
Computational Materials Science 97 (2015) 209–215
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
The Materials Application Programming Interface (API): A simple,
flexible and efficient API for materials data based on REpresentational
State Transfer (REST) principles
http://dx.doi.org/10.1016/j.commatsci.2014.10.037
0927-0256/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ongsp@ucsd.edu (S.P. Ong), scholia@lbl.gov (S. Cholia),

ajain@lbl.gov (A. Jain), mbrafman@lbl.gov (M. Brafman), dkgunter@lbl.gov
(D. Gunter), gceder@mit.edu (G. Ceder), kapersson@lbl.gov (K.A. Persson).

URLs: http://www.materialsvirtuallab.org (S.P. Ong), http://ceder.mit.edu
(G. Ceder).
Shyue Ping Ong a,⇑, Shreyas Cholia b, Anubhav Jain b, Miriam Brafman b, Dan Gunter b, Gerbrand Ceder c,
Kristin A. Persson b

a Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093, USA
b Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley, CA 94720, USA
c Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 August 2014
Accepted 18 October 2014

Keywords:
Materials Project
Application Programming Interface
High-throughput
Materials genome
Rest
Representational state transfer
In this paper, we describe the Materials Application Programming Interface (API), a simple, flexible and
efficient interface to programmatically query and interact with the Materials Project database based on
the REpresentational State Transfer (REST) pattern for the web. Since its creation in Aug 2012, the
Materials API has been the Materials Project’s de facto platform for data access, supporting not only
the Materials Project’s many collaborative efforts but also enabling new applications and analyses. We
will highlight some of these analyses enabled by the Materials API, particularly those requiring
consolidation of data on a large number of materials, such as data mining of structural and property
trends, and generation of phase diagrams. We will conclude with a discussion of the role of the API in
building a community that is developing novel applications and analyses based on Materials Project data.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction hydrogen production [10], topological insulators [11], and organic
First principles methods are today a critical tool in the study
and design of materials. Starting from the fundamental laws of
physics with minimal assumptions and approximations, first prin-
ciples techniques can access a wide range of chemistries in a rela-
tively agnostic manner, making them especially powerful in
materials investigations or design problems spanning diverse
chemical spaces.

In the past decade, electronic structure calculation codes [1–4]
have reached a level of maturity that it is now possible to reliably
automate and scale first principles calculations across any number
of compounds. Coupled with computing advances, this develop-
ment has led to the advent of high throughput (HT) first principles
calculations as an investigative and design tool in materials
science. Even today, there are already several examples of HT
first principles computation-guided materials design efforts in
applications as varied as alkali-ion batteries [5–9], catalysts for
semiconductors [12], with many of these efforts resulting in the
discovery of novel materials that have already been synthesized
and verified experimentally. This HT capability has also spurred
the development of large databases of computed data on materials,
such as the Materials Project [13], the AFLOWLIB library [14] and
the Harvard Clean Energy Project [12].

In particular, the Materials Project [13], created by the authors
of this paper, has led the charge of combining a large database of
materials properties with a diverse and growing set of online anal-
ysis and comprehensive open source software tools [15–17]. The
Materials Project’s database today contains computed energetic
properties for over 59,000 crystal structures along with over
25,000 electronic structure properties. More structures and prop-
erties (e.g., elastic constants, dielectric constants, etc.) are being
added on a daily basis. A series of web applications provide users
with the capability to perform advanced searches and common
analyses such as phase diagram and Pourbaix diagram generation
[18–20], reaction energy computations, prediction of novel struc-
tures [21,22], etc. However, while these web applications provide
user-friendly graphical interfaces to explore materials data and
analyses, they do not provide easy programmatic access to the
underlying resources or a means for the community to develop
novel applications or analyses.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2014.10.037&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2014.10.037
mailto:ongsp@ucsd.edu
mailto:scholia@lbl.gov
mailto:ajain@lbl.gov
mailto:mbrafman@lbl.gov
mailto:dkgunter@lbl.gov
mailto:gceder@mit.edu
mailto:kapersson@lbl.gov
http://www.materialsvirtuallab.org
http://ceder.mit.edu
http://dx.doi.org/10.1016/j.commatsci.2014.10.037
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci

210 S.P. Ong et al. / Computational Materials Science 97 (2015) 209–215
In this paper, we describe the Materials Application Program-
ming Interface (API), a simple, flexible and efficient interface to
programmatically query and interact with the Materials Project
database based on REpresentational State Transfer (REST) princi-
ples [23]. The provision of RESTful web services as a complemen-
tary method of accessing online resources is not a new concept.
Most notably, the Protein Data Bank (PDB), which shares similar
aims as the Materials Project but in a different scientific domain,
has implemented such web services for a number of years [24].
However, the solid-state community has generally lacked the
adoption of such information exchange protocols, and to our
knowledge, the Materials API is the first API of its kind for solid-
state materials data. The Materials Project has also implemented
a high-level interface to the Materials API in the open-source
Python Materials Genomics (pymatgen) materials library [15],
which provides a reference implementation for accessing the API
and supporting analysis tools. Since its creation in Aug 2012, the
Materials API has been the Materials Project’s de facto platform
for data access, supporting not only the Materials Project’s many
collaborative efforts but also enabling new applications and
analyses. This paper will highlight several examples of these
applications and analyses. With increasing demand for federated
materials data storage and sharing, we hope that the Materials
API can also inspire other materials data collections (e.g., the
AFLOWLIB consortium) [25] to adopt similar flexible, high
throughput data interfaces based on open standards.

2. Overview of the Materials Project database

Before we embark on a discussion of the Materials API and its
design, it is necessary to first provide a brief overview of the under-
lying Materials Project database structure from which the data
requests are served. The vast majority of data currently available
through the Materials Project is computed first principles data. This
data is computed using tens of millions of CPU-hours at the
National Energy Scientific Computing Center (NERSC). The type of
data generated falls into three broad categories (see Fig. 1):

1. Information about the individual computing tasks, includ-
ing input parameters, raw calculation output, history (e.g.,
originating structures, error correction protocols applied,
etc.) and file locations. As of this writing, over 240,000 suc-
cessful tasks have been completed.
Fig. 1. Different levels of data in Materials Project database: tas
2. Consolidated information about individual materials.
Several electronic structure calculations (or tasks) with
different ‘‘task types’’ are generally performed in order to
compute multiple properties of a single material (e.g.,
structure, energy, band structure, elastic tensor, etc.). At
this level, the details of the individual tasks are generally
removed in favor of physical properties revealed by the cal-
culations. Currently, data is available for over 55,000
materials.

3. Higher level analysis data (often tailored to applications),
which can combine information from several materials.
For example, a battery electrode combines information
from at least two materials at different states of charge. A
phase diagram combines energy data from all materials in
a chemical space.

All data are stored in MongoDB, a NoSQL database in which
each individual task, material, or analysis-specific entity is stored
as a single BSON document. For example, the materials collection
contains over 55,000 such documents, one for each material. Each
document has a corresponding identifier or id (e.g., task_id, mate-
rials_id, or battery_id) that can be used to uniquely identify a cal-
culation, material, or battery. For large data (e.g., band structures),
we use GridFS collections for storage. Each category of data (tasks,
materials, or analysis data) is stored in a MongoDB collection,
which corresponds roughly to a table in traditional SQL databases.
This organization mirrors the fact that each type of data has a
different document structure.
2.1. Data generation

We provide herein a brief overview of the process by which the
data in the Materials Project database is generated (Fig. 2).

The calculation process begins when a user or algorithm sub-
mits a crystal structure to a submissions database. The crystal
structure might originate from a structural database such as the
Inorganic Crystal Structure Database (ICSD) [26] or it might be a
proposed new compound. The distinction is recorded within the
StructureNL object in the pymatgen codebase [15], which tracks
the history of each crystal structure.

Once the compound is submitted, the rest of the calculation
process is fully automated. The submission is detected by a
background process and automatically mapped to a calculation
ks, materials, and analysis data such as battery electrodes.

Fig. 2. The Materials Project computation infrastructure.

Fig. 3. Example of a URL format for the Materials API.

S.P. Ong et al. / Computational Materials Science 97 (2015) 209–215 211
workflow that specifies task types (e.g., structure, energy, band
structure) and their dependencies. The workflows are stored and
executed at NERSC using the FireWorks code [17], which also auto-
matically checks for duplicated jobs. Internally, the jobs use pymat-
gen to set up the input files, custodian [16] to run the electronic
structure code (e.g., VASP [1]) and correct job errors, and pymat-
gen-db to parse the output files and store the results in the tasks
collection (as described previously). Thus, upon submission of a
compound, automated processes will carry out the calculations,
resulting in calculated data appearing in the tasks collection.

The calculation workflow only populates the tasks collection.
The materials collection and higher level analysis data are gener-
ated by a series of builders. The builders generally operate in a
MapReduce style; for example, the materials builder collects all
tasks pertaining to a single material and builds one document for
that material that combines properties computed from all tasks.
The builders also resolve conflicts; for example, if two tasks con-
tain the energy for a compound, the builder chooses the energy
that is converged more accurately (e.g., large k-point mesh or tigh-
ter energy convergence) or the magnetic state with the lowest
energy.

3. The Materials API

The Materials Project RESTful API allows users to directly access
Materials Project data via the Hypertext Transfer Protocol (HTTP),
and provides an efficient way for users to programmatically query
for materials information instead of relying on browser-based
interfaces. The Materials API is designed using the REST Architec-
tural Style [23], thus leveraging widely deployed HTTP infrastruc-
ture and related standards. Like the APIs of many well-known
sites (e.g., Netflix, Dropbox), the Materials API uses some shared
knowledge about the form and semantics of Uniform Resource
Identifiers (URIs), as well as pre-determined media types, to reduce
the number of round-trips needed to discover and use the inter-
face. By convention, this deviation from the full set of requirements
of a REST API are indicated by the term ‘‘RESTful’’.

Under RESTful design, each object is represented as a unique
resource and can be queried in a uniform manner. A RESTful HTTP
service exposes a consistent set of semantics that uses HTTP
methods (GET, POST, PUT, DELETE, etc.) in conjunction with unique
URIs to access the underlying resources. This allows for the
creation of an API using a combination of HTTP methods and URIs.
For the purposes of the Materials API, this means that each
document or object (such as a task, material or analysis) can be
represented by a unique URI and an HTTP verb can be used to
act on that object. In most cases, this action returns structured data
that represents the object or the result of an operation against the
object. In a RESTful design, the HTTP media-type indicates the type
and format of the object; in the Materials API, we consistently use
JSON with a media type ‘‘application/json’’.

3.1. URL design

Fig. 3 shows the general URL format for the Materials API. The
URL format is designed to be simple and intuitive, and generally
comprises five main components:

1. The first part of the URL (https://www.materialspro-
ject.org/rest/v2) is the preamble. The ‘‘v2’’ at the end of
the preamble denotes that this is currently version 2 of
the API, and provides flexibility for future improvements
to the API (including backwards incompatible versions)
while continuing to support applications/analyses built on
earlier versions.

http://https://www.materialsproject.org/rest/v2
http://https://www.materialsproject.org/rest/v2

Table 1
Examples of supported resource keywords in the Materials API.

Resource
keyword

Description Supported identifiers HTTP
methods

materials Information about a material or a set of materials, e.g.,
energies, structure parameters, etc.

materials ids (e.g., ‘‘mp-1234’’), formulas (e.g., ‘‘Fe2O3’’), chemical systems
(e.g., ‘‘Li–Fe–O’’)

GET

tasks Information about a task, e.g., calculation parameters, etc. task ids (e.g., ‘‘mp-1234’’) GET
phase_diagram Phase diagram data for a chemical system Chemical system (e.g., ‘‘Li–Fe–O’’) GET
reaction Information about a reaction, e.g., balanced reaction,

reaction enthalpy
Arrays of reactants and products (e.g.,
‘‘reactants[] = MgO&reactants[] = Al2O3 &products[] = MgAl2O4’’)

GET

battery Information about a battery material, e.g., voltage, capacity,
etc.

battery ids (e.g., ‘‘mp-300019017’’), formulas (e.g., ‘‘LiFePO4’’) GET

query Provides for highly flexible queries based on the MongoDB
syntax

No identifiers supported. Instead, two string parameters representing a
query criteria and requested properties have to be supplied via POST. E.g.,
‘‘{‘‘criteria’’: ‘‘{‘nelements’: 2}’’, ‘‘properties’’:
‘‘[‘formation_energy_per_atom’]’’}

POST

snl Allows users to submit new structures for calculation by
the Materials Project. Currently in beta testing with a
limited group of users

No identifiers supported. Structures are submitted as a well-defined JSON
string format that allows users to supply provenance (e.g., publications to
be cited, etc.)

POST/
GET

Fig. 4. Typical response format for the Materials API. The response has been
truncated for brevity.

212 S.P. Ong et al. / Computational Materials Science 97 (2015) 209–215
2. The next part of the URL (‘‘materials’’) is a resource
keyword that denotes the resource type requested. In the
example shown in Fig. 3, this indicates that the request is
for data about a material or set of materials. Other
supported keywords and their functions are outlined in
Table 1.

3. The resource keyword is followed by an identifier. As dis-
cussed in the previous section, the Materials Project assigns
unique identifiers (‘‘ids’’) to materials, computational tasks,
etc. Besides these unique identifiers (which correspond to a
single entity), some resource keywords also support other
identifiers which allow users to easily perform common
queries for entire sets of materials. The example shown in
Fig. 3 is a request for data for all polymorphs with formula
Fe2O3. For the ‘‘materials’’ keyword, another supported
identifier is a ‘‘–’’ separated list of element symbols, which
allows a user to request data on all materials in a chemical
system.

4. The remainder of the url (‘‘/vasp/energy’’) specifies the type
of data requested. The supported options for this last part
are highly dependent on the resource keyword. Some
resources do not require any data specification at all. For
the ‘‘materials’’ resource example, the request is for the
energy of the materials computed using the Vienna Ab initio
Simulation Package (VASP) [1].

In general, RESTful HTTP APIs prescribe the use of the GET HTTP
method for idempotent, read-only queries and the POST HTTP
method creation of new resources (non-idempotent). Currently,
most of the idempotent Materials API calls use the GET http
method, with the exception of ‘‘query’’ which requires the use of
POST due to potentially large query strings that exceed browser/
server data size limits for the GET method. This is a fairly common
pattern in RESTful HTTP APIs when dealing with large inputs, to
work around the limitations of the protocol. The ‘‘snl’’ call, a beta
feature which allows users to submit new structures to the Mate-
rials Project for calculation (and hence is non-idempotent), uses
the POST method for structure submission, but the GET method
for looking up information about a submission. It should be noted
that Table 1 only lists frequently used resource keywords and
examples and is not a comprehensive listing of all supported
resources.

3.2. Response formats

The Materials API uses the JavaScript Object Notation (JSON) as
the primary format for responses. The JSON was selected as it is an
extremely lightweight format with parser support in almost all
common programming languages. The API also supports the
common XML and YAML formats, which the user can specify via
a format GET/POST parameter.

An example of the truncated JSON response for the request in
Fig. 3 is given in Fig. 4. Besides the actual data requested (under
the ‘‘response’’ key), the complete response also includes metadata
such as the date the response was generated and the versions of
the pymatgen code, database, and REST interface used to generate
the response. These metadata are important for data provenance,
given that the database as well as the supporting code infrastruc-
ture are constantly evolving.

3.3. Security and API keys

All requests to the Materials API must be done over Secure
Hypertext Transfer Protocol (HTTPS) for security reasons. Most
requests require the use of an API key, which users can obtain

(a) Materials Project 2014 - 33,604 unique inorganic

(b) Baur 1992 - 34,692 inorganic structures.

structures from the�ICSD.

Fig. 5. Distribution of space groups for inorganic structures.

S.P. Ong et al. / Computational Materials Science 97 (2015) 209–215 213
through their Materials Project dashboard (https://www.materi-
alsproject.org/dashboard). The API key can be specified either as
an API_KEY GET/POST parameter, or as an x-api-key header. The
use of a unique API key for each user provides an efficient
mechanism for the implementation of API features that require
user identification, e.g., the submission of structure prediction
requests or computation requests.

4. High level implementation in Python Materials Genomics

In recent years, Python has become one of the most popular
programming languages for scientific computing. This is in no
small part due to its highly readable syntax, large standard library,
as well as the establishment of high-performance numerical and
scientific libraries such as Numpy and Scipy [27,28]. Most of the
Materials Project’s open-source software stack is implemented in
Python. In particular, the Python Materials Genomics (pymatgen)
library [15] powers most of the materials analyses in the Materials
Project, providing core object definitions, and a well-tested set of
structure and thermodynamic analysis tools relevant to many
applications.

To make it easier for users to use the Materials API, a high-level
interface to the API known as the MPRester, has been implemented
in pymatgen’s matproj.rest module. Using this interface, users can
obtain data through the Materials API with a minimal amount of
coding and further analyze that data using the many tools available
in A_s a simple example, only four lines of code are necessary to
obtain all structures corresponding to a formula or chemical
system from the Materials Project and write them to files in the
Crystallographic Information File (CIF) format, as follows:

from pymatgen import MPRester, write_structure
with MPRester("USER_API_KEY") as mr:

Get all structures in the Fe-O system (�64) by
making a call to

https://www.materialsproject.org/rest/v2/

materials/Fe-O/structures

structures = mr.get_structures("Fe–O")
for i, struct in enumerate(structures):

write_structure(struct, "%s-%d.cif" %

(struct.formula, i))

In the following sections, we will demonstrate a few examples
of more sophisticated analyses that can be performed using the
Materials API. Most of these analyses were performed using the
pymatgen high-level interface to the Materials API.

5. Usage examples

5.1. Datamining materials data

Using the Materials API, a user can programmatically query for
data on a large number of materials, and perform data mining to
determine trends. An example of this kind of analysis is given in
Fig. 5. In Fig. 5a, a histogram of the distribution of space groups
for all calculated materials in the Materials Project database that
also belongs in the ICSD is constructed. Unlike many other dat-
abases which contain duplicate entries for the same structure,
the Materials Project database performs matching of structures
using a robust algorithm implemented in pymatgen [15]. This algo-
rithm has been successfully used to group the 150,000 + structures
in the ICSD into 50,000 + unique structures (including disordered
structures). A similar analysis of space group distribution based
on a compilation pf 34,692 structures by Baur and Kassner [29]
in 1992 is given in Fig. 5b. The Supplementary Information con-
tains the actual Python code used to generate these figures in the
form of an IPython notebook.

There is fairly good agreement in the distribution of the space
groups between the Baur 1992 compilation and the Materials
Project 2014 dataset. Both datasets find the two most common
space groups to be P21=cð14Þ and Pnmað62Þ, though the Materials
Project 2014 dataset have a significantly higher percentage of
structures in the P21=cð14Þ space group (10.72%) compared to
Pnmað62Þ (7.6%), while the Baur dataset have similar percentages
for both space groups (8.1–8.2%). The high symmetry space groups
such as Fm3mð255Þ and P63=mmcð194Þ form a slightly higher
percentage of the Baur dataset compared to the Materials Project
dataset. It should be noted that the Materials Project data only
contains ordered structures, while the Baur compilation may
contain both ordered and disordered structures, which may
explain the slightly higher incidence of higher symmetry space
groups in the Baur dataset.

5.2. Efficient materials computations and analyses

Using the Materials API, one can also obtain the relaxed struc-
tural parameters for most inorganic materials, which can serve as

http://https://www.materialsproject.org/dashboard
http://https://www.materialsproject.org/dashboard

214 S.P. Ong et al. / Computational Materials Science 97 (2015) 209–215
the starting point for other kinds of property calculations. For
example, many computations using higher-order methods such
as the Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional
[30,31] or the GW method [32] generally start from the output of
standard DFT computations (e.g., utilizing the charge densities or
wave functions computed). By querying for pre-relaxed structures
in the Materials Project database, these calculations can be
performed much more efficiently.

In addition, certain comparative materials analyses require the
amalgamation of data on a large number of materials. For example,
to determine the phase stability of a new material, one has to
compare its free energy relative to that of competing phases. For
complex materials comprising more than 3 elements, this require-
ment results in a combinatorial explosion in the number of
calculations that need to be performed. Using the Materials API
(and pymatgen’s phase diagram package), the researcher only
needs to perform a single calculation of the phase of interest using
parameters that are compatible with the Materials Project, and
query for energetic data on the other materials in the relevant
chemical systems from the Materials Project database. An example
of this kind of analysis is presented in the authors’ previous article
on the pymatgen package [15].
6. Community development

A key objective of the Materials API is to build a community of
developers that create new applications utilizing Materials Project
data. In fact, the Materials API today powers most of the Materials
Project’s collaborative endeavors that comprise large numbers of
scientists/ developers across many institutions. For example, there
are several ongoing collaborations to expand the suite of properties
available in the Materials Project, including elastic constants,
phonons and electronic transport properties.

We are also in process of further extending the Materials API
beyond simple data requests to support user contributions of data.
This feature is already available to a limited set of users. For exam-
ple, Castelli et al. [33] recently contributed band gaps for 2378
materials calculated using the GLLB-SC functional [34], which has
been shown to provide more accurate band gaps for semiconduc-
tors and insulators at a computational cost that is commensurate
with standard semi-local DFT [35]. An example can be seen at
https://www.materialsproject.org/materials/mp-1143/. A well-
defined data format has already been developed in the pymatgen
library, with options for providing provenance on supplied data
(e.g., works to be cited, code used to generate data, etc.), and all
contributions are given proper acknowledgment. By enabling com-
munity contributions, the Materials Project aims to become a
robust repository for materials information that is not limited by
the computational and human resources of any single group.

Yet another planned community development effort powered
by the Materials API is the ‘‘Materials Genomics Cloud’’ (MGCloud),
a cloud compute, storage and analysis platform for materials. The
Materials API will be the primary communication link between
the MGCloud and the Materials Project database. For example,
the MGCloud will interact with the Structure Predictor app of the
Materials Project to guide users in creating reasonable novel struc-
tures, and also check submitted structures against the entire Mate-
rials Project database. ‘‘Instant’’ answers can be provided if data
already exists within the Materials Project database without the
need for further computationally expensive calculations. Analyses
that require consolidation of data for multiple materials (e.g., phase
stability) can be provided with minimal additional calculations by
integrating data from the Materials Project. The MGCloud is
already undergoing beta testing with a limited set of users today,
and will soon be released.
7. Conclusion

The Materials Genome Initiative [36,37] has emphasized the
importance of shared data collections in materials science and
engineering. The Materials Project is one early example of the
impact of MGI, providing a large amount of computed materials
data coupled with powerful analysis tools and an open software
stack. We expect such large materials databases to become
increasingly commonplace. Providing programmatic interfaces to
query such databases is key to enabling new analyses and applica-
tions. The Materials API for the Materials Project provides an exam-
ple of such a programmatic interface built on REpresentational
State Transfer (REST) principles. Coupled with the open source
pymatgen materials analysis library, the Materials API has already
found numerous applications in powering new collaborations and
developing an active user community. It is hoped that this API
implementation will also serve as a template for other materials
databases, leading to more facile, open data access within the
materials research community as a whole.
Acknowledgments

This work was supported by the Department of Energy’s Basic
Energy Sciences program under Grant No. EDCBEE. We also thank
the National Energy Research Scientific Computing Center (NERSC),
a DOE Office of Science User Facility supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231, for providing invaluable computing resources
and IT support for this project.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.commatsci.2014.
10.037.
References

[1] G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
[2] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,

J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision C.02.

[3] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F.
Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M.
Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S.
Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel,
G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah,
J.W. Zwanziger, Comput. Phys. Commun. 180 (2009) 2582.

[4] X. Gonze, G.M. Rignanese, M.J. Verstraete, J.M. Beuken, Y. Pouillon, R. Caracas,
F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.Y. Raty, V.
Olevano, F. Bruneval, L. Reining, R.W. Godby, G. Onida, D.R. Hamann, D.C. Allan,
Zeitschrift für Krist. 220 (2005) 558.

[5] G. Hautier, A. Jain, S.P. Ong, B. Kang, C. Moore, R. Doe, G. Ceder, Chem. Mater. 23
(2011) 3495.

[6] G. Hautier, A. Jain, H. Chen, C. Moore, S.P. Ong, G. Ceder, J. Mater. Chem. 21
(2011) 17147.

[7] G. Ceder, G. Hautier, A. Jain, S.P. Ong, MRS Bull. 37 (2012) b1.
[8] S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder,

Energy Environ. Sci. 4 (2011) 3680.
[9] Y. Mo, S.P. Ong, G. Ceder, Chem. Mater. 24 (2012) 15.

[10] J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Nat. Mater. 5
(2006) 909.

http://https://www.materialsproject.org/materials/mp-1143/
http://dx.doi.org/10.1016/j.commatsci.2014.10.037
http://dx.doi.org/10.1016/j.commatsci.2014.10.037
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0005
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0015
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0015
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0015
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0015
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0015
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0015
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0020
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0020
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0020
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0020
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0025
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0025
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0030
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0030
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0035
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0040
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0040
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0045
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0050
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0050

S.P. Ong et al. / Computational Materials Science 97 (2015) 209–215 215
[11] K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, S. Curtarolo, Nat.
Mater. 11 (2012) 614.

[12] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R.S.
Sanchez-Carrera, A. Gold-Parker, L. Vogt, A.M. Brockway, A. Aspuru-Guzik, J.
Phys. Chem. Lett. 2 (2011) 2241.

[13] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D.
Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1 (2013) 011002.

[14] S. Curtarolo, W. Setyawan, G.L. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor,
S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, D.
Morgan, Comput. Mater. Sci. 58 (2012) 218.

[15] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L.
Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68 (2013) 314.

[16] S.P. Ong, W. Richards, S. Dacek, X. Qu, A. Jain, Custodian (2014).
[17] A. Jain, Fireworks (2011).
[18] S.P. Ong, A. Jain, G. Hautier, B. Kang, G. Ceder, Electrochem. Commun. 12

(2010) 427.
[19] S.P. Ong, L. Wang, B. Kang, G. Ceder, Chem. Mater. 20 (2008) 1798.
[20] K.a. Persson, B. Waldwick, P. Lazic, G. Ceder, Phys. Rev. B 85 (2012) 1.
[21] G. Hautier, C.C. Fischer, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 22 (2010)

3762.
[22] G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, G. Ceder, Inorg. Chem. 656 (2010).
[23] R.T. Fielding, R.N. Taylor, ACM Trans. Internet Technol. 2 (2002) 115.
[24] P.W. Rose, B. Beran, C. Bi, W.F. Bluhm, D. Dimitropoulos, D.S. Goodsell, A. Prlic,
M. Quesada, G.B. Quinn, J.D. Westbrook, J. Young, B. Yukich, C. Zardecki, H.M.
Berman, P.E. Bourne, Nucleic Acids Res. 39 (2011) D392.

[25] R.H. Taylor, F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno Nardelli, S.
Curtarolo, Comput. Mater. Sci. 93 (2014) 178.

[26] G. Bergerhoff, R. Hundt, R. Sievers, I.D. Brown, J. Chem. Inf. Comput. Sci. 23
(1983) 66.

[27] E. Jones, T. Oliphant, P. Peterson, Others, {SciPy}: Open source scientific tools
for {Python}.

[28] T.E. Oliphant, Comput. Sci. Eng. 9 (2007) 10.
[29] W.H. Baur, D. Kassner, Acta Crystallogr. Sect. B Struct. Sci. 48 (1992) 356.
[30] J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118 (2003) 8207.
[31] J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124 (2006) 219906.
[32] F. Aryasetiawan, O. Gunnarsson, Reports Prog. Phys. 61 (1998) 237.
[33] I.E. Castelli, F. Huser, M. Pandey, H. Li, K.S. Thygesen, A. Jain, K.A. Persson, G.

Ceder, K.W. Jacobsen, Submiss. (2014).
[34] M. Kuisma, J. Ojanen, J. Enkovaara, T. Rantala, Phys. Rev. B 82 (2010) 1.
[35] I.E. Castelli, T. Olsen, S. Datta, D.D. Landis, S.r. Dahl, K.S. Thygesen, K.W.

Jacobsen, Energy Environ. Sci. 5 (2012) 5814.
[36] T. Kalil, C. Wadia, Materials Genome Initiative for Global Competitiveness,

Tech. Rep. June (NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, 2011).
[37] G. Ceder, K. Persson, Sci. Am. 309 (2013) 36.

http://refhub.elsevier.com/S0927-0256(14)00711-3/h0055
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0055
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0060
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0060
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0060
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0065
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0065
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0070
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0070
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0070
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0075
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0075
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0080
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0085
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0090
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0090
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0095
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0100
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0105
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0105
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0110
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0115
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0120
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0120
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0120
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0125
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0125
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0130
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0130
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0140
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0145
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0150
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0155
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0160
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0170
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0175
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0175
http://refhub.elsevier.com/S0927-0256(14)00711-3/h0185

	The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles
	1 Introduction
	2 Overview of the Materials Project database
	2.1 Data generation

	3 The Materials API
	3.1 URL design
	3.2 Response formats
	3.3 Security and API keys

	4 High level implementation in Python Materials Genomics
	5 Usage examples
	5.1 Datamining materials data
	5.2 Efficient materials computations and analyses

	6 Community development
	7 Conclusion
	Acknowledgments
	Appendix A Supplementary material
	References

