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Predicting Crystal Structures with Data Mining of Quantum Calculations
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Predicting and characterizing the crystal structure of materials is a key problem in materials
research and development. It is typically addressed with highly accurate quantum mechanical
computations on a small set of candidate structures, or with empirical rules that have been extracted
from a large amount of experimental information, but have limited predictive power. In this Letter, we
transfer the concept of heuristic rule extraction to a large library of ab initio calculated information,
and we demonstrate that this can be developed into a tool for crystal structure prediction.
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(DMQC) and demonstrate its efficiency in increasing
the speed of predicting the crystal structure of new and

alloy (suggested energy cutoffs are derived by the method
described in [12]). Brillouin zone integrations were done
Ab initio methods, which predict materials properties
from the fundamental equations of quantum mechanics,
are becoming a ubiquitous tool for physicists, chemists,
and materials scientists. These methods allow scientists to
evaluate and prescreen new materials ‘‘in silico,’’ rather
than through time-consuming experimentation, and in
some cases, even make suggestions for new and better
materials [1–4]. One inherent limitation of most ab initio
approaches is that they do not make explicit use of results
of previous calculations when studying a new system.
This can be contrasted with data-centered methods,
which mine existing data libraries to help understand
new situations. The contrast between data-centered and
traditional ab initio methods can be seen clearly in the
different approaches used to predict the crystal structure
of materials. This is a difficult but important problem that
forms the basis for any rational materials design. In
heuristic models, a large amount of experimental obser-
vation is used in order to extract rules which rationalize
crystal structure with a few simple physical parameters
such as atomic radii, electronegativities, etc. The
Miedema rules for predicting compound forming [5], or
the Pettifor maps [6] which can be used to predict the
structure of a new binary material by correlating the
position of its elements in the periodic table to those of
systems for which the stable crystal structure is known,
are excellent examples of this. In contrast, ab initio ap-
proaches do not use data from previous studies but rather
try to determine structure by optimizing from scratch the
complex quantum mechanical description of the system,
either directly (as in ab initio molecular dynamics) or in
coarse-grained form (as in lattice models [7–9]). Here,
we merge the ideas of data-centered methods with the
predictive power of ab initio computation. We propose a
new approach whereby ab initio investigations on new
systems are informed with knowledge obtained from
results already collected on other systems. We refer to
this approach as data-mining of quantum calculations
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unknown materials. Using a principal component analy-
sis (PCA) on over 6000 ab initio energy calculations, we
show that the energies of different crystal structures in
binary alloys are strongly correlated between different
chemical systems, and we demonstrate how this correla-
tion can be used to accelerate the prediction of new
systems. We believe that this is an interesting new direc-
tion to address in a practical manner the problem of
predicting the structure of materials.

To determine the ground states of a system one needs to
find, as a function of composition, the ordered compounds
that have an energy lower than any other structure or any
linear combination of structures that gives the proper
composition. This set of ground-state structures forms a
convex hull as all other structures have an energy that
falls above the set of tie lines that connects the energy of
the ground states. Using density functional theory we
have calculated a library of ab initio energies for 114 dif-
ferent crystal structures in each of 55 binary metallic
alloys. The alloys include all 45 binaries that can be made
from row 4 transition metals, as well as ScAl, AgMg,
AgTi, CdTi, MoTi, PdTi, RhTi, RuTi, TcTi, and TiZr.
About 1=3 of the crystal structures in the library were
chosen from the most common binary crystal structures
in the CRYSTMET database for intermetallics [10]. The
rest are superstructures of the fcc, bcc, and hcp lattices at
various compositions.

The formation energy for each structure is determined
with respect to the most stable structure of the pure
elements. Energy calculations were done using density
functional theory, in the local density approximation,
with the Ceperley-Alder form for the correlation energy
as parametrized by Perdew-Zunger [11] with ultra-
soft pseudopotentials, as implemented in VASP [12].
Calculations are at zero temperature and pressure, and
without zero-point motion. The energy cutoff in an alloy
was set to 1.5 times the larger of the suggested energy
cutoffs of the pseudopotentials of the elements of the
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using 2000=�number of atoms in unit cell� k points dis-
tributed as uniformly as possible on a Monkhorst-Pack
mesh. We verified that with these energy cutoffs and
k-point meshes the absolute energy is converged to better
then 10 meV=atom. Energy differences between struc-
tures are expected to be converged to much smaller
tolerances. Spin polarization was not used as no magnetic
alloys were studied. All structures were fully relaxed.

For each alloy i, consider the 114 structural formation
energies as the components of a vector Ei in a 114-dimen-
sional space. If the energies of the structures are linearly
dependent then the vectors for each alloy will not be
distributed randomly in the 114 dimensional space, but
confined in a subspace of reduced dimension. To look for
such approximate linear dependencies we use PCA [13].
This allows us to express the energy vector of an alloy as
an expansion in a basis of reduced dimension d, Ei �P

d
j�1 �ijei � �i�d�, where �i�d� is the error vector for the

alloy i. PCA consists of finding the proper basis set fej�d�g
that minimizes the remaining squared error

P
i�

T
i � �i for

a given dimension d. These optimum basis vectors fej�d�g
are called the principal components (PC’s) and form a set
of orthogonal vectors ordered by the amount of varia-
tion of the original sample they can explain. More
intuitively, they are a new set of axes in the 114 dimen-
sional space, ordered according to the fraction of the data
lying along that axis. As an extreme example, if the
energies of all 55 alloys were proportional to each other,
then all the alloy vectors would lie along a single line, and
the first PC would be a subspace that encompassed all the
data �d � 1�.

A principal components analysis of our ab initio data
set (Fig. 1) shows that significant dimension reduction is
possible in the space of structural energies. The solid
curve, labeled ‘‘55,’’ in Fig. 1 shows the remaining un-
explained root mean square (rms) error (average error in
the 114 structural energies of the 55 alloys), as a func-
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FIG. 1. The rms error as a function of the number of principal
components. The solid lines show results for the libraries
containing 35, 45, and 55 alloys. The dashed line shows results
for the 55-alloy library where the energies for each alloy have
been randomly permuted.
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tion of the number of principal components d. All quan-
tities are given as energy per atom. The number of
relevant dimensions depends on the error one can
tolerate. For example, to describe the energies with a
50 meV rms error, only 9 dimensions are required,
many fewer than the original 114. The implication is
that it is possible to perform far fewer than 114 calcula-
tions to parametrize the 9 dimensional subspace, and then
derive the other 105 energies through linear relationships
given by the PCA.

Dimension reduction holds only because the energy
differences of structures are strongly correlated between
alloys with different chemistry. In fact, if we perform a
PCA analysis in which the structural energies for each
alloy are randomly permuted, and hence destroy their
relations, there is little opportunity for dimension reduc-
tion, as the dashed curve in Fig. 1 shows. Given an
acceptable accuracy, dimension reduction does not de-
pend on the dimension of the library, once the library is
bigger than a certain size. Figure 1 shows the PCA
analysis for 35, 45, and 55 alloys. For subspaces defined
by up to � 20 PC’s (27 meV rms accuracy) the variance is
essentially independent of the number of alloys, indicat-
ing that the dimension reduction we obtain can be ex-
pected to apply to new alloy systems.

These correlations are further confirmation that the
success of heuristic methods is not accidental and that
with relatively few parameters it can be possible to pre-
dict the structure of a binary alloy. In fact, these corre-
lations can be used to develop an ab initio data-mining
algorithm that rapidly searches through the available
space of possible structures. It is important to emphasize
that the correlations do not lead to exact linear depen-
dencies, but only approximate ones. The number of de-
grees of freedom that have to be retained is determined by
choosing the level of approximation.

Given a library of Na alloys, Ns structures, and a new
alloy where the first n energies have been calculated, we
predict the energy for structure i > n of the new alloy as
follows. Define X as the �n; Na� matrix of energies for
structures f1; . . . ; ng in the library. Define y as the
n-component vector of known energies for the new alloy
and X0 as the Na-component vector of energies for struc-
ture i for all alloys in the library. The scalar y0 represents
the unknown energy of structure i for the new alloy. We
regress y on X using the partial least squares method
[14,15] implemented with the SIMPLS algorithm [16].
The resulting regression coefficients are used to predict y0

from X0. This is done for every structure of the new alloy
for which the energy has not yet been calculated.

The ground states for an alloy are found through an
iterative scheme. At each step, the PLS regression is used
to find the most probable ground state, which is then
calculated with quantum mechanics and added to the
data. Although the PLS regression is not accurate enough
to substitute for the ab initio energy, it is sufficient for
selecting candidate structures efficiently. The algorithm
135503-2
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is started with only the pure element energies for the two
elements of the alloy in the bcc, fcc, and hcp structures,
and then proceeds as follows.

Step 1 (prediction).—The regression algorithm given
above is used to predict all unknown structural energies
in the new system. We found that for early iterations
( < 10) the rms error can be reduced by preclustering
the library into ordering and phase-separating systems
and regressing only within the library subcluster in which
the system is predicted to fall. Physically, this means that
for the early stage of the iterative procedure, new alloys
regress better with similar alloys than with the complete
library.

Step 2 (suggestion).—With the available ab initio cal-
culated energies we determine the ground-state energy
versus composition curve (convex hull). The structure
with data-mined predicted energy farthest below the
convex hull of calculated energies is calculated with
quantum mechanics and added to the database. If no
structure breaks the hull, we look for the structure pre-
dicted to be closest to the hull. For early iterations ( < 13
in Fig. 2), if no such structure can be found within 80 meV
of the ground-state hull, we consider the prediction to
have failed in this step, and instead we add the most
frequent and not yet calculated ground-state structure of
the database.

Step 3 (calculation).—The candidate suggested struc-
ture is then calculated with quantum mechanics and
added to the list, and the entire process is iterated (pre-
diction ) suggestion ) calculation). With each step,
more energetic information for the new alloy is incorpo-
rated and a better prediction of the ground state can be
expected.

Any structure in the library can be predicted and there
are no preconceived biases as to the symmetry or under-
lying superlattice of the structure as is the case for
methods that work with lattice model approaches. For
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FIG. 2. The number of calculations as a function of the
percentage of ground states predicted correctly, with the
DMQC method (solid line) and with random structure selec-
tion (dashed line). 90% accuracy can be achieved with DMQC
with 26 calculations, many fewer than the 98 calculations
necessary for random structure selection.
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example, in the Ti-Pt alloy, our method correctly finds
the A15 [17,18] structure to be a ground state for Ti3Pt
after only 20 steps in the algorithm, even though this
structure is not a superstructure of fcc (the structure of Pt)
or of hcp (the structure of Ti) and is therefore not an
obvious structure to investigate for this system. To study
in a more statistically significant way how this iterative
scheme converges we tested how well the library minus
one alloy can perform predictions on the alloy left out. A
key property is whether the alloy is immiscible (no
ordered compounds) or has intermediate compounds
(compound forming). Empirical schemes such as the
one developed by Miedema have been particularly suc-
cessful in classifying this difference [5]. We find that
DMQC can predict whether an alloy excluded from the
library is compound forming with 95%, 98%, and 100%
accuracy using 3, 6, and 13 calculations, respectively.
Note that here and below, we do not count the initial pure
element calculations, since these are performed only once
for each element. For comparison, if one randomly picked
trial structures from the list of 114 structures, predictions
with 95%, 98%, and 100% accuracy require 7, 21, and
98 calculations, respectively. The DMQC method per-
forms extremely well, far better than a naive random
choice of structures, and gives almost a perfect prediction
with a small amount of computation.

A more stringent evaluation is whether the correct
stable crystal structures are predicted for the system
left out. Figure 2 (solid line) shows the number of calcu-
lations required as a function of the percentage of ground
states predicted correctly (averaged over all alloys). For
our purpose, ‘‘correct’’ is what would be obtained from
the direct quantum mechanical calculations on all
114 structures. 90% accuracy can be achieved with less
than 26 calculations for an alloy. To achieve the same
confidence level with random structure selection (dashed
line) one needs to calculate almost the complete database
(98 calculations).

Even though it is generally believed that the binary
alloys are well characterized experimentally, our ap-
proach can be used to quickly predict previously uniden-
tified stable structures in some systems. For example,
with only 26 calculations we predict Ag3Cd and Ag2Cd,
respectively, to have the DO24 and C37 structures. In
addition, we predict the previously unidentified structure
for CdZr3 to be A15 (Cr3Si-type). This prediction takes
only 21 iterations and is particularly interesting since
A15 does not share the hcp parent lattice of Cd and Zr.
These predictions were confirmed by calculation of all the
prototype structures in the library. A more detailed
analysis of the predictions made from our database in a
large number of systems will be published elsewhere [19].

More structures will need to be added to the library to
give the method better applicability to many unknown
systems. It is therefore important to assess how the num-
ber of required calculations scales with the number of
structures in the library. This scaling is shown in Fig. 3
135503-3
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FIG. 3. The average number of calculations needed to obtain
a given accuracy of predicted crystal structures, as a function
of the number of structures in the library. Results are given for
80%, 85%, 90%, and 95% accuracies. The number of calcula-
tions increases less than linearly with the number of structures
in the database, demonstrating that efficiency increases as the
library grows.
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for various required confidence levels. As the library
grows, more calculations are needed to select between
the increasing number of possibilities. Fortunately, the
number of calculations increases less than linearly with
the number of structures in the database, demonstrating
that efficiency increases as the library grows.

Our current DMQC approach has the limitation that
structure types must already be in the database to be
predicted. However, a concerted effort to develop a public
database, analogous to those used in biology, may make
this limitation less important. Our work has also focused
on a simple test library of binary alloys. The real payoff
will come with the inclusion of multicomponent systems,
where fewer than 10% of all intermetallic systems have
been characterized [6,20]. A library of ternary structures
can be integrated with the binary libraries and extensions
of the formalism are not required, besides adding an extra
composition variable. Although the data-mining methods
discussed here are centered around dimension reduction
and linear correlation, other approaches, including non-
linear methods (e.g., neural nets, clustering, learning
machines, etc.) will certainly be more effective in ex-
tracting information from the library.

In summary, by data-mining quantum mechanical
calculations (DMQC) we have established that there exist
significant correlations among ab initio energies of dif-
ferent structures in different materials. The correlations
we found can be seen as a formal extension of the heu-
ristic structure-properties selection rules that have been
established in the past on the basis of large amounts of
experimental structure information [20–22]. Our ap-
proach differs from the previous classifications in that
we correlate on calculated information (structural ener-
gies in our particular example), and hence our description
135503-4
can be used when there is limited experimental data, and
can be extended to arbitrary accuracy. We believe that the
integration of data-mining techniques with ab initio
methods is a promising development towards the practical
prediction of crystal structure.
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