datasets, and

the Hervé/Vandamme and Moss models had comparatively low RMSE for the visible

and infrared datasets, respectively.
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Figure 7. Improving Accuracy of Property Prediction by Model Weighting

Illustration of propnet’s ability to benchmark models against a set of known values. On top, schematics depict the ideal weighting of several refractive

index (n) models when calculating the mean n value for materials using propnet; weights were benchmarked with experimental n values measured

using (A) visible (l = 589.3 nm) and (C) infrared light (l = 10.0 mm). On the bottom, the plots compare mean propnet-computed n values for a set of

materials with their respective experimental n values, measured using (B) visible and (D) infrared light. The mean propnet-computed n is shown with

equal model weighting (blue circles) and benchmarked weights (orange crosses).
The RMSE information is inherently important and can be visually inspected. How-

ever, it is even more useful to analyze the deviation between each model and the

collected experimental data to arrive at an improved relationship between the

band gap and the refractive index. By default, propnet aggregates property values

of the same type using an unweighted mean, i.e., values derived from each model

are weighted equally. This protocol is not ideal in situations where models only

work well over a range of values or material types. For example, the Ravindra model

is known to give poor, non-physical results for materials with low refractive indices,

and the Reddy/Ahammed model cannot be evaluated for materials with small band

gaps.29 Additionally, the Hervé/Vandamme model performs better with refractive

indices measured with visible light because the empirical model was originally fit us-

ing refractive index data collected in the visible region. Likewise, the Moss model

was based primarily on refractive index data collected using infrared light.

To address these disparities in performance, propnet implements a benchmarking

protocol, which generates an improved weighting of models for aggregation by

fitting to experimental data using a constrained linear least-squares fit (see Model

Benchmarking for details). The various biases of the models became apparent after

running the benchmarking procedure with the two datasets: propnet assigns large

weights to the Reddy/Anjaneyulu and Hervé/Vandamme models on the visible
Matter 2, 464–480, February 5, 2020 475



Table 1. List of Models in propnet Used to Calculate Refractive Index from Band Gap with Their

Root-Mean-Square Errors and the Benchmarked Weighted Percentages for the Visible and

Infrared Experimental Datasets

Model RMSE % Weight

Visible Infrared Visible Infrared

Hervé/Vandamme 0.52 1.15 25.6% z0%

Moss 0.54 0.93 z0% 24.6%

Ravindra 6.84 7.13 1% z0%

Reddy/Ahammed* 0.78 0.98 z0% z0%

Reddy/Anjaneyulu 0.48 0.90 73.4% 75.4%

Unweighted mean 1.50 1.80

Weighted mean 0.46 0.89

The last two rows show root-mean-square errors (RMSE) values for unweighted and weighted means of

refractive indices obtained from these models. See de Jong et al.29 for mathematical forms of each

model.

*The Reddy/Ahammed model could not be evaluated for materials with band gaps less than 0.365 eV,

causing them to be excluded from the RMSE calculation, producing an artificially low model RMSE.
dataset; propnet assigns large weights to the Reddy/Anjaneyulu and Moss models

on the infrared dataset; and in all cases, propnet minimizes the contribution of

the Ravindra model. With these benchmarked weights, the improvement in predic-

tion can be readily seen (Figure 7, orange crosses) and the RMSE for the weighted

mean drops below that of the unweighted mean and any of the individual models

(Table 1). The results with a linear model are promising and highly interpretable,

but one could also explore more complex ensemble methods, such as a random for-

est prediction.41 With the implementation of improved averaging schemes, future

versions of propnet could employ fitted relationships when aggregating property

values during graph evaluation to reduce the propagation of errors during calcula-

tions of related properties.

Conclusion

In this work, we demonstrate a programmatic framework for systematically codify-

ing, connecting, and analyzing materials properties. To our knowledge, no such

framework exists today, and we anticipate a rapidly growing need as the field of ma-

terials informatics expands. To illustrate the features of propnet, we exemplify (1)

the rapid increase in derived, available materials properties, (2) the facilitated exam-

ination of correlations between property sets, (3) uncertainty quantification, and (4)

the ability of propnet to derive model weightings in response to a benchmarking

dataset.

The currently implemented set of models is limited to mainly fundamental mechan-

ical or dielectric quantities. However, the demonstrated behavior can be extended

arbitrarily with the use of customized models and materials properties. Because

propnet is readily extensible, this software package leverages not only simple

analytical models but also combines previously coded algorithms for deriving mate-

rials properties (e.g., pymatgen)42 and machine-learning models (e.g., gbml).39 As

such, propnet is able to combine together vastly different codebases to create a

cohesive amalgamation of knowledge in a single resource.

In combination with a user’s own data, we envision propnet to be a powerful tool

for combining and augmenting many sources of materials data. The current version

of propnet includes an adapter to automatically access data from the Materials
476 Matter 2, 464–480, February 5, 2020



Project. In future versions, we anticipate the development of additional tools to ac-

cess and combine data from other open-access resources in the rapidly growing

domain of materials informatics.
EXPERIMENTAL PROCEDURES

The Python codebase for propnet is available under an open-source license and

can be found at https://github.com/materialsintelligence/propnet. Please see the

repository for details on usage.
Design Philosophy of Code

Of principal importance in the design of propnet is ensuring that materials property

models can be faithfully represented programmatically. Eschewing blind application

of simple formulas, propnet employs a flexible object-oriented approach that ac-

commodates the encoding of constraints on model evaluation by means of method

override. This fundamentally ensures that a result cannot be derived unless all

required conditions are met for the model to be valid. Analyzing, for example, the

Wiedemann-Franz-Lorenz law for metallic thermal conductivity, propnet will not

generate an output unless it knows that the material’s band gap is zero. However,

propnet may proceed with a non-metal if a value for the Lorenz number is given

as input.

To emphasize community accessibility, manymodels can be encoded using a simpli-

fied text file (YAML) format with representative equations directly specified in the

file. An example of such a file can be found in Supplemental Information. For users

with Python knowledge, more complex models can be created using a Python mod-

ule template. To facilitate broad adoption, propnet includes automatic unit

handling and conversion, utilizing the pint Python package.43

propnet employs a custom graph traversal algorithm to generate all possible out-

puts from a given input set. This process, termed a self-consistent evaluation

scheme, is used to deterministically augment datasets while avoiding infinite loops.

Fundamentally, the set of connectedmaterials properties and property relationships

may be cyclic. Thus, as outputs are generated from property relationships, these

outputs may correspond to new inputs for other property relationships. In the gen-

eral case, propnet must continuously revisit models and account for these new in-

puts, thereby generating additional outputs.

To prevent an infinite loop in the case of a cyclic graph, each output from a model

is tagged as originating from that model. If the input set that generated the output

had elements derived from other models, the output is tagged as originating from

these models as well. Maintaining a set of connections, an output can be gener-

ated from a model and an input set if, and only if, none of the input set values

have been derived from the same model. There exist many other potential

schemes for avoiding infinite loops when evaluating models, and the precise

halting criterion is generally flexible. In particular, this approach was selected to

generate all intuitive outputs while minimizing redundant calculations of interde-

pendent properties.

Emphasizing abstraction, the graph of materials properties and property relation-

ships exists independent of any materials data. Models and properties taken

together compose the final property network graph, representing the means by

which materials properties are calculated. Conforming to this model, we take
Matter 2, 464–480, February 5, 2020 477
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collections of materials property data to exist separate from the graph. Thus, the ac-

tion of the graph is solely to augment these sets of data with additional values.

Model Benchmarking

The experimental band gap and refractive index datasets used for model bench-

marking are available in Supplemental Information with references for individual

values used.

Experimental refractive index data were retrieved from the RefractiveIndex.info data-

base,44 which tabulates refractive indices as a function of the wavelength of light

used tomeasure the refractive index (i.e., dispersion) from one ormore reference sour-

ces. Data explicitly labeled as simulation or model data was excluded. Materials were

selectedbasedon the availability of datameasured at thewavelength of choice: visible

light, 589.3 nm (sodium D lines) or infrared light, 10.0 mm. For each reference source

containing relevant data about a material, specific wavelength-dependent refractive

index values were obtained by evaluating the empirical, mathematical form of the

dispersion function or by linear interpolation of the discrete data, depending on the

format provided. If multiple reference sources were available for a given material, a

subset of values was created from the refractive indices within one standard deviation

of the superset mean. The refractive index for the material was then taken as the mean

value of the subset. Materials with mean refractive indices %1 were excluded.

Experimental band-gap data were retrieved from the Citrination database6 by

chemical formula search for the materials in each refractive index dataset. If no

experimental band gap was available, the material was excluded from the dataset.

If multiple band gaps were available for a given material, the subset mean approach

was applied as described above.

Benchmarking of weights was done by minimizing the sum of squared errors (least

squares) using the implementation of the Trust-Region Constrained Algorithm45

as implemented in scipy.46 Weights were constrained to values between 0 and 1

where the sum of all weights must equal 1. If a refractive index generated by a given

model was unavailable for a material, the weights for the remaining models were

scaled such that their sum was 1 for that material.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.matt.

2019.11.013.
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